首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. niger produced α-glucosidase, α-amylase and two forms of glucoamylase when grown in a liquid medium containing raw tapioca starch as the carbon source. The glucoamylases, which formed the dominant components of amylolytic activity manifested by the organism, were purified to homogeneity by ammonium sulfate precipitation, ion-exchange and two cycles of gel filtration chromatography. The purified enzymes, designated GA1 and GA2, a raw starch digesting glucoamylase, were found to have molar masses of 74 and 96 kDa and isoelectric points of 3.8 and 3.95, respectively. The enzymes were found to have pH optimum of 4.2 and 4.5 for GA1 and GA2, respectively, and were both stable in a pH range of 3.5–9.0. Both enzymes were thermophilic in nature with temperature optimum of 60 and 65°C, respectively, and were stable for 1 h at temperatures of up to 60°C. The kinetic parametersK m andV showed that with both enzymes the branched substrates, starch and amylopectin, were more efficiently hydrolyzed compared to amylose. GA2, the more active of the two glucoamylases produced, was approximately six to thirteen times more active towards raw starches compared to GA1.  相似文献   

2.
Summary Gibberellin (GA) production inFusarium moniliforme (Gibberella fujikuroi) is suppresed by adding the plant growth retardant CCC [(2-chloroethyl)trimethylammonium chloride] to the culture medium. A concentration of 0.1 mg/l of CCC causes 50% inhibition whereas 10 mg/l and higher concentrations fully suppress GA production. Dry weight of the mycelium is not, or only slightly reduced in the presence of CCC.Thin-layer chromatography of acidic fractions of CCC-free cultures reveals fluorescent spots at 4 differentR f values. No fluorescent spots can be detected on chromatograms of acidic fractions obtained from CCC cultures, thus demonstrating that production of all GA's is inhibited by CCC.If CCC is added to the medium 2 or 3 days after inoculation, further GA production is blocked, but the level of GA present at the time of CCC application is maintained. CCC does not enhance inactivation of GA3 in sterile culture medium, nor in the presence of the fungus. It is therefore concluded that CCC inhibits the biosynthesis of GA in the fungus.Transfer of thoroughly washed mycelium from medium with CCC to fresh medium does not result in GA production because sufficient CCC is carried over in the mycelium to block GA biosynthesis completely.  相似文献   

3.
It has been previously reported that a glucoamylase from Curvularia lunata is able to hydrolyze the terminal 1,2-linked rhamnosyl residues of sugar chains at C-3 position of steroidal saponins. In this work, the enzyme was isolated and identified after isolation and purification by column chromatography including gel filtration and ion-exchange chromatography. Analysis of protein fragments by MALDI-TOF/TOF™ proteomics Analyzer indicated the enzyme to be 1,4-alpha-D-glucan glucohydrolase EC 3.2.1.3, GA and had considerable homology with the glucoamylase from Aspergillus oryzae. We first found that the glucoamylase was produced from C. lunata and was able to hydrolyze the terminal rhamnosyl of steroidal saponins. The enzyme had the general character of glucoamylase, which hydrolyze starch. It had a molecular mass of 66 kDa and was optimally active at 50°C, pH 4, and specific activity of 12.34 U mg of total protein−1 under the conditions, using diosgenin-3-O-α-L-rhamnopyranosyl(1→4)-[α-L-rhamnopyranosyl (1→2)]-β-D-glucopyranoside (compound II) as the substrate. Furthermore, four kinds of commercial glucoamylases from Aspergillus niger were investigated in this work, and they had the similar activity in hydrolyzing terminal rhamnosyl residues of steroidal saponin. This project was supported by the National Natural Science Foundation of China (NSFC; 30572333).  相似文献   

4.
The effects of cell immobilization on the secretion of extracellular proteases and glucoamylase production by Aspergillus niger were investigated under a variety of immobilization techniques and culture conditions. Immobilization was achieved by means of cell attachment on metal surfaces or spore entrapment and subsequent growth on porous Celite beads. Free-suspension cultures were compared with immobilized mycelium under culture conditions that included growth in shake flasks and an airlift bioreactor. Cell attachment on metal surfaces minimized the secretion of proteases while enhancing glucoamylase production by the fungus. Growth on Celite beads in shake-flask cultures reduced the specific activity of the secreted proteases from 128 to 61 U g−1, while glucoamylase specific activity increased from 205 to 350 U g−1. The effect was more pronounced in bioreactor cultures. A reduction of six orders of magnitude in protease specific activities was observed when the fungus grew immobilized on a rolled metal screen, which served as the draft tube of an airlift bioreactor. Received 29 October 2001/ Accepted in revised form 14 June 2002  相似文献   

5.
 用离子型多孔聚苯乙烯固定化了糖化酶。研究了制孔剂比例对载体孔径的影响。用麦芽糖做底物,三乙醇胺基聚苯乙烯载体使固定化糖化酶的最适pH向左移动约2个pH单位;磺酸基苯胺基聚苯乙烯载体使固定化糖化酶最适pH向右移动2个单位。固定化酶最适pH的移动值随缓冲液浓度的增加而减少。用可溶性淀粉为底物时固定化糖化酶的pH—活力曲线变宽。用dextrin作底物,天然糖化酶的Km为3.47×10~(-3)mol/L,固定化糖化酶的素质K_m为4.17×10~(-3)mol/L,表现K_m(app)为1.11×10~(-2)mol/L。延长重氮化反应时间,得到2000ug~(-1)干胶的高活力固定化糖化酶。  相似文献   

6.
The oxygen requirements of Aspergillus awamori as well as the adaptation to it and the aeration of the cultivation medium were determined in the process of glucoamylase synthesis. Under the selected agitation and aeration conditions (impeller-tip speed = 4.2 m/s; aeration 1.5 vvm) the cultivation-medium aeration was analysed by means of dissolved-oxygen-concentration measurement during the course of the process. It was demonstrated that for obtaining the glucoamylase-activity level of 800 U GA/cm3 under the selected conditions and with the fungus applied the dissolved-oxygen concentration at the level of 25% saturation should be maintained. Those findings could serve as auxiliary indexes in the scale-up process of glucoamylase synthesis.  相似文献   

7.
Glucoamylase (GA) was immobilized onto polyaniline (PANI)-grafted magnetic poly(2-hydroxyethylmethacrylate-co-glycidylmethacrylate) hydrogel (m-p(HEMA-GMA)-PANI) with two different methods (i.e., adsorption and adsorption/cross-linking). The immobilized enzyme preparations were used for the hydrolysis of “starch” dextrin. The amount of enzyme loading on the ferrogel was affected by the medium pH and the initial concentration of enzyme. The maximum loading capacity of the enzyme on the ferrogel was found to be 36.7 mg/g from 2.0 mg/mL enzyme solution at pH 4.0. The adsorbed GA demonstrated higher activity (59%) compared to adsorbed/cross-linked GA (43%). Finally, the immobilized GA preparations exhibited greater stability against heat at 55 °C and pH 4.5 compared to free enzyme (50 °C and pH 5.5), suggesting that the ferrogel was suitable support for immobilization of glucoamylase.  相似文献   

8.
Summary The cloning of glucoamylase geneSTA using theSUC2 promoter intoSaccharomyces cerevisiae was performed. The signal sequence ofSTA gene was used for the secretion of glucoamylase protein. The plasmid constructed in this way was named YEpSUCSTA and its expression was identified. The expression of YEpSUCSTA was repressed in the presence of glucose in growth medium, but derepressed when glucose became depleted. YEpSUCSTA showed the similar efficiency of glucoamylase secretion as YEpSTA-F which has the entireSTA gene. Glucoamylase activity in starch-glucose medium was largely increased because cell mass and plasmid stability were high in biosynthesis phase compared to extracellular glucoamylase activities in media which starch or glucose was the only carbon source.  相似文献   

9.
Summary Biotechnology has become an important tool to produce plant secondary metabolites and proteases are among them. Although pineapple plants have been found to produce proteases, most of the biotechnological investigations on this crop have been focused on propagation. The procedure involving the use of temporary immersion bioreactors is one of the most outstanding because of its high multiplication rate. We previously recorded specific protease activity in the culture medium during the pre-elongation step of this protocol. Therefore we decided to modify this phase, looking for an increase of protease excretion. Three independent experiments were performed to evaluate the effects of culture duration, and levels of gibberellic acid (GA) and 6-benzyladenine (BA). The following indicators were recorded: shoot fresh mass per bioreactor; and protein concentration, proteolytic activity, and specific protease activity in culture media. As happens in investigations focused on protease production, the specific protease activity was the most important indicator recorded here. It maximized at 21 d of culture. Moreover, GA (4.2 μM) increased specific activity in the culture medium while BA produced a negative effect. Results shown here demonstrate that conditions adquate for propagation purposes (15-d pre-elongation phase; 2.8 μM GA; 2.2 μM BA) are not necessarily adequate for protease excretion.  相似文献   

10.
The recombinant Saccharomyces cerevisiae strain C468/pGAC9 has an unstable hybrid plasmid pGAC9, which directs production of glucoamylase. A fibrous cotton material with a good adsorption capability for recombinant S. cerevisiae cells was used as the immobilization matrix in an internal loop airlift-driven fibrous bed bioreactor (ILALFBB) system. With batch cultures in the ILALFBB, the fraction of plasmid-carrying cells was 72% after more than 2 days cultivation, which was two times higher than that in the conventional free-cell culture. Correspondingly, a high activity of glucoamylase (GA; 113 U/l) was achieved with a high productivity of 43 U/l/h. The ILALFBB system also maintained a high fraction of viable plasmid-carrying of 74% for glucoamylase production during repeated-batch cultures, achieving a high glucoamylase activity of 140 U/l with a productivity of 19–130 U/l/h in all 14 batches studied during 19.8 days. The stable and long-term glucoamylase production from the ILALFBB was attributed to the effect of cell immobilization on plasmid stability. Plasmid-carrying cells were preferentially retained in the fibrous matrix because of their ability to adhere to the fiber surface and to form cell aggregates higher than those of plasmid-free cells. The repeated batch using immobilized cell of recombinant S. cerevisiae in the ALALFBB system thus provides a feasible method for stable, long-term and high-level production of glucoamylase.  相似文献   

11.
A glucoamylase gene has been cloned from a Rhizopus genomic DNA library using synthetic oligonucleotides corresponding to the amino acid sequence of the glucoamylase. Since this glucoamylase gene was not expressed in yeast cells, we have cloned a glucoamylase gene from a cDNA library prepared from Rhizopus mRNA. Sequence analysis of both glucoamylase genes revealed that the genomic gene contained 4 intervening sequences and the cDNA gene lacked 145 nucleotides corresponding to the N-terminal region. The glucoamylase consists of 604 amino acids including a putative signal peptide and its molecular weight was calculated to be 65,000. The glucoamylase gene to be expressed in yeast cells was constructed by recombination of both genes. The yeast cells containing this constructed glucoamylase gene secreted the glucoamylase into the culture fluid and grew at almost the normal rate on a medium containing starch as the sole carbon source.  相似文献   

12.
To produce glucoamylase efficiently as a recombinant protein, E. coli was grown with 20 g (NH4)2SO4 l–1 which removed proteolytic activity but did not effect cell growth. Growth in M9 medium with 20 g (NH4)2SO4 l–1 produced 11 U glucoamylase ml–1 compared to 7 U ml–1 without addition. Furthermore, the glucoamylase activity was maintained at about 9 U ml–1.  相似文献   

13.
A recombinant chymosin was secreted at high levels using fusion genes with A. oryzae glucoamylase gene (glaA) and a wheat bran solid-state culture system. Two portions of the A. oryzae glucoamylase, one with almost the entire glucoamylase (GA1–603) lacking 9 amino acids at the carboxyl terminal, and the other (GA1–511) lacking the starch binding-domain, were fused in frame with prochymosin cDNA. Western blot analysis indicated that the mature chymosin was released from the secreted fusion protein by autocatalytic processing. The transformant harboring the GA1-511-prochymosin construct showed about 5-fold chymosin production of the transformant in which the chymosin gene was directly expressed under the control of the glaA promoter in submerged culture. Moreover, wheat bran solid-state culture gave about 500-fold higher yield of the chymosin (approximately 150 mg/kg wheat bran) compared with the submerged culture.  相似文献   

14.
The starch-degrading yeastCandida tsukubaensis CBS 6389 secreted amylase at high activity when grown in a medium containing soluble starch. The extracellular α-amylase activity was very low. The major amylase component was purified by DEAE-Sephadex A-50 chromatography and Ultrogel AcA 44 gel filtration and characterized as a glucoamylase. The enzyme proved to be a glycoprotein with a molecular weight of 56000. The glucoamylase had a temperature optimum at 55°C and displayed highest activity in a pH range of 2.4–4.8. Acarbose strongly inhibited the purified glucoamylase. Debranching activity was present as demonstrated by the release of glucose from pullulan.  相似文献   

15.
Extracellular proteases have been shown to be virulence factors in fungal pathogenicity toward insects. We examined the production of extracellular proteases, subtilisin-like activity (Pr1) and trypsin-like activity (Pr2), by Beauveria bassiana CG425, which is a fungus of interest for control of the grasshopper Rhammatocerus schistocercoides. To access the role of these proteases during infection of R. schistocercoides, we analyzed their secretion during fungus growth either in nitrate-medium or in cuticle-containing medium supplemented with different amino acids. The enhancing effect of cuticle on Pr1 and Pr2 production suggests that these protease types may be specifically induced by components of the grasshopper cuticle. In medium supplemented with methionine a high level of Pr1 was observed. The remaining amino acids tested did not induce the protease to the levels seen with cuticle. The amino acid methionine seems to play a regulatory role in Pr1 secretion by B. bassiana, since both induction and repression seem to be dependent on the concentration of the amino acid present in the culture medium.  相似文献   

16.
The effect of various carbon sources and cAMP on the glucoamylase synthesis in Aspergillus niger was studied to find carbon sources repressed the enzyme synthesis and conditions for the selection of catabolite stable mutants. Maltose at a concentration of 0.5% stimulated the glucoamylase synthesis, but at a concentration of 4% it repressed not only the enzyme synthesis but the growth of the parental strain on the agar medium. The more active mutant 66 was obtained as a result of treatment of Asp. niger st 6 with NG. This mutant is able to grow on the Czapek's medium containing maltose at concentrations 4 or 6%. The mutant 66 produced about 2.9 times more glucoamylase than its parent when maltose was added at 0.5% concentration to the medium. The glucoamylase synthesis in the parental strain was completely repressed under repressing conditions, while the level of the mutant strain activity was 35% from the level of enzyme activity on the medium without the repressor. The addition of cAMP (5.10(-5] resulted in a partial release of maltose (4%) repression of the glucoamylase synthesis in both strains. The results obtained indicate a possibility to select Asp niger mutants with the partially derepressed glucoamylase synthesis. Other regulation mechanisms in addition to catabolite repression may be involved in the regulation of the glucoamylase synthesis.  相似文献   

17.
The present investigation was aimed at producing a thermostable and neutral glucoamylase (amyloglucosidase, EC 3.2.1.3) by a thermophilic mould, Thermomucor indicae-seudaticae in submerged cultivation and testing its applicability in starch saccharification. Parametric optimization resulted in the secretion of 30,000 U/l of glucoamylase in a synthetic medium (5% soluble starch, 0.1% yeast extract, 0.05% K2HPO4 and 0.01% MgSO4· 7H2O) using 5 × 106 spores/50 ml of a 3-day-old inoculum at 40 °C and 250 rev/min in shake flasks in 48 h. The enzyme secretion was not affected to any significant extent by the tested additives and detergents. A 1.7-fold increase in glucoamylase secretion was attained when T. indicae-seudaticae was grown in a laboratory fermenter. The enzyme alone catalysed the hydrolysis of soluble starch to an extent of 65%. A prior treatment of starch with thermostable α-amylase and amylopullulanase, followed by glucoamylase, resulted in a greater extent of hydrolysis, 79 and 91%, respectively.  相似文献   

18.
The stability of three forms of glucoamylase from Aspergillus niger has been investigated by differential scanning and isothermal titration calorimetry: Glucoamylase 1 (GA1), which consists of a catalytic domain and a starch-binding domain (SBD) connected by a heavily O-glycosylated linker region; glucoamylase 2 (GA2), which lacks SBD; and a proteolytically cleaved glucoamylase (GACD), which contains the catalytic domain and part of the linker region. The structures of the catalytic domain with part of the linker region and of SBD are known from crystallography and NMR, respectively, but the precise spatial arrangement of the two domains in GA1 is unknown. To investigate the stability of the three glucoamylase forms, we unfolded the enzymes thermally by differential scanning calorimetry (DSC). Aggregation occurs upon heating GA1 and GA2 at pH values between 2.5 and 5.0, whereas no aggregation is observed at higher pH (5.5-7.5). At all pH values, the catalytic domain of GA1 and GA2 unfolds irreversibly, while SBD unfolds reversibly in the pH range 5. 5-7.5 where aggregation does not occur. The unfolding of the catalytic domain of all glucoamylase forms seems to follow an irreversible one-step mechanism with no observable reversible intermediates on the experimental time scale. SBD of GA1 unfolds reversibly, and the ratio between the van't Hoff and calorimetric enthalpies is 1.4 +/- 0.1. Assignment of peaks of the DSC profile to the domains at pH 7.5 is achieved by using two different ligands: Acarbose, a very strong inhibitor that binds exclusively to the catalytic domain, and beta-cyclodextrin, a small starch analogue of which 2 molecules bind solely to the two binding sites present in SBD. Differences are seen in the unfolding processes of GA1 and GA2 since the former unfolds with one peak at all pH values, while the calorimetric trace of the latter can be resolved into more peaks depending on pH and the chemical composition of the buffers. In general, peaks corresponding to unfolding of GA2 are more complex than the peaks of GA1 and GACD. Some part of GA2 unfolds before the rest of the molecule which may correspond to the linker region or a particular early unfolding part of the catalytic domain. This leads to the conclusion that the structure of the GA2 molecule has a larger cooperative unfolding unit and is less stable than the structures of GA1 and GACD and that the C-terminal part of the linker region has a destabilizing effect on the catalytic domain.  相似文献   

19.
Glucoamylase was produced extracellularly by fermentation of strain Aspergillus awamori, which had been genetically modified to have high-level glucoamylase activity. Initial experiments showed that the enzyme deactivated quickly, with a half-life of less than 6 days even stored at 5°C. A possible reason for the rapid deactivation was the presence of proteases, attacking and degrading the glucoamylase. Therefore a liquid protease inhibitor cocktail (Sigma, USA) was selected and applied to enhance the stability of the enzyme. The activity of the enzyme (stored at 5°C) measured by the Schoorl-method with starch as substrate showed that the cocktail was effective with the enzyme maintaining 95% of its initial storage activity for almost one year. The enzyme preparation has been used for starch hydrolysis in a flat-sheet membrane bioreactor at 60°C to manufacture glucose solution and its operation stability extended by using the cocktail.  相似文献   

20.
Arxula adeninivorans Ls3 is described as an ascomycetous, arthroconidial, anamorphic, xerotolerant yeast, which was selected from wood hydrolysates in Siberia. By using minimal salt medium or yeast-extract-peptone-medium with glucose or maltose as carbon source it was shown that this yeast is able to grow at up to 48° C. Increasing temperatures induce changes in morphology from the yeast phase to mycelia depending on an altered programme of gene expression. This dimorphism is an environmentally conditioned (reversible) event and the mycelia can be induced at a cultivation temperature of 45° C. Depending on the morphology of strain Ls3 (yeast phase or mycelia) the secretion behaviour as well as the spectrum of polypeptides accumulated in the culture medium changed. The activities of the accumulated extracellular enzymes glucoamylase and invertase were 2 to 3 times higher in cultures grown at 45° C than in those grown at 30° C. While the level of the glucoamylase protein secreted from mycelia between 45 and 70 hours did not change, biochemical activity decreased after a cultivation time of 43 hours. It was shown that this effect depended on both the catabolic repression of the glucoamylase by glucose and the thermal inactivation of this enzyme in media without or with low concentrations of starch or maltose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号