首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Mammalian genomes are spatially organized into compartments, topologically associating domains (TADs), and loops to facilitate gene regulation and other chromosomal functions. How compartments, TADs, and loops are generated is unknown. It has been proposed that cohesin forms TADs and loops by extruding chromatin loops until it encounters CTCF, but direct evidence for this hypothesis is missing. Here, we show that cohesin suppresses compartments but is required for TADs and loops, that CTCF defines their boundaries, and that the cohesin unloading factor WAPL and its PDS5 binding partners control the length of loops. In the absence of WAPL and PDS5 proteins, cohesin forms extended loops, presumably by passing CTCF sites, accumulates in axial chromosomal positions (vermicelli), and condenses chromosomes. Unexpectedly, PDS5 proteins are also required for boundary function. These results show that cohesin has an essential genome‐wide function in mediating long‐range chromatin interactions and support the hypothesis that cohesin creates these by loop extrusion, until it is delayed by CTCF in a manner dependent on PDS5 proteins, or until it is released from DNA by WAPL.  相似文献   

2.
Cohesin and CTCF are key to the 3D folding of interphase chromosomes. Cohesin forms chromatin loops via loop extrusion, a process that involves the formation and enlargement of DNA loops. The architectural protein CTCF controls this process by acting as an anchor for chromatin looping. How CTCF controls cohesin has long been a mystery. Recent work shows that CTCF dictates chromatin looping via a direct interaction of its N-terminus with cohesin. CTCF's ability to regulate chromatin looping turns out to also be partially dependent on several RNA-binding domains. In this review, we discuss recent insights and consider how cohesin and CTCF together may orchestrate the folding of the genome into chromosomal loops.  相似文献   

3.
4.
5.
6.
The organization of the genome into topologically associated domains (TADs) appears to be a fundamental process occurring across a wide range of eukaryote organisms, and it likely plays an important role in providing an architectural foundation for gene regulation. Initial studies emphasized the remarkable parallels between TAD organization in organisms as diverse as Drosophila and mammals. However, whereas CCCTC‐binding factor (CTCF)/cohesin loop extrusion is emerging as a key mechanism for the formation of mammalian topological domains, the genome organization in Drosophila appears to depend primarily on the partitioning of chromatin state domains. Recent work suggesting a fundamental conserved role of chromatin state in building domain architecture is discussed and insights into genome organization from recent studies in Drosophila are considered.  相似文献   

7.
Recent investigations have revealed 1) that the isochores of the human genome group into two super‐families characterized by two different long‐range 3D structures, and 2) that these structures, essentially based on the distribution and topology of short sequences, mold primary chromatin domains (and define nucleosome binding). More specifically, GC‐poor, gene‐poor isochores are low‐heterogeneity sequences with oligo‐A spikes that mold the lamina‐associated domains (LADs), whereas GC‐rich, gene‐rich isochores are characterized by single or multiple GC peaks that mold the topologically associating domains (TADs). The formation of these “primary TADs” may be followed by extrusion under the action of cohesin and CTCF. Finally, the genomic code, which is responsible for the pervasive encoding and molding of primary chromatin domains (LADs and primary TADs, namely the “gene spaces”/“spatial compartments”) resolves the longstanding problems of “non‐coding DNA,” “junk DNA,” and “selfish DNA” leading to a new vision of the genome as shaped by DNA sequences.  相似文献   

8.
Fertilization triggers assembly of higher‐order chromatin structure from a condensed maternal and a naïve paternal genome to generate a totipotent embryo. Chromatin loops and domains have been detected in mouse zygotes by single‐nucleus Hi‐C (snHi‐C), but not bulk Hi‐C. It is therefore unclear when and how embryonic chromatin conformations are assembled. Here, we investigated whether a mechanism of cohesin‐dependent loop extrusion generates higher‐order chromatin structures within the one‐cell embryo. Using snHi‐C of mouse knockout embryos, we demonstrate that the zygotic genome folds into loops and domains that critically depend on Scc1‐cohesin and that are regulated in size and linear density by Wapl. Remarkably, we discovered distinct effects on maternal and paternal chromatin loop sizes, likely reflecting differences in loop extrusion dynamics and epigenetic reprogramming. Dynamic polymer models of chromosomes reproduce changes in snHi‐C, suggesting a mechanism where cohesin locally compacts chromatin by active loop extrusion, whose processivity is controlled by Wapl. Our simulations and experimental data provide evidence that cohesin‐dependent loop extrusion organizes mammalian genomes over multiple scales from the one‐cell embryo onward.  相似文献   

9.
10.
‘Structural maintenance of chromosomes’ (SMC) complexes are required for the folding of genomic DNA into loops. Theoretical considerations and single-molecule experiments performed with the SMC complexes cohesin and condensin indicate that DNA folding occurs via loop extrusion. Recent work indicates that this process is essential for the assembly of antigen receptor genes by V(D)J recombination in developing B and T cells of the vertebrate immune system. Here, I review how recent studies of the mouse immunoglobulin heavy chain locus Igh have provided evidence for this hypothesis and how the formation of chromatin loops by cohesin and regulation of this process by CTCF and Wapl might ensure that all variable gene segments in this locus (VH segments) participate in recombination with a re-arranged DJH segment, to ensure generation of a maximally diverse repertoire of B-cell receptors and antibodies.  相似文献   

11.
12.
13.
14.
Chromosomes are organized as chromatin loops that promote segregation, enhancer-promoter interactions, and other genomic functions. Loops were hypothesized to form by ‘loop extrusion,’ by which structural maintenance of chromosomes (SMC) complexes, such as condensin and cohesin, bind to chromatin, reel it in, and extrude it as a loop. However, such exotic motor activity had never been observed. Following an explosion of indirect evidence, recent single-molecule experiments directly imaged DNA loop extrusion by condensin and cohesin in vitro. These experiments observe rapid (kb/s) extrusion that requires ATP hydrolysis and stalls under pN forces. Surprisingly, condensin extrudes loops asymmetrically, challenging previous models. Extrusion by cohesin is symmetric but requires the protein Nipbl. We discuss how SMC complexes may perform their functions on chromatin in vivo.  相似文献   

15.
CCCTC-binding factor (CTCF) is a master organizer of genome spatial organization and plays an important role in mediating extensive chromatin interactions. Circular chromosome conformation capture (4C) is a high-throughput approach that allows genome-wide screening for unknown potential interaction partners. Using a conserved CTCF binding site on the Bcl11b locus as bait, an interaction partner at the Arhgap6 locus on a different chromosome was identified by 4C. Additional experiments verified that the interchromatin interaction between the Bcl11b and Arhgap6 loci was cell-type specific, which was cooperatively mediated by CTCF and cohesin. Functional analysis showed that the interchromatin interaction partners were repressing regulatory elements. These results indicate that interaction chromatin loops regulate the expression of the relevant genes.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号