首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 378 毫秒
1.
Combined effect of light intensity and glucose concentration on Arthrospira platensis growth and photosynthetic response was evaluated using a 32 factorial design. This design was carried out with light levels of 50, 100, and 150 μmol photons m−2 s−1 and glucose concentrations of 0.5, 1.5, and 2.5 g L−1. Results from the response surface methodology were that the highest level of light intensity and glucose concentration improved biomass (1.33 g L−1), maximum specific growth rate (0.49 day−1), and net photosynthetic rate (139.89 μmol O2 mg Chl−1 h−1). Furthermore, the interaction of both factors showed that at low light, glucose had a low effect on maximum biomass and maximal net photosynthetic rate. However, at the highest light levels, the effect of glucose was more sensitive and the increase of glucose concentration increased the levels of all responses. The rates of the instantaneous relative growth, net photosynthesis, and dark respiration of growth cultures showed two different phases in mixotrophic condition. The first was distinguished by the preponderance of the photoautotrophic mode; the second was based mainly on photoheterotrophy.  相似文献   

2.
The phototransformation pathways of protochlorophyllide forms were studied in 8?C14-day-old leaves of dark-germinated wheat (Triticum aestivum L.) using white, 632.8?nm He?CNe laser and 654?nm laser diode light. The photon flux density (PFD) values (0.75?C360???mol photons?m?2?s?1), the illumination periods (20?ms?C10?s) and the temperature of the leaves (between ?60?°C and room temperature) were varied. The 77?K fluorescence spectra of partially phototransformed leaves showed gradual accumulation or even the dominance of the 675?nm emitting chlorophyllide or chlorophyll form at room temperature with 632.8?nm of PFD less than 200???mol photons?m?2?s?1 or with 654?nm of low PFD (7.5???mol photons?m?2?s?1) up to 1?s. Longer wavelength (685 or 690?nm) emitting chlorophyllide forms appeared at illuminations under ?25?°C with both laser lights or at room temperature when the PFD values were higher or the illumination period was longer than above. We concluded that the formation of the 675?nm emitting chlorophyllide form does not indicate the direct photoactivity of the 633?nm emitting protochlorophyllide form; it can derive from 644 and 657?nm forms via instantaneous disaggregation of the newly-produced chlorophyllide complexes. The disaggregation is strongly influenced by the molecular environment and the localization of the complex.  相似文献   

3.
The effects of light intensity and temperature on Arthrospira platensis growth and production of extracellular polymeric substances (EPS) in batch culture were evaluated using a three-level, full-factorial design and response surface methodology. Three levels were tested for each parameter (temperature: 30, 35, 40°C; light intensity: 50, 115, 180 μmol photons m−2 s−1). Both growth and EPS production are influenced mainly by the temperature factor but the interaction term temperature*light intensity also had a significant effect. In addition, conditions optimising EPS production are different from those optimising growth. The highest growth rate (0.414 ± 0.003 day−1) was found at the lowest temperature (30°C) and highest light intensity (180 μmol photons m−2 s−1) tested, no optima were detectable within the given test range. Obviously, optima for growth must be at a temperature lower than 30°C and a light intensity higher than 180 μmol photons m−2 s−1. For EPS production, light intensity had a positive linear effect (optimum obviously higher than 180 μmol photons m−2 s−1), but for the temperature parameter a maximum effect was detectable at 35°C.  相似文献   

4.
The effects of organic carbon sources on cell growth and exopolysaccharide (EPS) production of dissociated Nostoc flagelliforme cells under mixotrophic batch culture were investigated. After 7?days of cultivation, glycerol, acetate, sucrose, and glucose increased the final cell density and final EPS concentrations, and mixotrophic growth achieved higher biomass concentrations. The increase in cell growth was particularly high when glucose was added as the sole carbon source. On the other hand, EPS production per dry cell weight was significantly enhanced by adding acetate. For more effective EPS production, the effects of the mixture of glucose and acetate were investigated. Increasing the ratio of glucose to acetate resulted in higher growth rate with BG-11 medium and higher EPS productivity with BG-110 medium (without NaNO3). When the medium was supplemented with a mixture of glucose (4.0?g?L?1) and acetate (2.0?g?L?1), 1.79?g?L?1 biomass with BG-11 medium and 879.6?mg?L?1 of EPS production with BG-110 medium were achieved. Adopting this optimal ratio of glucose to acetate established in flask culture, the culture was also conducted in a 20-L photobioreactor with BG-11 medium for 7?days. A maximum biomass of 2.32?g?L?1 was achieved, and the EPS production was 634.6?mg?L?1.  相似文献   

5.
The dependence of the carbon concentrating mechanism of Palmaria palmata (L.) Kuntze on the growth light level was examined 1) to determine whether or not there is a threshold photon flux density (PFD) at which the inorganic carbon uptake mechanism can operate and 2) to attempt to quantify the relative energetic costs of acclimation to the two different limiting factors, PFD and dissolved inorganic carbon (DIC) concentration. Plants were grown at six PFDs: 5, 25, 50, 75, 95, and 125 μmol photons. m?2.s?1. Growth rates increased with increasing PFD from 5 to 50 μmol photons. m?2. s?1 and were light-saturated at 75, 95, and 125 μmol photons. m?2. s?1 Values of δ13C increased continuously with increasing growth PFD and did not saturate over the range of light levels tested. Time-resolved fluorescence characteristics indicated a progressive photoacclimation below 50 μmol photons. m?2. s?1. Analysis of chlorophyll fluorescence induction showed three levels of light use efficirncy associated with growth at 5 or 25, 50, and >75 μmol photons. m?2. s?1. The light-haruesting efficiency was inversely proportional to the effectiveness of DIC acquisition in plants grown at the six PFDs. These data were interpreted to indicate that there is a physiological tradeoff between photosynthetic efficiency and bicarbonate use in this species.  相似文献   

6.
Spirulina platensis, a filamentous cyanobacterium, produces γ-linolenic acid (GLA, 18:3), which is an important anti-inflammatory for pharmaceutical use. Thus, to increase the GLA content in S. platensis, this study investigated the combined effect of a light–dark (LD) two-stage culture and mixotrophic culture including a precursor of GLA. When compared with a photoautotrophic culture, the supplement of a GLA precursor, such as a long- or short-chain carbon source, enhanced the total fatty acid and GLA contents in the cells in the two-stage culture. The highest GLA content of 2% (w/w) and productivity of 27.6?±?4.7?mg?L?1 were obtained in S. platensis when using 0.01?mM palmitic acid as a supplement in the two-stage culture. This study also suggests that a mixotrophic and LD two-stage culture may represent a method for increasing the total lipid production, which can then be converted to biofuels.  相似文献   

7.
The effects of salinity, light intensity and sediment on Gracilaria tenuistipitata C.F. Chang & B.M. Xia on growth, pigments, agar production, and net photosynthesis rate were examined in the laboratory under varying conditions of salinity (0, 25 and 33 psu), light intensity (150, 400, 700 and 1000 µmol photons m?2 s?1) and sediment (0, 0.67 and 2.28 mg L?1). These conditions simulated field conditions, to gain some understanding of the best conditions for cultivation of G. tenuistipitata. The highest growth rate was at 25 psu, 700 µmol photons m?2 s?1 with no sediments, that provided a 6.7% increase in weight gain. The highest agar production (24.8 ± 3.0 %DW) was at 25 psu, 150–400 µmol photons m?2 s?1 and no sediment. The highest pigment contents were phycoerythrin (0.8 ± 0.5 mg g?1FW) and phycocyanin (0.34 ± 0.05 mg g?1 FW) produced in low light conditions, at 150 µmol photons m?2 s?1. The highest photosynthesis rate was 161.3 ± 32.7 mg O2 g?1 DW h?1 in 25 psu, 400 µmol photons m?2 s?1 without sediment in the short period of cultivation, (3 days) and 60.3 ± 6.7 mg O2 g?1 DW h?1 in 25 psu, 700 µmol photons m?2 s?1 without sediment in the long period of cultivation (20 days). The results indicated that salinity was the most crucial factor affecting G. tenuistipitata growth and production. This would help to promote the cultivation of Gracilaria cultivation back into the lagoon using these now determined baseline conditions. Extrapolation of the results from the laboratory study to field conditions indicated that it was possible to obtain two crops of Gracilaria a year in the lagoon, with good yields of agar, from mid‐January to the end of April (dry season), and from mid‐July to the end of September (first rainy season) when provided sediment was restricted.  相似文献   

8.
Light effect on cultures of microalgae has been studied mainly on single species cultures. Cyanobacteria have photosynthetic pigments that can capture photons of wavelengths not available to chlorophylls. A native Louisiana microalgae (Chlorella vulgaris ) and cyanobacteria (Leptolyngbya sp.) co‐culture was used to study the effects of light quality (blue–467 nm, green–522 nm, red–640 nm and white–narrow peak at 450 nm and a broad range with a peak at 550 nm) at two irradiance levels (80 and 400 μmol m?2 s?1) on the growth, species composition, biomass productivity, lipid content and chlorophyll‐a production. The co‐culture shifted from a microalgae dominant culture to a cyanobacteria culture at 80 μmol m?2 s?1. The highest growth for the cyanobacteria was observed at 80 μmol μmol m?2 s?1 and for the microalgae at 400 μmol m?2 s?1. Red light at 400 μmol m?2 s?1 had the highest growth rate (0.41 d?1), biomass (913 mg L?1) and biomass productivity (95 mg L?1 d?1). Lipid content was similar between all light colors. Green light had the highest chlorophyll‐a content (1649 μg/L). These results can be used to control the species composition of mixed cultures while maintaining their productivity.  相似文献   

9.

Light management methods are considered effective to enhance the quantum yield and photosynthetic efficiency and promote the biomass and nutrient production; however, light saturation and inhibition restrain further improvement. This work studies the effect of light mixing on algal light saturation/inhibition, growth kinetics, and biochemical profile. The green alga Chlamydomonas reinhardtii was cultivated with batch culture under an LED light panel with multiple spectra options. Different combinations of blue (B) and red-orange (RO) light intensities were tested with blue light ranging from 45 to 65 μmol photons m?2 s?1 and red-orange light ranging from 45 to 205 μmol photons m?2 s?1. Results reveal that the mixed blue and red-orange light significantly improved the growth kinetics and relieved the light saturation under blue light and the light inhibition under the red-orange light. The maximum specific growth rate, biomass concentration, and productivity increased by 22, 50, and 57%, respectively, compared with the results under the red-orange light. The lipid and protein synthesis were observed to be promoted under mixed light with relatively low red-orange light intensities (45 and 105 μmol photons m?2 s?1) and repressed at high red-orange light intensities (155 and 205 μmol photons m?2 s?1). The carbohydrate content did not change.

  相似文献   

10.
Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m?2 d?1 on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m?2 d?1 (by rotation out of direct irradiance) to 79 mol photons m?2 d?1 (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L?1, photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m?2 s?1 photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L?1), the culture was irradiated up to 2,000 μmol photons m?2 s?1 to overcome light limitation with biomass yields of 0.7 g CDW mol photons?1 and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.  相似文献   

11.
In this paper, the outdoor production of Botryococcus braunii in pilot-scale panel reactors (0.4?m3) is studied under uncontrolled conditions at a location close to the Atacama Desert (Chile). Discontinuous experiments were performed on different dates to determine the feasibility of the culture and the influence of environmental conditions on the system yield. Data showed that solar radiation is a major parameter in determining system yield, the average irradiance inside the culture determining both the growth rate and biomass productivity. A maximum specific growth rate of 0.09?day?1 and biomass productivity of 0.02?g?L?1?day?1 (dry weight) were measured in discontinuous mode, at an average irradiance of 60?μE?m?2?s?1. With respect to lipids, a productivity of 2.5?mg?L?1?day?1 was obtained under favourable growth conditions; no accumulation of lipids at the stationary phase was observed. To confirm this behaviour, a semicontinuous culture was performed at 0.04?day?1 in a larger reactor (1?m3). In this experiment, the biomass concentration and productivity was 0.3?g?L?1 and 0.015?g?L?1?day?1, respectively. The lipid content and productivity was 15.6% and 2.4?mg?L?1?day?1, respectively, the mean average irradiance inside the reactor being 60?μmol photons?m?2?s?1. The light path of the reactor determines the light availability, thus determining also the biomass concentration and productivity of the reactor once the dilution rate is fixed. Experimentally, biomass productivity of 0.015?g?L?1?day?1 was determined for a light path of 0.15?m, but this can be increased by more than three times for a light path of 0.1?m. These data confirm that this alga can be produced outdoors in a secure form, the culture yield improving when optimal conditions are applied, the data reported here establishing the starting point for the development of the process.  相似文献   

12.
We characterized the photoautotrophic growth of glucose‐tolerant Synechocystis sp. PCC 6803 in a flat‐panel photobioreactor running on a semicontinuous regime under various lights, temperatures, and influx carbon dioxide concentrations. The maximum reached growth rate was 0.135 h?1, which corresponds to a doubling time of 5.13 h—a growth speed never reported for Synechocystis before. Saturating red light intensity for the strain was 220–360 μmol(photons) m?2 s?1, and we did not observe any photoinhibition up to 660 μmol(photons) m?2 s?1. Synechocystis was able to grow under red light only; however, photons of wavelengths 405–585 and 670–700 nm further improved its growth. Optimal growth temperature was 35°C. Below 32°C, the growth rates decreased linearly with temperature coefficient (Q10) 1.70. Semicontinuous cultivation is known to be efficient for growth characterization and optimization. However, the assumption of correct growth rates calculation—culture exponential growth—is often not fulfilled. The semicontinuous setup in this study was operated as a turbidostat. Accurate online OD measurements with high time‐resolution allowed fast and reliable growth rates determination. Repeating diluting frequencies (up to 18 dilutions per day) were essential for rapid growth stability evaluation. The presented setup provides improvement to previously published semicontinuous characterization strategies by decreasing experimental time requirements and maintaining the culture in exponential growth phase throughout the entire characterization procedure.  相似文献   

13.

The key factors influencing the production of C-phycocyanin (C-PC) and extracellular polymeric substances (EPS) by photoautotrophic culture of Arthrospira sp. were optimized using Taguchi method. Six factors were varied at either three or two levels as follows: light intensity at three levels; three initial culture pHs; two species of Arthrospira; three concentrations of Zarrouk’s medium; three rates of aeration of the culture with air mixed with 2% v/v carbon dioxide; and two incubation temperatures. All cultures ran for 14 days. The optimal conditions for the production of C-PC and EPS were different. For both products, the best cyanobacterium proved to be Arthrospira maxima IFRPD1183. The production of C-PC was maximized with the following conditions: a light intensity of 68 µmol photons m−2 s−1 (a diurnal cycle of 16-h photoperiod and 8-h dark period), an initial pH of 10, the full strength (100%) Zarrouk’s culture medium, an aeration rate of 0.6 vvm (air mixed with 2% v/v CO2) and a culture temperature of 30 °C. The concentration of Zarrouk’s medium was the most important factor influencing the final concentration of C-PC. The optimal conditions for maximal production of EPS were as follows: a light intensity of 203 µmol photons m−2 s−1 with the earlier specified light–dark cycle; an initial pH of 9.5; a 50% strength of Zarrouk’s medium; an aeration rate of 0.2 vvm (air mixed with 2% v/v CO2); and a temperature of 35 °C. Production of C-PC and EPS in raceway ponds is discussed.

  相似文献   

14.
Spirulina platensis (= Arthrospira fusiformis) was isolated from Lake Chitu, a saline, alkaline lake in Ethiopia, where it forms an almost unialgal population. Optimum growth conditions were studied in a turbidostat. Cultures grown in modified Zarrouk's medium and exposed to a range of light intensities (20–500 µmol photons m–2s–1) showed a maximum specific growth rate (µmax) of 1.78 d–1. Quantum yield for growth (µ) was 3.8% at the optimum light for growth of 330 µmol photons m–2s–1, and ranged from 2.8 to 9.4%. With increase in irradiance, the chlorophyll a concentration decreased, and the carotenoids/chlorophyll a ratio increased by a factor of 2.4. The phosphorus to carbon ratio (P/C) showed some variation, while the nitrogen to carbon ratio (N/C) remained relatively constant, thus causing fluctuations in the N:P ratio (7–11) of cells. An optimum N:P ratio of about 7 was attained in cells growing at the optimum light for growth. Results from the continuous culture experiments agreed well with maximum values of photosynthetic efficiency given in the literature for natural populations of S. platensis in the soda lakes of East Africa, Lake Arenguade (Ethiopia), and Lake Simbi (Kenya).  相似文献   

15.
The filamentous Cyanobacterium Arthrospira is commercially produced and is a functional, high-value, health food. We identified 5 low temperature and low light intensity tolerant strains of Arthrospira sp. (GMPA1, GMPA7, GMPB1, GMPC1, and GMPC3) using ethyl methanesulfonate mutagenesis and low temperature screening. The 5 Arthrospira strains grew rapidly below 14?°C, 43.75 μmol photons m?2 s?1 and performed breed conservation at 2.5?°C, 8.75 μmol photons m?2 s?1. We used morphological identification and molecular genetic analysis to identify GMPA1, GMPA7, GMPB1 and GMPC1 as Arthrospira platensis, while GMPC3 was identified as Arthrospira maxima. Growth at different culture temperatures was determined at regular intervals using dry biomass. At 16?°C and 43.75 μmol photons m?2 s?1, the maximum dry biomass production and the mean dry biomass productivity of GMPA1, GMPB1, and GMPC1 were 2057?±?80 mg l?1, 68.7?±?2.5 mg l?1 day?1, 1839?±?44 mg l?1, 60.6?±?1.8 mg l?1 day?1, and 2113?±?64 mg l?1, 77.7?±?2.5 mg l?1 day?1 respectively. GMPB1 was chosen for additional low temperature tolerance studies and growth temperature preference. In winter, GMPB1 grew well at mean temperatures <10?°C, achieving 3258 mg dry biomass from a starting 68 mg. In summer, GMPB1 grew rapidly at mean temperatures more than 28?°C, achieving 1140 mg l?1 dry biomass from a starting 240 mg. Phytonutrient analysis of GMPB1 showed high levels of C-phycocyanin and carotenoids. Arthrospira metabolism relates to terpenoids, and the methyl-d-erythritol 4-phosphate pathway is the only terpenoid biosynthetic pathway in Cyanobacteria. The 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) gene from GMPB1 was cloned and phylogenetic analysis showed that GMPB1 is closest to the Cyanobacterium Oscillatoria nigro-viridis PCC711. Low temperature tolerant Arthrospira strains could broaden the areas suitable for cultivation, extend the seasonal cultivation time, and lower production costs.  相似文献   

16.
Relationships between light intensity and chlorophyll concentration on hydrogen production were investigated in a sulfur‐deprived Chlamydomonas reinhardtii culture in a laboratory scale photobioreactor (PBR) equipped with two different stirring devices. In the first case, the culture was mixed using a conventional magnetic stir bar, while in the second it was mixed using an impeller equipped with five turbines. Experiments were carried out at 70 and 140 µmol photons m?2 s?1 in combination with chlorophyll concentrations of 12 and 24 mg L?1. A high light intensity (140 µmol photons m?2 s?1, supplied on both sides of the PBR) in combination with a low chlorophyll concentration (12 mg L?1) inhibited the production of hydrogen, in particular in the culture mixed with the stir bar. An optimal combination for hydrogen production was found when the cultures were exposed to 140 µmol photons m?2 s?1 (on both sides) and 24 mg L?1 of chlorophyll. Under these conditions, the hydrogen production output rate reached about 120 mL L?1 in the culture mixed with the stir bar, and rose to about 170 mL L?1 in the one mixed with the impeller. These outputs corresponded to a mean light conversion efficiency of 0.56% and 0.81%, respectively. However, the efficiency increased to 1.08% and 1.64%, respectively, when maximum hydrogen rates were considered. The better performance of the dense cultures mixed with an impeller was mainly attributed to an intermittent illumination pattern to which the cells were subjected (time cycles within 50–100 ms) which influenced the hydrogen production (1) directly, by providing the PSII with a higher production of electrons for the hydrogenase and (2) indirectly, through a higher synthesis of carbohydrates. The fluid dynamics in the PBR equipped with the impeller was characterized. The better mixing state achieved in the PBR of the new configuration makes it a useful tool for studying the hydrogen production process involving photosynthetic microorganisms, and provides a better insight into the physiology of the process. Biotechnol. Bioeng. 2009; 104: 76–90 © 2009 Wiley Periodicals, Inc.  相似文献   

17.
To reduce power consumption and enhance algal biomass productivity in a thin flat-plate bioreactor (called a sliver tank bioreactor), flashing (pulsing) light was used. Biomass productivity and power consumption were monitored in controlled experiments using various photon flux levels, including a constant (non-flashing) flux of 75 μmol photons m?2 s?1 and three flashing experiments with photon fluxes of 375, 275, and 175 μmol photons m?2 s?1. Flashing experiments were performed at 10 kHz and a duty cycle of 20 %. A sliver tank bioreactor with a chamber width of 6.4 mm was used for its short optical path. Data from the experiments where light was flashed with a photon flux of 375 μmol photons m?2 s?1 indicated 9.6 % less power and 2.86 times the biomass productivity compared to the constant photon flux experiments. Similar results were obtained for the other flashing light regimes, which had lower biomass yields but also less input power per unit biomass produced, indicating that a large fraction of the continuously applied photons are shed or wasted, even at levels approximately 1/30th the intensity of full sun.  相似文献   

18.
The objective of this study was to assess effects of different light intensities on shoot growth, root development and allocation of root-borne solutes via the transpiration stream to various shoot parts of young wheat plants (Triticum aestivum L.). Hydroponic culture allowed direct access to the roots and shoots throughout the experiment. Under low light intensity (100?μmol photons m?2?s?1), shoot growth was restricted, less (but larger) leaves were produced at the main shoot and only a few tillers became visible as compared to plants under high light intensity (380?μmol photons m?2?s?1). The root system was indirectly also affected by the illumination of the aerial parts. A larger number of shorter roots were produced under high light leading to a denser root system, while only a small number of longer roots were present under low light. The distribution of 54Mn (xylem-mobile, but essentially phloem-immobile in wheat) from the roots to the shoot lead to the conclusion that light regime strongly influences the distribution of root-borne solutes within the shoots. Labels introduced into the roots may allow a deeper insight into the transfer of solutes from the root system to the various shoot parts under different light regimes.  相似文献   

19.
The effects of increased photon flux (100???mol?m?2 s?1), ventilation, and standard in vitro culture (40???mol?m?2 s?1) with no ventilation were investigated on the physiological and histological characteristics of microshoots of Gevuina avellana. The increase in photon flux (light treatment) produced significant improvement in the fluorescence parameters of photochemical quenching, non-photochemical quenching, electron transport rate and photochemical efficiency of PSII, compared to the ventilation and control treatments. Nursery plants showed similar values compared to the microshoots in the light treatment, indicating that the plants in the light treatment developed a management for dissipating excess light. Moreover, chlorophyll a and b concentrations increased significantly in both light and ventilation treatments. The chl a/chl b ratio decreased in the ventilation treatment compared to the control treatment. Similar results were found for soluble carbohydrates. Finally, both the photon flux increase and ventilation had a positive effect on foliar anatomy, showing a more organized mesophyll and a better development of the palisade mesophyll compared to the control treatment. The changes observed in the microshoots with regards to foliar anatomy and photochemical behavior were very similar to nursery plants.  相似文献   

20.
The present study is aimed at investigating the role of growth irradiance in determining the extent of mercury (Hg) toxicity on various physiological parameters viz. growth, pigment contents, photosynthesis, respiration, 14CO2 fixation, photosynthetic electron transport, photorespiration and enzyme activity of cyanobacterium Nostoc muscorum. A general decline was observed in all these parameters with increasing concentration of Hg except for carotenoids content and respiratory activity which exhibited significant enhancement. This effect was more pronounced in high light (130???mol photon m?2?s?1) exposed cells as compared to normal (70???mol photon m?2?s?1) and low (10???mol photon m?2?s?1) light exposed cells. Among the photosynthetic electron transport activities, whole chain was found to be more sensitive than photosystem II (PSII) and photosystem I (PSI). 14CO2 fixation was more affected as compared to O2 evolution when exposed to Hg and different light intensities. Photorespiratory activity, which is an index of protecting organisms from light-induced damage, also showed a similar declining trend. Enzyme assay revealed that among the carboxylating enzymes, activity of RUBISCO was more severely inhibited than PEPCase. Thus, these results suggest that Hg itself was toxic at all tested concentrations and high light intensity augmented its toxicity in N. muscorum inhibiting the growth, pigment contents and photosynthetic activity of the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号