首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Strontium (Sr) ralenate is a new agent used for the prevention and treatment of osteoporosis. As a bone-seeking element, 98% of Sr is deposited in the bone and teeth after oral ingestion. However, the effect of Sr treatment on bone microarchitecture and bone nanomechanical properties remains unclear. In this study, 18 osteoporotic goats were divided into four groups according to the treatment regimen: control, calcium alone (Ca), calcium and Sr at 24 mg/kg (Ca + 24Sr), and calcium and Sr at 40 mg/kg (Ca + 40Sr). The effects of Sr administration on bone microarchitecture and nanomechanical properties of trabecular bones were analyzed with micro-CT and nanoindentation test, respectively. Serum Sr levels increased six- and tenfold in the Ca + 24Sr and Ca + 40Sr groups, respectively. Similarly, Sr in the bone increased four- and sixfold in these two groups. Sr administration significantly increased trabecular bone volume fraction, trabecular thickness, and double-labeled new bone area. Sr administration, however, did not significantly change the nanomechanical properties of trabecular bone (elastic modulus and hardness). The data suggested that Sr administration increased trabecular bone volume and improved the microarchitecture while maintaining the intrinsic tissue properties in the osteoporotic goat model.  相似文献   

2.
The aim of this study was to determine the litterfall production and macronutrient (Ca, K, Mg, N, and P) deposition through leaf litter in four sites with different types of vegetation. Site one (Bosque Escuela) was located at 1600 m a.s.l. in a pine forest mixed with deciduous trees, second site (Crucitas at 550 m a.s.l.) in the ecotone of a Quercus spp. forest and the Tamaulipan thornscrub and third and fourth sites (Campus at 350 m a.s.l. and Cascajoso at 300 m a.s.l., respectively) were in the Tamaulipan thornscrub. Litter constituents (leaves, reproductive structures, twigs, and miscellaneous residues) were collected at 15-day intervals from December 21, 2006, throughout December 20, 2007. Collections were carried out in ten litter traps (1.0 × 1.0 m) randomly situated at each site of approximately 2,500 m2. Total annual litterfall deposition was 4407, 7397, 6304, and 6527 kg ha−1 y−1 for Bosque Escuela, Crucitas, Campus and Cascajoso, respectively. Of total annual litter production, leaves were higher varying from 74 (Bosque Escuela) to 86% (Cascajoso) followed by twigs from 4 (Cascajoso) to 14% (Crucitas), reproductive structures from 6 (Bosque Escuela) to 10% (Crucitas), and miscellaneous litterfall from <1 (Campus) to 12% (Bosque Escuela). The Ca annual deposition was significantly higher in Cascajoso (232.7 kg ha−1 y−1), followed by Campus (182.3), Crucitas (130.5) and Bosque Escuela (30.3). The K (37.5, 32.5, 24.8, 7.2, respectively), Mg (22.6, 17.7, 13.7, 4.5, respectively) followed the same pattern as Ca. However, N was higher in Campus (85.8) followed by Crucitas (85.1), Cascajoso (68.3), and Bosque Escuela (18.3). The P was higher in Campus and Crucitas (4.0) followed by Cascajoso (3.4) and Bosque Escuela (1.4). On an annual basis for all sites, the order of nutrient deposition through leaf litter was Ca > N> K > Mg > P, whereas on site basis of total nutrient deposition (Ca + N + K + Mg + P), the order was Cascajoso > Campus > Crucitas > Bosque Escuela. Ca, K, Mg, N, and P nutrient use efficiency values in leaf litter were higher in Bosque Escuela, while lower figures were acquired in Cascajoso and Crucitas sites. It seems that the highest litterfall deposition was found in the ecotone of a Quercus spp. forest and the Tamaulipan thornscrub; however, the Tamaulipan thornscrub vegetation alone had better leaf litter nutrient return.  相似文献   

3.
We investigated the influence of landscape-level variation in soil fertility and topographic position on leaf litter nutrient dynamics in a tropical rain forest in Costa Rica. We sampled across the three main edaphic conditions (ultisol slope, ultisol plateau, and inceptisol) to determine the effect of soil nutrients on leaf litter nutrient concentrations while controlling for topography, and to examine topographic effects while controlling for soil nutrients. Both leaf litter macronutrient [phosphorus (P), nitrogen (N), sulfur (S), calcium (Ca), potassium (K), magnesium (Mg)] and micronutrient concentrations were quantified throughout a 4-year period. Leaf litter [P], [N] and [K] varied significantly among soil types. The variation in [P], [N], and [K] was explained by soil fertility alone. Leaf litter [S], [Ca], and [Mg] did not vary among the three soil types. Macronutrient (P, K, Mg, S, Ca) concentrations in the leaf litter were much less variable than those of Fe and Al. Lower variability in essential plant nutrients suggests a great deal of plant control over the amount of nutrients resorbed before senescense. Leaf litter macronutrient concentrations varied significantly over the 4-year period, but the temporal variation did not differ among the three edaphic types as anticipated. Hence, although the magnitude of nutrient fluxes may be controlled by local factors such as soil fertility, temporal patterns are likely regulated by a common environmental variable such as precipitation or temperature.  相似文献   

4.
Background and AimsSize-dependent changes in plant traits are an important source of intraspecific trait variation. However, there are few studies that have tested if leaf trait co-variation and/or trade-offs follow a within-genotype leaf economics spectrum (LES) related to plant size and reproductive onset. To our knowledge, there are no studies on any plant species that have tested whether or not the shape of a within-genotype LES that describes how traits covary across whole plant sizes, is the same as the shape of a within-genotype LES that represents environmentally driven trait plasticity.MethodsWe quantified size-dependent variation in eight leaf traits in a single coffee genotype (Coffea arabica var. Caturra) in managed agroecosystems with different environmental conditions (light and fertilization treatments), and evaluated these patterns with respect to reproductive onset. We also evaluated if trait covariation along a within-genotype plant-size LES differed from a within-genotype environmental LES defined with trait data from coffee growing in different environmental conditions.Key ResultsLeaf economics traits related to resource acquisition – maximum photosynthetic rates (A) and mass-based leaf nitrogen (N) concentrations – declined linearly with plant size. Structural traits – leaf mass, leaf thickness, and leaf mass per unit area (LMA) – and leaf area increased with plant size beyond reproductive onset, then declined in larger plants. Three primary LES traits (mass-based A, leaf N and LMA) covaried across a within-genotype plant-size LES, with plants moving towards the ‘resource-conserving’ end of the LES as they grow larger; in coffee these patterns were nearly identical to a within-genotype environmental LES.ConclusionsOur results demonstrate that a plant-size LES exists within a single genotype. Our findings indicate that in managed agroecosystems where resource availability is high the role of reproductive onset in driving within-genotype trait variability, and the strength of covariation and trade-offs among LES traits, are less pronounced compared with plants in natural systems. The consistency in trait covariation in coffee along both plant-size and environmental LES axes indicates strong constraints on leaf form and function that exist within plant genotypes.  相似文献   

5.
This study was carried out to evaluate intake, digestibility, ruminal fermentation, nitrogen (N) retention and ruminal microbial protein synthesis in lambs fed dwarf elephant grass (Pennisetum purpureum Schum. cv. Mott) hay or hay supplemented with urea and 0, 5, 10 or 15 g/kg of live weight (LW) of cracked corn grain. Ten lambs (mean LW of 28 ± 0.9 kg), housed in metabolic cages, were used in a double 5 × 5 Latin Square experiment. Except fibre intake and digestibility, which was higher, the intake and digestibility of the others feed components, as well as ruminal microbial protein synthesis and N retention were lower in non-supplemented lambs. Corn supplementation increased total dry matter (DM) (P<0.05), organic matter (OM), non-structural carbohydrate (NSC) and energy intake (P<0.01) but decreased total neutral detergent fibre (aNDFom) (P<0.01) intake, as well as OM and aNDFom intake from the hay (P<0.01). Apparent DM, OM and energy digestibility, as well as OM true digestibility (OMTD) increased (P<0.01), and aNDFom digestibility decreased linearly (P<0.01) as corn supplementation increased. Total N intake was not influenced but, apparent and true N digestibility, as well as urinary N excretion decreased (P<0.01), and ruminal microbial N entering the small intestine increased linearly (P<0.01) as corn supplementation increased. However, the efficiency of ruminal microbial protein synthesis was similar for all treatments. Mean ruminal pH values and ammonia N concentrations decreased linearly (P<0.01) with level of corn supplementation. Ammonia N and amino acid, as well as peptide concentrations in ruminal fluid were quadratically related (P<0.01) with the time after feeding. Corn supplementation had a linear additive effect on total dry matter and digestible energy intake, as well as on N retention, but a linear negative effect on hay intake and on fibre digestibility. However, decreased forage digestibility by animals was probably neither related to lower ruminal pH, which values were always higher than 7.0, nor related to ruminal sugar concentrations, which were similar for all treatments.  相似文献   

6.
7.
8.
叶片的化学计量学特征在植物响应环境变化,决定植物的生后效应中具有重要的偶联作用。为了阐明植物叶片生源要素含量对凋落物周转的影响,分析了金沙江干热河谷萨瓦纳草地生态系统植物叶片的化学计量学特征与凋落物周转时间的关系。结果显示:凋落物周转受到多重生源要素及其交互作用的影响,其中K与凋落物周转时间存在显著的正相关关系,而S、Mn、Mg元素具有负关系,表明K可能抑制凋落物的分解,而S、Mn、Mg元素可能会促进凋落物分解。在物种水平上K、S、Mn分别与凋落物周转时间存在显著的相关性, K、S组合解释了16.93%的凋落物周转时间变异;样方水平上,K、S、Mn、Mg分别与凋落物周转时间具有显著相关性,虽然N对凋落物的周转时间影响不显著,但当N与K及其交互作用对凋落物周转时间解释了37.42%的变异。其它元素组合也可在不同程度上解释了凋落物周转时间的变异。多元要素的互作效应表明元素间可能存在拮抗和协同效应,凋落物分解过程中可能受到多重分解者的共同作用,而不同分解者会受到不同的元素限制。未来的研究应当注重N、P以外的元素在生物地球化学循环中的作用。  相似文献   

9.
The production of dedicated energy crops on marginally productive cropland is projected to play an important role in reaching the US Billion Ton goal. This study aimed to evaluate warm‐season grasses for biomass production potential under different harvest timings (summer [H1], after killing frost [H2], or alternating between two [H3]) and nitrogen (N) fertilizer rates (0, 56, and 112 kg N/ha) on a wet marginal land across multiple production years. Six feedstocks were evaluated including Miscanthus x giganteus, two switchgrass cultivars (Panicum virgatum L.), prairie cordgrass (Spartina pectinata Link), and two polycultures including a mixture of big bluestem (Andropogon gerardii Vitman), indiangrass (Sorghastrum nutans), and sideoats grama (Bouteloua curtipendula [Michx.] Torr.), and a mixture of big bluestem and prairie cordgrass. Across four production years, harvest timing and feedstock type played an important role in biomass production. Miscanthus x giganteus produced the greatest biomass (18.7 Mg/ha), followed by the switchgrass cultivar “Liberty” (14.7 Mg/ha). Harvest in H1 tended to increase yield irrespective of feedstock; the exception being M. x giganteus that had significantly lower biomass when harvested in H1 when compared to H2 and H3. The advantage H1 harvest had over H2 for all feedstocks declined over time, suggesting H2 or H3 would provide greater and more sustainable biomass production for the observed feedstocks. The N application rate played an important role mainly for M. x giganteus where 112 kg N/ha yielded more biomass than no N. Other feedstocks occasionally showed a slight, but statistically insignificant increase in biomass yield with increasing N rate. This study showed the potential of producing feedstocks for bioenergy on wet marginal land; however, more research on tissue and soil nutrient dynamics under different N rates and harvest regimes will be important in understanding stand longevity for feedstocks grown under these conditions.  相似文献   

10.
In temperate alpine environments, the short growing season, low temperature and a slow nutrient cycle may restrict plant growth more than carbon (C) assimilation does. To test whether C is a limiting resource, we applied a shade gradient from ambient light to 44% (maximum shade) of incident photon flux density (PFD) in late successional, Carex curvula‐dominated alpine grassland at 2,580 m elevation in the Swiss central Alps for 3 years (2014–2016). Total aboveground biomass did not significantly decrease under reduced PFD, with a confidence interval ranging from +4% to ?15% biomass in maximum shade. Belowground biomass, of which more than 80% were fine roots, was significantly reduced by a mean of 17.9 ± 4.6% (±SE), corresponding to 228 g/m2, in maximum shade in 2015 and 2016. This suggests reduced investments into water and nutrient acquisition according to the functional equilibrium concept. Specific leaf area (SLA) and maximum leaf length of the most abundant species increased with decreasing PFD. Foliar concentration of nonstructural carbohydrates (NSC) was reduced by 12.5 ± 4.3% under maximum shade (mean of eight tested species), while NSC concentration of belowground storage organs were unchanged in the four most abundant forbs. Furthermore, maximum shade lowered foliar δ13C by 1.56 ± 0.35‰ and increased foliar nitrogen concentrations per unit dry mass by 18.8 ± 4.1% across six species in 2015. However, based on unit leaf area, N concentrations were lower in shade (effect of higher SLA). Thus, while we found typical morphological and physiological plant responses to lower light, shading did not considerably affect seasonal aboveground biomass production of this alpine plant community within a broad range of PFD. This suggests that C is not a growth‐limiting resource, matching the unresponsiveness to in situ CO2 enrichment previously reported for this type of grassland.  相似文献   

11.
《Small Ruminant Research》2008,76(2-3):217-225
Data regarding the influence of maturity within the vegetative stage of tropical grasses on forage quality are limited and conflicting. The change in chemical composition of rice grass (Echinochloa sp.) hay harvested at 32, 46, 72 and 90 days of regrowth, and its effect on intake, digestibility, ruminal fermentation, rumen microbial protein synthesis (Experiment 1) and splanchnic oxygen uptake (Experiment 2) by lambs was evaluated. Except intake of indigestible neutral detergent fibre (NDF) which was similar for all treatments, intake of all hay components and the apparent digestibility of dry matter, organic matter (OM), NDF, N, as well as OM and N true digestibility, N retention and rumen microbial protein synthesis decreased linearly (P < 0.05) with increased regrowth age. Rumen fluid pH, ammonia N and peptide concentrations were similar for all treatments while sugars and amino acid concentrations decreased linearly with increased regrowth age of rice grass (P < 0.05). Passage rate of particles through reticulum-rumen (PRrr) was quadratically related (P < 0.05) to regrowth age. The highest PRrr and, consequently, the lowest retention time in the reticulum-rumen were obtained at 72 days of regrowth. There was a quadratic effect (P < 0.05) on net portal-drained viscera (PDV) flux of oxygen and heat production, while OM intake, portal blood flow and heat production as proportion of digestible energy (DE) intake were not affected by the increased regrowth age of rice grass. The highest means of oxygen uptake and heat production by PDV tissues were in 72 days treatment. In the whole splanchnic metabolism assay neither hay intake nor blood flow, oxygen uptake or heat production were affected by forage regrowth age. In conclusion, the nutritive value of rice grass hay decreased as regrowth age increased from 32 to 90 days due to decrease both OM intake and digestibility.  相似文献   

12.
Plant species diversity affects plant nutrient pools, however, previous studies have not considered plant nutrient concentrations and biomass simultaneously. In this study, we conducted an experimental system with 90 microcosms simulating constructed wetlands (CWs). Four species were selected to set up a plant species richness gradient (1, 2, 3, 4 species) and fifteen species compositions. The plant biomass, plant N, phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) concentrations and pools were analyzed. Results showed that, (1) plant species richness increased plant biomass, and the presence of Oenanthe javanicae increased while the presence of Reineckia carnea decreased plant biomass; (2) plant species richness only increased plant K and Mg concentrations of the communities and plant Mg concentration of the species, and the presence of O. Javanica increased while the presence of R. Japonicus decreased plant N and P concentrations of the communities; (3) plant species richness increased plant N, P, K, Ca, and Mg pools, and the presence of O. Javanica increased while the presence of R. Carnea decreased plant N, P, K, Ca and Mg pools; (4) the four-species mixture produced more biomass and nutrient pools than the corresponding highest specific species monocultures. In case the plant uptake can remove nutrients from CWs through harvesting, the results suggest that both nutrient concentrations and biomass must be considered when evaluating the accumulation of nutrients. Assembling plant communities with high species richness (four species) or certain species (such as O. Javanica) is recommended to remove more nutrients from CWs through harvesting.  相似文献   

13.
Aboveground biomass estimates in the Amazon region remain uncertain, partly due to extrapolations based mainly on samples collected in upland terrains of terra-firme forests. Most biomass estimates were focused on dicotyledonous trees or included other plant groups as a category of trees. Palms dominate areas that represent 20% of the Brazilian Amazon. However, their contribution to biomass estimates and the variation within riparian zones remain poorly documented. We estimated the biomass of palms larger than 1–cm diameter at breast height (1.3 m aboveground) in riparian plots (n = 40); investigated the potential bias caused by the use of dicotyledonous- or family- rather than species-level equations for biomass estimation; compared palm biomass between riparian and non-riparian plots (n = 72); and evaluated the effects of soil, topography, and stream characteristics in riparian plots on palm biomass. Mean palm biomass in riparian zones estimated with species-level equations (27.50 ± 12.94 Mg/ha, range: 3.32–63.27 Mg/ha) was three times greater than biomass estimated with a family-level equation (9.04 ± 4.29 Mg/ha, range: 1.51–21.25 Mg/ha) and was greater than mean biomass estimated with a pantropical equation (20.46 ± 9.29 Mg/ha, range: 3.67–47.99 Mg/ha). Mean palm biomass in riparian zones was four times greater than in non-riparian zones. Palm biomass was high in flatter areas with poorly drained soils, but lower around streams with higher discharge. Inclusion of palms can contribute to reducing the uncertainties in biomass estimates in Amazonian forests. Recognition of the importance of riparian zones may improve conservation policies. Abstract in Portuguese is available with online material.  相似文献   

14.
Mineral nutrient economy in competing species of Sphagnum mosses   总被引:1,自引:0,他引:1  
Bog vegetation, which is dominated by Sphagnum mosses, depends exclusively on aerial deposition of mineral nutrients. We studied how the main mineral nutrients are distributed between intracellular and extracellular exchangeable fractions and along the vertical physiological gradient of shoot age in seven Sphagnum species occupying contrasting bog microhabitats. While the Sphagnum exchangeable cation content decreased generally in the order Ca2+ ≥ K+, Na+, Mg2+ > Al3+ > NH4 +, intracellular element content decreased in the order N > K > Na, Mg, P, Ca, Al. Calcium occurred mainly in the exchangeable form while Mg, Na and particularly K, Al and N occurred inside cells. Hummock species with a higher cation exchange capacity (CEC) accumulated more exchangeable Ca2+, while the hollow species with a lower CEC accumulated more exchangeable Na+, particularly in dead shoot segments. Intracellular N and P, but not metallic elements, were consistently lower in dead shoot segments, indicating the possibility of N and P reutilization from senescing segments. The greatest variation in tissue nutrient content and distribution was between species from contrasting microhabitats. The greatest variation within microhabitats was between the dissimilar species S. angustifolium and S. magellanicum. The latter species had the intracellular N content about 40% lower than other species, including even this species when grown alone. This indicates unequal competition for N, which can lead to outcompeting of S. magellanicum from mixed patches. We assume that efficient cation exchange enables Sphagnum vegetation to retain immediately the cationic nutrients from rainwater. This may represent an important mechanism of temporal extension of mineral nutrient availability to subsequent slow intracellular nutrient uptake.  相似文献   

15.
《Acta Oecologica》2002,23(1):41-50
The dynamics of nutrient accumulation were studied between two annual fires in a herbaceous savanna of the Congolese littoral region. Trees and shrubs were not studied because of their very low density. After fire the aboveground biomass increased for 10 months up to a maximum of 520 g m–2. The underground biomass amounted to roughly 630 g m–2 during the dry season and increased after the fire up to a maximum of 870 g m–2 during the rainy season. In the aerial parts, the accumulation dynamics differed according to the type of nutrient: Ca accumulation was steady until the following dry season in proportion to the total biomass, while the pattern of K accumulation was similar to the living biomass dynamic and reached a maximum four months after the fire. N, P and Mg followed a middle course. For the underground biomass, N accumulation reached a maximum value at the end of the rainy season (10 g m–2) and decreased at the beginning of the dry season. Most of this element was incorporated into the root system. During the rainy season, accumulation in the root system was of the same order of magnitude as in the aerial parts for P and Ca, whereas it was much lower for K and Mg. Transfers of nutrients to the atmosphere during the annual burning amounted, respectively, to 85, 25, 39, 21 and 28% of the amounts of N, P, K, Ca and Mg accumulated in the aerial biomass and litter components. Losses during fire were small for P, K, Ca and  Mg compared to the available soil reserves, but not for N. The legume Eriosema erici-rosenii ought to play an important role in N input in this ecosystem.  相似文献   

16.
One-hundred and sixty-three seeds from 38 shrubs of antelope bitterbrush (Purshia tridentata) from four different sites were individually analyzed for N and Mg content. Seed nutrient content has previously been shown to affect seedling growth, competitive ability, and adult biomass and seed production, though estimations of nutrient concentration in seeds have always been based on bulk samples of more than one seed. The results from antelope bitterbrush show that individual seeds vary in N and Mg content (coefficient of variation = 15.9 and 10.1%, respectively), with most of the variation being attributable to seed size (over 70%). Larger seeds not only had greater absolute quantities of N and Mg, but also a greater concentration of N. Differences between seeds from the same shrub explained the second largest amount of variation (over 20%), while differences between shrubs and site of growth, though significant, accounted for much less of the variation (just over 5%). Soil N and Mg were not closely related to seed N or Mg at a site, suggesting that decisions on how much N or Mg to allocate to seeds are not entirely based on supply. Shrubs that were browsed most intensively the winter prior to seed production had seeds with higher concentrations of Mg. Differences in seed mineral content between shrubs suggest the possibility for natural selection to operate, though research to determine heritability of this character will be necessary to confirm how much of the observed variation is attributable to plasticity in seed filling.  相似文献   

17.
Abstract. Seasonal litter fall and mineral element content (N, P, Ca, Mg, K) of regrowth forest communities at the base and on the slope of an inselberg in Ile-Ife, Nigeria, were studied 7 yr after a ground fire ravaged the forest. Litter fall (tha?1 yr?1) was 4.6 (total), 4.2 (leaf), 0.3 (small wood < 2.5 cm diameter) and 0.1 (reproductive parts: fruits and flowers) in the base community and 6.4 (total), 5.4 (leaf), 0.9 (small wood) and 0.1 (reproductive parts) in the slope community. There was significant monthly variation in litter fall in the two communities with lowest amount of litter recorded during the wettest months of the year (May - August) and the highest amount during the dry season. Significant monthly variation (P<0.05) in Ca, Mg and K concentration in leaf litter and for Mg (P < 0.01) in fruit litter occurred, with the lowest concentration recorded during the wettest months (May-August). In leaf and wood litter the order of mineral element concentration was Ca>N>K> Mg > P while in fruit litter it was N > K > Ca > Mg > P. Quantities of mineral element (kg ha-1 yr1) returned to the soil via litterfall were N: 66; P: 4; Ca: 97; Mg: 15; K: 45 in base forest, and N: 112; P: 5; Ca: 142; Mg: 20; K: 66 in slope forest. Through leaf litter >88.5% of these elements was returned into the two communities, through wood > 4.0% and through reproductive organs > 0.3%. The order of quantities of these elements returned in leaf and wood litter was Ca > N > K > Mg > P, in fruit litter N ~ K > Ca > Mg > P. Significant monthly variation in the amounts of the various elements returned were recorded in leaf litter, but not in wood and fruit litter. The lowest amount of various elements was returned during the wettest months (May-August) which coincided with the period of the lowest element concentration and litter fall.  相似文献   

18.
The pattern of natural restoration in soil components and processes was documented in five landslide-damaged (1–58-year-old) sites in the moist tropical sal (Shorea robusta) forest ecosystem of Nepal Himalaya. Comparisons were made with an undisturbed forest site in the same region. Concentrations of soil organic C, total N, total P and extractable nutrients (Ca, Mg and K) increased with the age of sites. The 58-year-old site showed concentrations of soil organic C, total N and total P that were 75–89% of concentrations in the undisturbed sal forest. The soil microbial biomass, the active fraction of soil organic matter, showed similar seasonal variations at all sites. The amount of mean microbial biomass (expressed as C, N and P contents) increased 4–5 times at the 58-year-old site relative to the 1-year-old site, and the bulk increase occurred within the initial 15 year. The increase in the C/N ratio of soil microbial biomass with age (9.4–11.6 years) reflected change in its composition. Although the net N-mineralization rate increased consistently until 58 years of age, the proportion of nitrification rate relative to ammonification rate distinctly decreased beyond 40 years. On the other hand, the soil available-N (both NO3 and NH4+) concentrations increased from 1 to 40 year and then declined; with age the proportion of NH4+ increased, however. Rates of restoration in soil properties were faster in the early successional stages (1–15 year) than late stages. Among different soil properties the restoration of soil microbial biomass (C and N) was faster than soil organic C and total N. Best fit power function models showed that the estimated times for the 58-year-old site to reach the level of the undisturbed, mature sal forest would be about 30–35 year for microbial biomass (C and N) and about 100–150 year for organic C and total N. Higher accumulation of soil microbial biomass and high N-mineralization rate at late successional stages indicated the re-establishment of enriched soil and restitution of nutrient cycling during the course of ecosystem restoration.  相似文献   

19.
Miscanthus ×giganteus (M×g) is an important bioenergy feedstock crop. However, biomass production of Miscanthus has been largely limited to one sterile triploid cultivar, M×g ‘1993‐1780’, which we demonstrate can have insufficient overwintering ability in temperate regions with cold winters. Key objectives for Miscanthus breeding include greater biomass yield and better adaptation to different production environments than M×g ‘1993‐1780’. In this study, we evaluated 13 M×g genotypes, including ‘1993‐1780’, in replicated field trials conducted for three years at Urbana, IL; Dixon Springs, IL; and Jonesboro, AR. Entries were phenotyped for first‐winter overwintering ability and plant hardiness (ratio of new tillers to old), yield in years 2 and 3, and first heading date, plant height, and culm number in years 1 and 2. We observed substantial variation for overwintering ability and biomass yield among the M×g genotypes tested and identified ones with better overwintering ability and/or higher biomass yield than ‘1993‐1780’. Most entries at Urbana were damaged during the first winter, whereas few or no entries were damaged at Dixon Springs or Jonesboro. However, M×g ‘Nagara’ was entirely undamaged during the first winter and produced high biomass yields at Urbana (19.7 Mg/ha in year 2 and 20.9 Mg/ha in year 3), whereas M×g ‘1993‐1780’ exhibited an overwintering loss of 29%, had severely damaged survivors (hardiness score of 25%), and reduced biomass yield (8.1 Mg/ha in year 2 and 16.2 Mg/ha in year 3), indicating that M×g ‘Nagara’ could be a better choice in hardiness zone 5 (average annual minimum air temperature of ?23.3 to ?28.9°C) or lower. In Dixon Springs, where M×g ‘1993‐1780’ was undamaged by the first winter, it yielded highest among all the entries (21.6 Mg/ha in year 3), though not significantly higher than M×g ‘Nagara’ (18.2 Mg/ha in year 3).  相似文献   

20.
Experiments were conducted to evaluate effects of supplementation of calcium salts of long chain fatty acids (Ca-LCFA) as a rumen inert fat (PF) on in vitro fermentation and apparent nutrient digestion in adult buffaloes fed wheat straw based diets. For the in vitro fermentation study, five total mixed rations (TMR) consisting of a concentrate mixture (CM), green Sorghum bicolor, WS and supplemented without (C) or with 30 g/kg dry matter (DM) rice bran fatty acid oil (RBO) (30 RBO) or 20 g/kg RBO + 10 g/kg PF (20 RBO/10 PF) or 10 g/kg RBO + 20 g/kg PF (10 RBO/20 PF) or 30 g/kg PF in the DM in the ratio of 340:50:580:30 were prepared. The in vitro DM degradability (IVDMD), TN, trichloro acetic acid precipitable N (TCA-N), non-protein N (NPN) and ammonia N (NH3-N) were similar among groups. Within the fat supplemented groups, total volatile fatty acid (TVFA) concentration increased linearly (P=0.025) with PF supplementation. Apparent nutrient digestibility was determined on 20 adult buffaloes divided into five equal groups fed CM supplemented without (C) or with 300 g RBO (30 RBO) or 200 g RBO + 100 g PF (20 RBO/10 PF) or 100 g RBO + 200 g PF (10 RBO/20 PF) or 300 g PF (30 PF) along with limited green S. bicolor and WS maintaining forage: concentrate ratio of 650:350. Fat supplementation had no effect on the DM intake and apparent digestibilities of DM, organic matter (OM), crude protein (CP), total carbohydrate (TCHO) and neutral detergent fiber (aNDF). Within fat supplemented groups, inclusion of PF increased digestibilities of DM, OM, ether extract (EE), TCHO, aNDF and ADF. Supplemental fat also increased the digestible energy (DE) and metabolizable energy (ME) content of the diet, which also increased linearly with PF supplementation. All buffaloes were in positive N, Ca and P balances. We conclude that 200–300 g supplemental PF in the form of Ca-LCFA can be included in straw based diets fed to buffaloes to increase its energy density without adversely affecting DM intake and digestibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号