首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary Vasotocin (VT)-immunoreactive fibres were observed in the nuclei of the quail (Coturnix coturnix japonica) septal region. Their distribution in the nucleus septalis lateralis (SL) and the nucleus striae terminalis (nST) was sexually dimorphic: a dense network of immunoreactive fibres was seen in adult sexually stimulated males but not in females. Experimental manipulation of the hormonal environment influenced this distribution only in males. VT immunoreactivity was absent in SL and nST when male quail were exposed to a shortday photoperiod or castrated. The immunoreactivity was restored to its original level in castrated males by silastic implants of testosterone.  相似文献   

2.
Reproductive behavior is sexually differentiated in quail: The male-typical copulatory behavior is never observed in females even after treatment with high doses of testosterone (T). This sex difference in behavioral responsiveness to T is organized during the embryonic period by the exposure of female embryo to estrogens. We showed recently that the sexually dimorphic medial preoptic nucleus (POM), a structure that plays a key role in the activation of male copulatory behavior, is innervated by a dense steroid-sensitive network of vasotocin-immunoreactive (VT-ir) fibers in male quail. This innervation is almost completely absent in the female POM and is not induced by a chronic treatment with T, suggesting that this neurochemical difference could be organizational in nature. This idea was tested by injecting fertilized quail eggs of both sexes on day 9 of incubation with either estradiol benzoate (EB) (25 μg, a treatment that suppresses the capacity to show copulatory behavior in adulthood) or the aromatase inhibitor R76713 (10 μg, a treatment that makes adult females behaviorally responsive to T), or with the solvents as a control (C). At 3 weeks posthatch, all subjects were gonadectomized and later implanted with Silastic capsules filled with T. Two weeks later, all birds were perfused and brain sections were processed for VT immunocytochemistry. Despite the similarity of the adult endocrine conditions of the subjects (all were gonadectomized and treated with T Silastic implants providing the same plasma level of steroid to all subjects), major qualitative differences were observed in the density of VT-ir structures in the POM of the different groups. Dense immunoreactive structures (fibers and a few cells) were observed in the POM of C males but not females; EB males had completely lost this immunoreactivity (and lost the capacity to display copulatory behavior); and, conversely, R76713 females displayed a male-typical VT-ir system in the nucleus (and also high levels of copulatory behavior). Similar changes in immunoreactivity were seen in the nucleus of the stria terminalis and in the lateral septum (VT-ir fibers only in this case) but not in the magnocellular vasotocinergic system. These neurochemical changes closely parallel the effects of the embryonic treatments on male copulatory behavior. The vasotocinergic system of the POM can therefore be considered an accurate marker of the sexual differentiation of brain circuits mediating this behavior. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 684–699, 1998  相似文献   

3.
Testosterone has been shown to increase the volume of steroid-sensitive brain nuclei in adulthood in several vertebrate species. In male Japanese quail the volume of the male-biased sexually dimorphic medial preoptic nucleus (POM), a key brain area for the control of male sexual behavior, is markedly increased by testosterone. Previous studies assessed this effect after a period of 8–14 days but the exact time course of these effects is unknown. We asked here whether testosterone-dependent POM plasticity could be observed at shorter latencies. Brains from castrated male quail were collected after 1, 2, 7 and 14 days of T treatment (CX+T) and compared to brains of untreated castrates (CX) collected after 1 or 14 days. POM volumes defined either by Nissl staining or by aromatase immunohistochemistry increased in a time-dependent fashion in CX+T subjects and almost doubled after 14 days of treatment with testosterone while no change was observed in CX birds. A significant increase in the average POM volume was detected after only one day of testosterone treatment. The optical density of Nissl and aromatase staining was also increased after one or two days of testosterone treatment. Activation of male copulatory behavior followed these morphological changes with a latency of approximately one day. This rapid neurochemical and neuroanatomical plasticity observed in the quail POM thus seems to limit the activation of male sexual behavior and offers an excellent model to analyze features of steroid-regulated brain structure and function that determine behavior expression.  相似文献   

4.
The present study was conducted to investigate the mRNA expression of the two estrogen receptor (ER) subtypes ERalpha and ERbeta in the brain of Japanese quail embryos. We found expression of both ERalpha and ERbeta mRNA in homogenate of whole head from 6-day-old embryos, and in brain homogenate from 9- and 12-day-old embryos using real-time PCR. In 9- and 12-day-old embryos the ERalpha expression was higher in females than in males. We used in situ hybridization to examine the localization of the ERs in sections from male and female brains on day 9 and day 17 of incubation. On day 9, ERbeta mRNA was detected in the developing medial preoptic nucleus (POM), in the medial part of the bed nucleus of the striae terminalis (BSTm), and in the tuberal region of the hypothalamus. ERalpha signal could not be detected in the POM, the BSTm or the tuberal region in 9-day-old embryos. In 17-day-old embryos, ERbeta was highly expressed in the preoptic area, the nucleus Taeniae of the Amygdala (TnA) and the BSTm. Expression of ERalpha mRNA was detected in parts of the preoptic area and in the telencephalic TnA. No ERalpha expression was found in the BSTm, an area known to be sexually dimorphic in adults. The high embryonic expression of ERbeta in brain areas linked to sexual behavior indicates that ERbeta plays a role in sexual differentiation of the Japanese quail brain.  相似文献   

5.
A new triazole derivative, R76713 (6-[4-chlorophenyl)(1H-1,2,4-triazol-1-yl)methyl]-1-methyl-1H- benzotriazole), was recently shown to inhibit aromatase selectively without affecting other steroid-metabolizing enzymes and without interacting with estrogen, progestin, or androgen receptors. This compound was tested for its capacity to intefere with the induction of copulatory behavior by testosterone (T) in castrated Japanese quail (Coturnix coturnix japonica). In a first experiment, R76713 inhibited (range 0.01 to 1 mg/kg) the activation of sexual behavior by T silastic implants and hypothalamic aromatase activity in castrated male quail in a dose-dependent manner. The 5 alpha- and 5 beta- reductases of T were not systematically affected. Stereotaxic implantation of R76713 in the medial preoptic area similarly blocked the behavior activated by systemic treatment with T, demonstrating that central aromatization of androgen is implicated in the activation of behavior. These inhibiting effects of R76713 on behavior were observed when implants were placed in the medial part of the nucleus preopticus medialis, confirming the implication of this brain area in the control of male copulatory behavior. Finally, the behavioral inhibition produced by R76713 could be reversed by simultaneous treatment with a dose of estradiol, which was not behaviorally effective by itself. This suggests that the behavioral deficit induced by the inhibitor was specifically due to the suppression of estrogen production. This also shows that the activation of copulatory behavior probably results from the interaction of androgens and estrogens at the brain level, as the two treatments separately providing these hormonal stimuli (T with the aromatase inhibitor on one hand and a low dose of estradiol on the other hand) had almost no behavioral effects but they synergized to activate copulation when given concurrently. These data confirm the critical role of preoptic aromatase in the activation of reproductive behavior and demonstrate that R76713 is a useful tool for the in vivo study of estrogen-dependent processes.  相似文献   

6.
The sexual and scent marking behaviors of male gerbils are stimulated by testosterone (T) action in the preoptic area (POA) of the hypothalamus. The sexually dimorphic area (SDA) in the posterior POA, which also responds to T, is implicated in this process. This research studied the sensitivities of mating, marking, and the SDA to T metabolites and other steroids. Experiment 1 focused on mating. Male gerbils were implanted at castration with 2-mm Silastic capsules containing T, dihydrotestosterone (DHT), 19-nortestosterone (19-nor T), estradiol (E), or no hormone and were tested 3-7 weeks later. T, E, and 19-nor T maintained intromissions, but E-treated males rarely ejaculated. Controls and DHT-treated males stopped mounting. Experiment 2 compared the ability of these steroids to reinstate marking and mating using the same dose and a larger one (5 mm). Androstenedione, 19-hydroxytestosterone (19-OHT), and E plus DHT were studied as well. Volumes of the SDA and SDA pars compacta (SDApc) were also measured. Only T, 19-nor T, E, and E + DHT reinstated sexual behavior, but all steroids except 19-OHT stimulated marking. E and DHT synergized to elicit mating. For marking, they were no more effective together than alone. Steroid-treated males had larger SDAs than controls. Moreover, steroids that stimulated sexual activity produced larger SDAs than steroids that did not. SDA size correlated with copulatory rate, but not with copulatory efficiency. SDApc size correlated with copulatory efficiency, but not with copulatory rate. Like copulatory rate and efficiency, sizes of the SDA and SDApc did not correlate with each other.  相似文献   

7.
Genistein is a phytoestrogen, particularly abundant in soybeans that can bind estrogen receptors and sex hormone binding proteins, exerting both estrogenic and antiestrogenic activity. In this study we used the Japanese quail embryo as a test end-point to investigate the effects of early embryonic exposure to genistein on male copulatory behavior and on vasotocin parvocellular system. Both differentiate by the organizational effects of estradiol during development and may therefore represent an optimal model to study the effects of xenoestrogens. We injected two doses of genistein (100 and 1000 microg) into the yolk of 3-day-old Japanese quail eggs. Other eggs were treated with either 25 microg of estradiol benzoate or sesame oil as positive and negative controls. At the age of 6 weeks, behavioral tests revealed a significant decrease of all aspects of copulatory behavior (in comparison to the control group) in estradiol-treated birds. In contrast, genistein-treated animals demonstrated various degrees of decrease in the mean frequencies of some aspects of the sexual behavior. The computerized analysis of vasotocin innervation in medial preoptic, stria terminalis and lateral septum nuclei revealed a statistically significant decreased immunoreactivity in treated animals compared to control ones. These results demonstrate that genistein, similarly to estradiol, has an organizational effect on quail parvocellular vasotocin system and on copulatory behavior. In conclusion, present results confirm, in this avian model, that embryonic exposure to phytoestrogens may have life-long effects on sexual differentiation of brain structures and behaviors.  相似文献   

8.
Sexual behavior was assessed in castrated adult CD-1 male mice given exogenous steroids under various treatment regimens. Castrated mice maintained on 20 μg testosterone (T) daily for 1 week, but given 250 μg testosterone propionate (TP) on the day of testing showed higher levels of copulatory activity than intact mice or the males receiving an additional dose of 20 μg T on the test day, although plasma testosterone levels were not different at the time of behavioral testing. Castrated males given 50, 125, or 250 μg TP for 1 week including the day of testing showed higher levels of sexual behavior than males receiving the same doses of TP only once, on the test day. A single injection of 17β-estradiol (E2) completely restored the male copulatory pattern, including ejaculation, in castrated mice under every condition examined. Testosterone and dihydrotestosterone (DHT) were less effective than E2, as was the combination of E2 and DHT. The relative efficacy of a single dose of T, DHT, and E2 plus DHT was dependent upon factors such as the delay between steroid administration and testing, as well as whether or not the castrated mice received androgen replacement prior to testing. Estradiol benzoate (E2B) was not capable of restoring sexual behavior in castrated mice in this study. The comparison of results obtained with TP, T, E2, and E2B suggests that an appreciable, but not necessarily sustained, elevation of E2 levels in the brain may be critical in the facilitation of male copulatory behavior in mice.  相似文献   

9.
Preoptic/hypothalamic aromatase activity (AA) is sexually differentiated in birds and mammals but the mechanisms controlling this sex difference remain unclear. We determined here (1) brain sites where AA is sexually differentiated and (2) whether this sex difference results from organizing effects of estrogens during ontogeny or activating effects of testosterone in adulthood. In the first experiment we measured AA in brain regions micropunched in adult male and female Japanese quail utilizing the novel strategy of basing the microdissections on the distribution of aromatase-immunoreactive cells. The largest sex difference was found in the medial bed nucleus of the stria terminalis (mBST) followed by the medial preoptic nucleus (POM) and the tuberal hypothalamic region. A second experiment tested the effect of embryonic treatments known to sex-reverse male copulatory behavior (i.e., estradiol benzoate [EB] or the aromatase inhibitor, Vorozole) on brain AA in gonadectomized adult males and females chronically treated as adults with testosterone. Embryonic EB demasculinized male copulatory behavior, while vorozole blocked demasculinization of behavior in females as previously demonstrated in birds. Interestingly, these treatments did not affect a measure of appetitive sexual behavior. In parallel, embryonic vorozole increased, while EB decreased AA in pooled POM and mBST, but the same effect was observed in both sexes. Together, these data indicate that the early action of estrogens demasculinizes AA. However, this organizational action of estrogens on AA does not explain the behavioral sex difference in copulatory behavior since AA is similar in testosterone-treated males and females that were or were not exposed to embryonic treatments with estrogens.  相似文献   

10.
Two subtypes of estrogen receptors (ER), ERα and ERβ, have been identified in humans and numerous vertebrates, including the Japanese quail. We investigated in this species the specific role(s) of each receptor in the activation of male sexual behavior and the underlying estrogen-dependent neural plasticity. Castrated male Japanese quail received empty (CX) or testosterone-filled (T) implants or were daily injected with the ER general agonist diethylstilbestrol (DES), the ERα-specific agonist PPT, the ERβ-specific agonist DPN or the vehicle, propylene glycol. Three days after receiving the first treatment, subjects were alternatively tested for appetitive (rhythmic cloacal sphincter movements, RCSM) and consummatory aspects (copulatory behavior) of male sexual behavior. 24 hours after the last behavioral testing, brains were collected and analyzed for aromatase expression and vasotocinergic innervation in the medial preoptic nucleus. The expression of RCSM was activated by T and to a lesser extent by DES and PPT but not by the ERβagonist DPN. In parallel, T fully restored the complete sequence of copulation, DES was partially active and the specific activation of ERα or ERβ only resulted in a very low frequency of mount attempts in few subjects. T increased the volume of the medial preoptic nucleus as measured by the dense cluster of aromatase-immunoreactive cells and the density of the vasotocinergic innervation within this nucleus. DES had only a weak action on vasotocinergic fibers and the two specific ER agonists did not affect these neural responses. Simultaneous activation of both receptors or treatments with higher doses may be required to fully activate sexual behavior and the associated neurochemical events.  相似文献   

11.
In Experiment 1 castrated male rats were implanted with a Silastic capsule containing either E or cholesterol (CHOL) 35 days after castration. They were then tested for sexual incentive motivation and copulatory behaviors every 5th day for 3 weeks. None of the treatments affected sexual incentive motivation. After the last test, all subjects were implanted with DHT-containing Silastic capsules, and tests continued for another 3 weeks. While E + DHT enhanced sexual incentive motivation and copulatory behavior, DHT alone failed to do so. In Experiment 2 the aromatase inhibitor fadrozole (F) was combined with testosterone (T). T restored all behaviors to the level seen in intact rats, and F significantly reduced these effects. In fact, T + F was not different from DHT. T and DHT restored the weight of the prostate and seminal vesicles to levels close to those of intact rats. In Experiment 3 a lower dose of E was employed. Also this dose of E failed to affect sexual incentive motivation while E + DHT restored it to the level of intact animals. Castration enhanced the serum concentrations of LH and FSH. E alone caused a marked reduction, and E + DHT brought both gonadotropins back to the level of intact animals. It was concluded that the doses of E and DHT employed in these experiments were within or close to the physiological range, and that such doses of E completely fail to enhance sexual incentive motivation in castrated animals. DHT has small or no effects. It appears that sexual incentive motivation and copulation require simultaneous stimulation of androgen and estrogen receptors.  相似文献   

12.
Sexual behavior was assessed in castrated adult CD-1 male mice given exogenous steroids under various treatment regimens. Castrated mice maintained on 20 μg testosterone (T) daily for 1 week, but given 250 μg testosterone propionate (TP) on the day of testing showed higher levels of copulatory activity than intact mice or the males receiving an additional dose of 20 μg T on the test day, although plasma testosterone levels were not different at the time of behavioral testing. Castrated males given 50, 125, or 250 μg TP for 1 week including the day of testing showed higher levels of sexual behavior than males receiving the same doses of TP only once, on the test day. A single injection of 17β-estradiol (E2) completely restored the male copulatory pattern, including ejaculation, in castrated mice under every condition examined. Testosterone and dihydrotestosterone (DHT) were less effective than E2, as was the combination of E2 and DHT. The relative efficacy of a single dose of T, DHT, and E2 plus DHT was dependent upon factors such as the delay between steroid administration and testing, as well as whether or not the castrated mice received androgen replacement prior to testing. Estradiol benzoate (E2B) was not capable of restoring sexual behavior in castrated mice in this study. The comparison of results obtained with TP, T, E2, and E2B suggests that an appreciable, but not necessarily sustained, elevation of E2 levels in the brain may be critical in the facilitation of male copulatory behavior in mice.  相似文献   

13.
The aromatization hypothesis asserts that testosterone (T) must be aromatized to estradiol (E2) to activate copulatory behavior in the male rat. In support of this hypothesis, the aromatization inhibitor, ATD, has been found to suppress male sexual behavior in T-treated rats. In our experiment, we first replicated this finding by peripherally injecting ATD (15 mg/day) or propylene glycol into T-treated (two 10-mm Silastic capsules) or control castrated male rats. In a second experiment, we bilaterally implanted either ATD-filled or blank cannulae into the medial preoptic area (MPOA) of either T-treated or control castrated male rats. With this more local distribution of ATD, a lesser decline in sexual behavior was found, suggesting that other brain areas are involved in the neurohormonal activation of copulatory behavior in the male rat. To determine whether in vivo ATD interacts with androgen or estrogen receptors, we conducted cell nuclear androgen and estrogen receptor binding assays of hypothalamus, preoptic area, amygdala, and septum following treatment with the combinations of systemic T alone. ATD plus T, ATD alone, and blank control. In all four brain areas binding of T to androgen receptors was significantly decreased in the presence of ATD, suggesting that ATD may act both as an androgen receptor blocker and as an aromatization inhibitor. Competitive binding studies indicated that ATD competes in vitro for cytosol androgen receptors, thus substantiating the in vivo antiandrogenic effects of ATD. Cell nuclear estrogen receptor binding was not significantly increased by exposure to T in the physiological range. No agonistic properties of ATD were observed either behaviorally or biochemically. Thus, an alternative explanation for the inhibitory effects of ATD on male sexual behavior is that ATD prevents T from binding to androgen receptors.  相似文献   

14.
In a preliminary study, autoradiography was used to localize target cells for 3Hdihydrotestosterone (DHT), a non-aromatizable androgen, in the brain of the rhesus monkey. One castrated male was injected intravenously with 2 mCi of 3HDHT (0.42 μg/kg), and was killed one hour later. Neurons that concentrated radioactivity in their nuclei were located in widespread areas of the brain, which included the medial and suprachiasmatic preoptic nuclei, bed nucleus of the stria terminalis, lateral septal nucleus, anterior hypothalamic area, ventromedial, arcuate, or dorsemedial, and paraventricular hypothalamic nuclei, ventral premammillary nucleus, and medial, cortical, basal accessory, and lateral amygdaloid nuclei. These results indicate that the topographic distribution of androgen target neurons is considerably wider than that observed in a study using 3Htestosterone (T) in the male rhesus monkey (1). However, further work is needed to elucidate these differences before attempting correlations between behavioral activity and androgen receptors in the brain.  相似文献   

15.
Mating-induced Fos-immunoreactive (-ir) cells are colocalized with androgen receptors (AR), estrogen receptors (ER), or both in limbic and hypothalamic areas known to mediate male rat mating behavior. A steroid-responsive neural network might govern copulatory behavior in male laboratory rats that is analogous to the network described in female rats that governs the lordosis response. This hypothesized network in males may synchronize and coordinate sexual behavioral responses with physiological responses of the genitals and the internal organs of reproduction. Therefore, the pseudorabies virus (PRV; Bartha strain), a transneuronal, viral retrograde tract tracer, was microinjected into the prostate gland to label this network. After 7 days, brains from infected animals were processed for immunohistochemical labeling of AR, ER, and PRV. The majority of PRV-ir cells exhibited either AR or ER immunoreactivity in the medial preoptic area, median preoptic nucleus, bed nucleus of stria terminalis, hypothalamic paraventricular nucleus, and zona incerta, areas known to play roles in male rat mating behavior. Other structures such as the central tegmental field/subparafascicular nucleus of the thalamus, central nucleus of the amygdala, and medial amygdala, also important in the display of male copulatory behavior, were less reliably labeled. Collectively, a steroid receptor-containing neuronal circuit, largely contained in the diencephalon, was revealed that likely is involved in the autonomic control of the prostate gland and the consummatory aspects of male rat mating behavior.  相似文献   

16.
17.
Japanese quail selected bidirectionally for adult mating frequency were utilized to study in vivo aromatization of testosterone (T) in relation to masculine copulatory behavior. Functionally castrated high (HM) and low mating (LM) line quail were injected with 75 microCi of [3H]T. One hour after the injection, all radioactivity recovered in telencephalic-diencephalic brain tissue was in the form of T, dihydrotestosterone (DHT), or estradiol (E2). Neither the total 3H nor the [3H]T metabolite radioactivity differed between the two genetic lines. Of all [3H]T metabolic radioactivity, [3H]E2 represented 45 +/- 6 % in the HM line and 46 +/- 6% in the LM line, indicating that the line difference in mating frequency was not due to a corresponding difference in aromatase activity. Inasmuch as both the HM and LM line birds actively converted T to E2, these results implicate a neural mechanism involving E2-receptor interactions as the cause of the behavioral differences between the HM and LM lines.  相似文献   

18.
Sexually experienced male rats were castrated and immediately received implants of Silastic tubing containing either testosterone (T), dihydrotestosterone (DHT), estradiol (E), or nothing (blank). The ability of these hormone treatments to maintain precastration levels of copulatory behavior and ex copula penile responses was assessed for 40 days after castration. Throughout the study T- and E-treated males, but not males with DHT or blank implants, maintained normal copulatory behavior. In contrast males treated with T and DHT, but not E or blanks, maintained penile responses ex copula. In blank-treated males, penile-response latencies increased more rapidly than did intromission latencies. These results, together with those of previous studies, appear to rule out a role for estradiol and reinforce the role of androgens in the activation of rats' penile-response potential ex copula. Similarly, the results support the conclusion that in castrated male rats estradiol treatment is sufficient for the activation of masculine copulatory behavior, and that the penile actions necessary for intromission are not dependent on androgen. Thus, the evocability of penile actions and their relative androgen dependence are context sensitive.  相似文献   

19.
Intracranial implantation of minute pellets of gonadal steroids was performed to determine neuroanatomical loci at which steroids activate sexual behavior in the Japanese quail (Coturnix japonica). In this species, systemic treatment of castrated males with either testosterone propionate (TP) or estradiol benzoate (EB) restores male-typical copulatory behavior (head grabbing, mounting, and cloacal contact movements). In addition, EB activates female-typical receptive behavior (crouching). Adult male castrated quail were implanted intracranially with 300-micrograms pellets containing TP, EB, or cholesterol (CHOL) and behavior was tested with intact males and females. Either TP or EB pellets in the preoptic area (POA) activated male-typical copulatory behavior. Mounting was specifically activated without concomitant activation of other steroid-sensitive sexual and courtship behaviors. TP and EB implants in adjacent nuclei containing receptors for these steroids and CHOL implants in POA had no effect on male-typical copulatory behavior. Eighteen percent of all males tested for female-typical receptivity crouched, but no specific effect of EB was seen at any site. The similarity of the POA sites for activation of mounting by TP and EB is consistent with the hypothesis that cells within the POA aromatize testosterone to estrogens, which directly stimulate the cellular processes leading to behavioral activation.  相似文献   

20.
Intracranial implantation of minute pellets of gonadal steroids was combined with aromatase inhibitor treatment to determine if aromatization within the preoptic area (POA) is necessary for androgens to activate sexual behavior in the Japanese quail (Coturnix japonica). In this species, implantation of pellets of testosterone propionate (TP) or estradiol benzoate (EB) in the POA of castrated males restores male-typical copulatory behavior. In Experiment 1, adult male castrated quail were implanted intracranially with 200-micrograms pellets of equimolar mixtures of crystalline TP + cholesterol (CHOL), TP + 1,4,6-androstatriene-3,17-dione (ATD, an aromatase inhibitor), EB + ATD, or CHOL and behavior-tested with intact males and females. Copulation was stimulated by POA implants containing TP or EB (three of six CHOL + TP males and two of seven ATD + EB males copulated vs zero of four CHOL males), but copulation was not inhibited by combining ATD with TP (three of four ATD + TP males copulated). In Experiment 2, adult male castrated quail were injected systemically with ATD or oil for 6 days prior to and 14 days after intracranial implantation of 200-micrograms pellets containing the same amounts of TP or EB as in Experiment 1. The ATD injections completely blocked copulatory behavior in males with TP implants in the POA such that ATD/TP and Oil/TP mount frequencies differed significantly, but failed to block copulation in males with EB implants in the POA (proportions of males copulating were ATD/EB, 6/8; ATD/TP, 0/6; Oil/TP, 4/7). The cloacal foam gland, an androgen-sensitive secondary sex character, was unaffected by the dose of ATD used. We conclude that activation of copulatory behavior by TP implants in the POA is not due to nonspecific effects of high local testosterone concentrations but rather to aromatization. These results support the hypothesis that cells within the POA aromatize testosterone to estrogens, which directly stimulate the cellular processes leading to activation of male-typical copulatory behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号