首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Castrated androgen-insensitive rats exhibited mounting and intromission patterns in response to testosterone propionate (TP), estradiol benzoate (EB), or EB combined with dihydrotestosterone (DHT) treatment in adulthood. Treatment with DHT alone was ineffective in stimulating male mating behavior in the mutant rats. Since androgen-insensitive rats, like normal males, have the potential to show mounting behavior following hormone treatment in adulthood, the neural substrate underlying this behavior must be masculinized during development. The effectiveness of gonadal hormones in activating the entire copulatory sequence in castrated littermate males (King-Holtzman) was also examined. TP treatment induced mating behavior in the control rats. DHT also stimulated the complete copulatory pattern, although it was not as effective as TP. The administration of EB, however, did not induce ejaculation in control rats. These results do not support the hypothesis that the activation of male mating behavior by testosterone requires its metabolite estrogen (aromatization hypothesis).  相似文献   

2.
In male rats, a steroid-sensitive circuit in the forebrain regulates mating behavior. The masculine phenotype in one component of the circuit, the posterodorsal nucleus of the medial amygdala (MePD), depends on the level of circulating androgens in the adult. To investigate which gonadal steroid receptor(s) mediate sexual arousal and MePD plasticity, adult male rats were castrated and given Silastic capsules containing the nonaromatizable androgen 5alpha-dihydrotestosterone (DHT), 17beta-estradiol (E2), both steroids, or nothing. A fifth group was sham-castrated and treated with blank capsules. DHT treatment was necessary and sufficient to maintain the expression of noncontact penile erections and ultrasonic vocalizations in castrates. E2 had no significant effect on these measures. Both DHT and E2 increased olfactory investigation ("nosepokes") during the noncontact penile erection test. E2, but not DHT, maintained intromission patterns, while either steroid, alone or in combination, maintained ejaculatory behavior. Regional volume and cell soma size of the MePD both decreased following castration. Additionally, MePD cell size was lateralized, with left hemisphere neurons larger than those on the right, an effect that appeared independent of steroid manipulations. DHT and E2 each maintained neuronal soma size. E2 maintained MePD regional volume more effectively in the left MePD than in the right, which may have been due to a greater sensitivity of the left to both castration and hormone treatment. Thus, both androgen receptors and estrogen receptors appear to participate in sexual behaviors that may be mediated by the MePD in adult rats, and both receptors contribute to the steroid-regulated structural plasticity in this brain region.  相似文献   

3.
In the medial preoptic area (MPO) and medial amygdala (MEA), estradiol (E(2)) aromatized from testosterone (T) may act via either estrogen receptor (ER) α or ERβ to mediate mating in male rats. We tested the hypothesis that, in the MPO, ERα exclusively mediates sexual responses to E(2) by monitoring mating in four groups of castrated male rats administered dihydrotestosterone (DHT) subcutaneously and MPO implants delivering either: cholesterol, E(2), propyl pyrazole triol (PPT, ERα-agonist) or diarylpropionitrile (DPN, ER β-agonist); a fifth group of intact males served as DPN toxicity control, receiving DPN MPO implants. In a follow-up study, either 1-methyl-4-phenyl pyridinium (MPP, ERα-antagonist) or blank MPO cannulae were implanted in castrated male rats receiving T subcutaneously, whereas intact MPP toxicity controls received MPP MEA implants. PPT or E(2) MPO implants maintained mating, but cholesterol or DPN MPO implants did not. Moreover, MPP MPO implants interfered with T reinstatement of mating suggesting that, in the MPO, ERα is necessary and sufficient for mating in androgen-maintained male rats and ERβ is not sufficient. Because it is unknown which ER subtype(s) mediate sexual responses of the MEA to E(2), we examined mating following MEA implants of cholesterol, E(2), PPT or DPN in four groups of castrated male rats administered DHT subcutaneously. E(2) MEA implants maintained mounting but mating was significantly decreased in groups receiving PPT, DPN or cholesterol MEA implants suggesting that, unlike the MPO where ERα alone is essential, sexual responses of the MEA to E(2) require simultaneous interactions among multiple ER subtypes.  相似文献   

4.
A series of three experiments compared the inhibitory effects of progesterone on estrogen- or androgen-induced sexual behavior in male and female hamsters. In the first experiment chronic progesterone treatment was found to have no effect on male copulatory behavior maintained after castration with testosterone propionate or estradiol benzoate. However, testosterone propionate was more effective at maintaining male behavior than estradiol benzoate. In the second experiment progesterone was found to have a slight inhibitory effect on the rate of the restoration of the intromission response after androgen treatment in males which had been castrated for 8 weeks. In the final experiment, chronic progesterone treatment markedly inhibited sexual receptivity in male and female hamsters which had been given 4 weeks of androgen or estrogen treatment and a single pretest injection of progesterone. Thus, progesterone was shown to be a potent inhibitor of androgen- or estrogen-induced estrus in both male and female hamsters. Due to the large difference in effectiveness on these two behavioral systems, we suggest that progesterone affects steroid-induced male copulatory behavior and female receptivity by different mechanisms of action.  相似文献   

5.
Castration of male rats causes a rapid loss of their normal erectile response to inaccessible estrous females. Previous studies had demonstrated that these noncontact erections (NCEs), a putative sign of sexual arousal, could be restored by systemic treatment with testosterone (T) or dihydrotestosterone (DHT), but not estradiol (E). We examined whether androgen delivered to the medial amygdala (MeA) of castrated rats would maintain NCE. In Experiment 1, males received bilateral cannulae filled with T, DHT, or E directed at the MeA. Control males had the same hormone-filled cannulae implanted subcutaneously and blank cannulae in the MeA, or they received T in the anterior forebrain. During the 2 weeks after surgery, males were tested twice for NCE and copulation. About half the males with androgens in the MeA had NCEs 1 week after castration, but few responded a week later. Closer proximity of androgen implants to the posterodorsal MeA (MeApd) predicted shorter NCE latencies. No males with subcutaneous androgen had NCEs in either test, and few anterior forebrain-implanted males did. Some males receiving E in MeA or subcutaneously had NCE in each test. In copulation tests, the type of steroid treatment did not affect the incidence of ejaculation or most measures of copulation, and the proximity of cannulae to MeApd predicted only the time from ejaculation to the occurrence of NCE during the postejaculatory interval. Experiment 2 showed that NCEs displayed by males with androgen in MeA occurred in response to estrous females, not spontaneously. The results suggest that androgens, perhaps augmented by estrogen, act in the posterodorsal MeA to facilitate NCE and its associated arousal.  相似文献   

6.
Having previously found that King-Holtzman rats respond behaviorally to dihydrotestosterone (DHT), this strain was used to compare the effectiveness of DHT and dihydrotestosterone propionate (DHTP) in maintaining and reinstating copulatory behavior. The 5α-reduced androgens were capable of stimulating mating behavior in these castrated male rats. DHT and DHTP were equally effective in maintaining ejaculatory behavior, whereas DHT was slightly more potent behaviorally than DHTP in restoring mating responses. It was found that as little as 200 μg hormone/day restored ejaculatory behavior in 78% of the DHT-treated and 50% of the DHTP-treated rats. In both the maintenance and restoration paradigms, the mating performance of the DHT(P) treated males declined over time. The present data suggest that the conversion of androgen to estrogen may not be critical for the activation of male mating behavior.  相似文献   

7.
The synthetic steroid methyltrienolone (R 1881) binds specifically with high affinity to intracellular androgen receptors and is not metabolized to androstanediol. Administration of R 1881 (1 mg/day) to castrated male rats facilitated intromission in significantly more animals than did 5α-dihydrotestosterone (DHT) (1 mg/day); however, the percentage of animals ejaculating and the pattern of behavior displayed were equivalent in the two groups. Combined administration of estradiol benzoate (EB) (2 μg/day) plus either R 1881 or DHT further facilitated males' sexual performance to levels previously seen in castrated male rats of the same strain when given testosterone propionate (TP). The results suggest that conversion of DHT to 3α- or 3β-androstanediol neither detracts from nor contributes to its ability to activate sexual behavior in the male rat.  相似文献   

8.
The display of penile reflexes and copulatory behavior appears to reflect the activity of two different underlying neuronal system, both of which are modulated by systemic testosterone (T) concentration. To indirectly compare the two systems, the responsiveness to T of penile reflexes and copulatory behavior was examined. In the first experiment castrated spinal male rats were given penile reflex tests while receiving replacement T through Silastic capsule implants filled with T (50 mm T). After capsule removal the number of penile erections and flips declined within 24 hr and gradually decreased for 12 days. Subjects were then reimplanted with new 50-mm T capsules. The number of penile flips and erections increased within 6 and 12 hr. respectively. This is a much more rapid response rate to T than has been established for copulatory behavior. In the second experiment castrated spinal male rats were tested for penile reflexes with a 50-mm T capsule, which was then replaced with a 10-, 5-, or 2-mm T or an empty capsule. The number of penile reflexes declined in a dose-response fashion. In the third experiment, castrated sexually experienced male rats were tested for copulatory behavior with two 25-mm T capsules which were then replaced with a 10 or 2-mm T or an empty capsule. Only males with empty capsules had decrements in copulatory behavior, revealing that a low level of T can maintain virtually normal sexual behavior despite a marked decline in penile reflex activity. The neuronal system underlying penile reflexes (spinal neurons) is apparently much more responsive to changes in T concentrations than the neuronal system underlying motivational and appetitive aspects of copulatory behavior (brain neurons).  相似文献   

9.
In adult male quail, the activation of sexual behavior by testosterone (T) is mediated at the cellular level by the interaction of T metabolites with intracellular steroid receptors. In particular, the aromatization of T into an estrogen plays a key limiting role. Nonaromatizable androgens such 5alpha-dihydrotestosterone (DHT) synergize with estradiol (E2) to activate the behavior. Given that the density of vasotocin (VT) immunoreactive structures is increased by T in adult male quail and that VT injections affect male behavior, we wondered whether the expression of VT is also affected by T metabolites such as E2 and DHT. We analyzed here, in castrated male quail, the effects of a treatment with T, E2, DHT, or E2 + DHT on sexual behavior and brain VT immunoreactivity. The restoration by T of the VT immunoreactivity in the medial preoptic nucleus, bed nucleus striae terminalis, and lateral septum of castrated male quail could be fully mimicked by a treatment with E2. The androgen DHT had absolutely no effect on the VT immunoreactivity in these conditions and, at the doses used here, DHT did not synergize with E2 to enhance the density of VT immunoreactive structures. These effects of T metabolites in the brain were not fully correlated with their effects on the activation of male copulatory behavior, suggesting that the increase in VT expression in the brain does not represent a necessary step for the activation of behavior. Although VT expression in the medial preoptic nucleus and bed nucleus striae terminalis is often tightly correlated with the expression of male copulatory behavior, VT presumably does not represent simply one step in the biochemical cascade of events that is induced by T in the brain and leads to the expression of male sexual behavior.  相似文献   

10.
The aromatization hypothesis asserts that testosterone (T) must be aromatized to estradiol (E2) to activate copulatory behavior in the male rat. In support of this hypothesis, the aromatization inhibitor, ATD, has been found to suppress male sexual behavior in T-treated rats. In our experiment, we first replicated this finding by peripherally injecting ATD (15 mg/day) or propylene glycol into T-treated (two 10-mm Silastic capsules) or control castrated male rats. In a second experiment, we bilaterally implanted either ATD-filled or blank cannulae into the medial preoptic area (MPOA) of either T-treated or control castrated male rats. With this more local distribution of ATD, a lesser decline in sexual behavior was found, suggesting that other brain areas are involved in the neurohormonal activation of copulatory behavior in the male rat. To determine whether in vivo ATD interacts with androgen or estrogen receptors, we conducted cell nuclear androgen and estrogen receptor binding assays of hypothalamus, preoptic area, amygdala, and septum following treatment with the combinations of systemic T alone. ATD plus T, ATD alone, and blank control. In all four brain areas binding of T to androgen receptors was significantly decreased in the presence of ATD, suggesting that ATD may act both as an androgen receptor blocker and as an aromatization inhibitor. Competitive binding studies indicated that ATD competes in vitro for cytosol androgen receptors, thus substantiating the in vivo antiandrogenic effects of ATD. Cell nuclear estrogen receptor binding was not significantly increased by exposure to T in the physiological range. No agonistic properties of ATD were observed either behaviorally or biochemically. Thus, an alternative explanation for the inhibitory effects of ATD on male sexual behavior is that ATD prevents T from binding to androgen receptors.  相似文献   

11.
Ovariectomized female rats were treated in turn over several weeks with estradiol benzoate (EB), testosterone (T), 19-hydroxytestosterone (19HT), dihydrotestosterone (DHT) and 5α-19-hydroxytestosterone (5α19HT). EB was given as a single dose, the androgens were given over 3 days, and progesterone (P) was given 48 hr after the last injection. Each week, rats were tested for lordosis behavior 4–6 hr after P. High levels of receptivity were seen after EB + P, 19HT + P and T + P. Rats treated with DHT + P or 5α19HT + P were unreceptive. Four groups of castrated male rats were treated with T, 19HT, DHT and 5α19HT for 4 weeks starting from castration. In weekly sexual behavior tests, only T and 19HT maintained normal copulatory performance throughout the experiment. 19HT and 5α19HT had negligible effects on peripheral androgen target organs. The failure of 5α19HT to stimulate sexual behavior in rats of either sex supports the view that this steroid does not undergo central aromatization.  相似文献   

12.
Sexual behavior was observed in the 5 wk after castration in four separate experiments. In each, 50 male rats were allocated equally to the following treatment groups; intact controls; castrated controls; castrated + testosterone propionate, 75 μg/day; castrated + test steroid 1, 150 μg/day; castrated + test steroid 2, 150 μg/day. The following propionated compounds were used; dihydrotestosterone, androsterone, 3α- and 3β-androstanediols, androstenedione, androstanedione, 19-hydroxyandrostenedione, estradiol. With the exception of androstanedione, only aromatizable androgens or estrogen prevented post-castration increases in refractory period durations. However, aromatizable and 5α-reduced androgens stimulated penile spine growth. In each experiment there was a significant positive correlation between spine number and copulatory efficiency i.e., the ratio of intromission to mount frequencies.  相似文献   

13.
Castrated zebra finches receiving one of six hormone treatments were given three weekly tests with different females and their sexual behavior was contrasted with that of two control groups consisting of intact or castrated males given implants of cholesterol. The six hormone treatments were: two aromatizable androgens, testosterone (T) and androstenedione (AE); two nonaromatizable androgens, androsterone (AN) and dihydrotestosterone (DHT); an estrogen, estradiol (E); or a combination of E + DHT. Half the males receiving DHT received the 5α-isomer, half received the 5β-isomer. Castration significantly reduced the proportion of males which courted females, total courtship displays, high-intensity courtship displays, beak wiping activity, and significantly increased the latencies to show these behaviors compared to intact males. Castrated males never attempted to mount a female. All of these measures of courtship and copulatory behavior were restored to normal levels only by treatments providing both estrogenic and α-androgenic metabolites (i.e., T, AE, E + αDHT). AE was clearly the most effective of these, raising behavior significantly above normal on several measures. AN treatment was more effective than αDHT on all measures and not significantly different from intact birds on some. Treatment with E, αDHT, βDHT, or E + βDHT was totally ineffective. Surprisingly, females only solicited males whose hormone treatments provided estrogenic metabolites. Not only did they solicit males given aromatizable androgens, which showed high rates of courtship activity, they also solicited males given E or E + βDHT, some of which never even courted. Castration and hormone treatment also affected body and syringeal weight, but in opposite directions. Castration increased body weight while decreasing syringeal weight. Hormone treatments providing α-androgenic metabolites decreased body weight and increased syrinx weight. Treatments supplying estrogen as well were slightly more effective.  相似文献   

14.
Sexual behavior was assessed in castrated adult CD-1 male mice given exogenous steroids under various treatment regimens. Castrated mice maintained on 20 μg testosterone (T) daily for 1 week, but given 250 μg testosterone propionate (TP) on the day of testing showed higher levels of copulatory activity than intact mice or the males receiving an additional dose of 20 μg T on the test day, although plasma testosterone levels were not different at the time of behavioral testing. Castrated males given 50, 125, or 250 μg TP for 1 week including the day of testing showed higher levels of sexual behavior than males receiving the same doses of TP only once, on the test day. A single injection of 17β-estradiol (E2) completely restored the male copulatory pattern, including ejaculation, in castrated mice under every condition examined. Testosterone and dihydrotestosterone (DHT) were less effective than E2, as was the combination of E2 and DHT. The relative efficacy of a single dose of T, DHT, and E2 plus DHT was dependent upon factors such as the delay between steroid administration and testing, as well as whether or not the castrated mice received androgen replacement prior to testing. Estradiol benzoate (E2B) was not capable of restoring sexual behavior in castrated mice in this study. The comparison of results obtained with TP, T, E2, and E2B suggests that an appreciable, but not necessarily sustained, elevation of E2 levels in the brain may be critical in the facilitation of male copulatory behavior in mice.  相似文献   

15.
Eight weeks after gonadectomy male, female, and androgenized [10 μg testosterone propionate (TP), 24 hr after birth] female hamsters were given daily treatment with: 150 μg dihydrotestosterone (DHT), 5 μg estradiol benzoate (EB), 150 μg DHT + 5 μg EB, 150 μg DHT + 1 μg EB, 30 μg DHT + 5 μg EB, 30 μg DHT + 1 μg EB, or the oil vehicle. Treatment of castrated male hamsters with 5 μg EB fully restored mounting but relatively few of these animals intromitted and none ejaculated. Treatment with 150 μg DHT restored all components of male sexual behavior but only in a small proportion of the males. Combined treatment with EB and DHT restored mounts, intromissions, and ejaculations in the majority of the males. Although as little as 30 μg DHT + 1 μg EB restored the full complement of male behavior, the males which received 150 μg DHT + 5 μg EB or 150 μg DHT + 1 μg EB required fewer intromissions to achieve ejaculation than the males which received 30 μg DHT + either dose of EB. The response of the androgenized females was similar to that of the males except that the androgenized females had lower intromission rates and none ejaculated. Relatively few of the nonandrogenized females responded to EB and DHT treatment and those that did mounted only a few times each test. These results demonstrate that both EB and DHT can stimulate male sexual behavior in the hamster and that the sensitivity to EB and DHT for copulatory behavior is determined by early postnatal androgen exposure.  相似文献   

16.
Five experiments examined the hormonal regulation of the precopulatory reproductive behavior of male housemice of two genotypes (DBA/2J inbreds and C57BL/6J X AKR/J hybrids). The two precopulatory behaviors examined were preferences for female urinary odors and ultrasonic courtship vocalizations to anesthetized females. The preferences were then used to make inferences about odor attractiveness. Gonadally intact hybrid males were highly attracted to the airborne urinary odors of female mice but were either indifferent to, or exhibited less attraction to, male urinary odors. Castration decreased male attraction to female odor such that castrated males were equally attracted to male and female odors. Normal levels of attraction could be maintained in castrated hybrid males by Silastic implants of either testosterone or estradiol. While Silastic implants of dihydrotestosterone (DHT) were also effective in maintaining attraction in hybrids, this hormone was ineffective in inbreds. The effectiveness of estradiol, DHT, and testosterone in maintaining attraction following castration was paralleled in castrated hybrids by the effects of these hormones in maintaining courtship vocalizations to females. In contrast to the genotype-specific effects of DHT upon behavior, DHT was effective in both genotypes in maintaining seminal vesicle weight. Estradiol, on the other hand, which was quite effective in maintaining both precopulatory behaviors in hybrids, had little effect upon seminal vesicle weight. Thus these experiments dissociate the behavioral effects of steroids from their effects upon peripheral morphology. We suggest that testosterone can activate precopulatory behaviors following either aromatization or 5-alpha reduction but that genetic variability somehow gives rise to strain differences in DHT responsiveness.  相似文献   

17.
Testosterone propionate (TP) has a quantitative influence on sexual reflexes mediated at the spinal level in male rats. The possibility that this influence reflects the direct action of androgen on neural elements in the cord, rather than on sensory receptors in the penis was examined indirectly by the use of dihydrotestosterone (DHT). Spinal castrated male rats maintained initially on TP and then switched to DHT showed a significant decline in sexual reflexes paralleling the decline of another group of spinal rats receiving no hormone after initial TP treatment. Yet the number of penile papillae and weight of the penile shaft for the DHT subjects were not significantly different from these measures of penile morphology in a third group of subjects receiving continuous TP and in which reflexes did not decline. These and other observations are consistent with the hypothesis that neural elements within the spinal cord, related to the mediation of the ejaculatory pattern in intact male rats, are directly influenced by gonadal androgen.  相似文献   

18.
The purpose of the present investigation was to determine if estrogen, aromatizable androgen or nonaromatizable androgen is capable of (1) inducing copulatory behavior and (2) inhibiting the postcastration rise in plasma LH. Castrate male rats were injected daily with either 1 mg testosterone (T), androstenedione (A), dihydrotestosterone (DHT), or 25 μg estradiol benzoate (EB) or oil and tested weekly for masculine behavior and for lordosis behavior after 38 days of steroid treatment. On day 40 blood was collected for radioimmunoassay of plasma LH. At least 89% of the males treated with T, A, or EB and 55% of those treated with DHT displayed ejaculatory behavior whereas none of the oil-treated males showed male copulatory behavior. Only estrogen-treated males displayed lordosis behavior. T and to a lesser extent A treatment reduced high levels of plasma LH; however, DHT and EB further reduced plasma LH to undectable levels. The relative potency of the steroid effect in stimulating accessory sex tissues followed the order: DHT > T > A > EB = oil. Significant dissociation was observed between the effects of these steroids on peripheral morphology, negative feedback, and mating behavior. These results indicate that masculine behavior is facilitated to the greatest extent, although not exclusively, by centrally acting aromatizable androgen or estrogen, whereas under the present conditions only estrogen stimulates feminine behavior.  相似文献   

19.
Male rats castrated at 30 days of age were treated with estradiol benzoate (dose range: 0.05–50 μg EB for 26 days) and dihydrotestosterone (1 mg DHT for 36 days) as adults. The combined EB and DHT treatments resulted in display of male sexual behavior which did not differ from the behavior shown by intact untreated males or castrated, testosterone propionate (1 mg TP for 26 days) treated males. EB alone or DHT alone were relatively ineffective in activating male behavior in castrated males.  相似文献   

20.
Sexual behavior was assessed in castrated adult CD-1 male mice given exogenous steroids under various treatment regimens. Castrated mice maintained on 20 μg testosterone (T) daily for 1 week, but given 250 μg testosterone propionate (TP) on the day of testing showed higher levels of copulatory activity than intact mice or the males receiving an additional dose of 20 μg T on the test day, although plasma testosterone levels were not different at the time of behavioral testing. Castrated males given 50, 125, or 250 μg TP for 1 week including the day of testing showed higher levels of sexual behavior than males receiving the same doses of TP only once, on the test day. A single injection of 17β-estradiol (E2) completely restored the male copulatory pattern, including ejaculation, in castrated mice under every condition examined. Testosterone and dihydrotestosterone (DHT) were less effective than E2, as was the combination of E2 and DHT. The relative efficacy of a single dose of T, DHT, and E2 plus DHT was dependent upon factors such as the delay between steroid administration and testing, as well as whether or not the castrated mice received androgen replacement prior to testing. Estradiol benzoate (E2B) was not capable of restoring sexual behavior in castrated mice in this study. The comparison of results obtained with TP, T, E2, and E2B suggests that an appreciable, but not necessarily sustained, elevation of E2 levels in the brain may be critical in the facilitation of male copulatory behavior in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号