首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Bortezomib (Velcade™) is a reversible proteasome inhibitor that is approved for the treatment of multiple myeloma (MM). Despite its demonstrated clinical success, some patients are deprived of treatment due to primary refractoriness or development of resistance during therapy. To investigate the role of the duration of proteasome inhibition in the anti-tumor response of bortezomib, we established clonal isolates of HT-29 adenocarcinoma cells adapted to continuous exposure of bortezomib. These cells were ∼30-fold resistant to bortezomib. Two novel and distinct mutations in the β5 subunit, Cys63Phe, located distal to the binding site in a helix critical for drug binding, and Arg24Cys, found in the propeptide region were found in all resistant clones. The latter mutation is a natural variant found to be elevated in frequency in patients with MM. Proteasome activity and levels of both the constitutive and immunoproteasome were increased in resistant cells, which correlated to an increase in subunit gene expression. These changes correlated with a more rapid recovery of proteasome activity following brief exposure to bortezomib. Increased recovery rate was not due to increased proteasome turnover as similar findings were seen in cells co-treated with cycloheximide. When we exposed resistant cells to the irreversible proteasome inhibitor carfilzomib we noted a slower rate of recovery of proteasome activity as compared to bortezomib in both parental and resistant cells. Importantly, carfilzomib maintained its cytotoxic potential in the bortezomib resistant cell lines. Therefore, resistance to bortezomib, can be overcome with irreversible inhibitors, suggesting prolonged proteasome inhibition induces a more potent anti-tumor response.  相似文献   

2.
Resistance to the proteasome inhibitor bortezomib is an emerging clinical problem whose mechanisms have not been fully elucidated. We considered the possibility that this could be associated with enhanced proteasome activity in part through the action of the proteasome maturation protein (POMP). Bortezomib-resistant myeloma models were used to examine the correlation between POMP expression and bortezomib sensitivity. POMP expression was then modulated using genetic and pharmacologic approaches to determine the effects on proteasome inhibitor sensitivity in cell lines and in vivo models. Resistant cell lines were found to overexpress POMP, and while its suppression in cell lines enhanced bortezomib sensitivity, POMP overexpression in drug-naive cells conferred resistance. Overexpression of POMP was associated with increased levels of nuclear factor (erythroid-derived 2)-like (NRF2), and NRF2 was found to bind to and activate the POMP promoter. Knockdown of NRF2 in bortezomib-resistant cells reduced POMP levels and proteasome activity, whereas its overexpression in drug-naive cells increased POMP and proteasome activity. The NRF2 inhibitor all-trans-retinoic acid reduced cellular NRF2 levels and increased the anti-proliferative and pro-apoptotic activities of bortezomib in resistant cells, while decreasing proteasome capacity. Finally, the combination of all-trans-retinoic acid with bortezomib showed enhanced activity against primary patient samples and in a murine model of bortezomib-resistant myeloma. Taken together, these studies validate a role for the NRF2/POMP axis in bortezomib resistance and identify NRF2 and POMP as potentially attractive targets for chemosensitization to this proteasome inhibitor.  相似文献   

3.

Background

The proteasome inhibitor bortezomib represents an important advance in the treatment of multiple myeloma (MM). Bortezomib inhibits the activity of the 26S proteasome and induces cell death in a variety of tumor cells; however, the mechanism of cytotoxicity is not well understood.

Methodology/Principal Findings

We investigated the differential phosphoproteome upon proteasome inhibition by using stable isotope labeling by amino acids in cell culture (SILAC) in combination with phosphoprotein enrichment and LC-MS/MS analysis. In total 233 phosphoproteins were identified and 72 phosphoproteins showed a 1.5-fold or greater change upon bortezomib treatment. The phosphoproteins with expression alterations encompass all major protein classes, including a large number of nucleic acid binding proteins. Site-specific phosphopeptide quantitation revealed that Ser38 phosphorylation on stathmin increased upon bortezomib treatment, suggesting new mechanisms associated to bortezomib-induced apoptosis in MM cells. Further studies demonstrated that stathmin phosphorylation profile was modified in response to bortezomib treatment and the regulation of stathmin by phosphorylation at specific Ser/Thr residues participated in the cellular response induced by bortezomib.

Conclusions/Significance

Our systematic profiling of phosphorylation changes in response to bortezomib treatment not only advanced the global mechanistic understanding of the action of bortezomib on myeloma cells but also identified previously uncharacterized signaling proteins in myeloma cells.  相似文献   

4.
The proteasome inhibitor bortezomib, which induces cell death in various cancer cell lines including lymphatic neoplasias, has recently been approved for the treatment of relapsed multiple myeloma. Important mechanisms of proteasome inhibitor-mediated tumor cell death are the inhibition of NF-kappaB activation and induction of the terminal unfolded protein response (UPR). However, little is known about effects of bortezomib on developing and mature lymphocytes. Therefore, Balb/C mice were injected with bortezomib and lymphocyte subsets were analyzed. This treatment resulted in dramatically decreased numbers of T and B lymphocyte precursors, while mature lymphocytes were only partially affected. Thymocytes were almost depleted 3 days after a single bortezomib injection, pro-B and pre-B cells already after 2 days. Thymocytes and B cell precursors recovered within 2 weeks. The decreased numbers of developing lymphocytes were due to apoptotic cell death accompanied by strongly increased caspase 3/7 activity. Within 8 h after bortezomib injection, there was a strong induction of heat shock protein 70 and C/EBP homologous protein in bone marrow B cells, indicating endoplasmic reticulum stress and activation of the terminal UPR, respectively. Hence, induction of apoptosis by proteasome inhibition can dramatically affect lymphocyte development, a fact which has important implications for the clinical use of bortezomib, especially in situations with ongoing lymphopoiesis.  相似文献   

5.
The proteasome is a proteolytic machinery that executes the degradation of polyubiquitinated proteins to maintain cellular homeostasis. Proteasome inhibition is a unique and effective way to kill cancer cells because they are sensitive to proteotoxic stress. Indeed, the proteasome inhibitor bortezomib is now indispensable for the treatment of multiple myeloma and other intractable malignancies, but is associated with patient inconvenience due to intravenous injection and emerging drug resistance. To resolve these problems, we attempted to develop orally bioavailable proteasome inhibitors with distinct mechanisms of action and identified homopiperazine derivatives (HPDs) as promising candidates. Biochemical and crystallographic studies revealed that some HPDs inhibit all three catalytic subunits (ß 1, ß 2 and ß 5) of the proteasome by direct binding, whereas bortezomib and other proteasome inhibitors mainly act on the ß5 subunit. Proteasome-inhibitory HPDs exhibited cytotoxic effects on cell lines from various hematological malignancies including myeloma. Furthermore, K-7174, one of the HPDs, was able to inhibit the growth of bortezomib-resistant myeloma cells carrying a ß5-subunit mutation. Finally, K-7174 had additive effects with bortezomib on proteasome inhibition and apoptosis induction in myeloma cells. Taken together, HPDs could be a new class of proteasome inhibitors, which compensate for the weak points of conventional ones and overcome the resistance to bortezomib.  相似文献   

6.
The proteasome plays a pivotal role in the turnover of regulatory transduction proteins induced by activated cell membrane growth factor receptors. The epidermal growth factor receptor (EGFR) pathway is crucial in the development and progression of human epithelial cancers. Proteasome inhibition may sensitize human cancer cell lines to EGFR inhibitors. We investigated the growth inhibitory and pro-apoptotic effects of the proteasome inhibitor bortezomib in combination with anti-EGFR drugs, such as gefitinib, vandetanib, and cetuximab in EGFR-expressing human cancer cell lines. Bortezomib determined dose-dependent growth inhibition in a nine cancer cell line panel (IC(50) values, range 6-42 nM). A significant synergistic growth inhibitory effect was observed with the combination of bortezomib and each EGFR inhibitor in all cell lines (combination index, CI, range 0.10-0.55), which was accompanied by a significant induction in apoptosis by the combined treatment with bortezomib, cetuximab and vandetanib. In HCT-116 colon cancer and A549 lung adenocarcinoma cells, bortezomib plus EGFR inhibitor treatment induced a more effective inhibition of EGFR-activated down-stream signals, including a marked suppression in activated, phosphorylated Akt (P-Akt). In contrast, overexpression of a constitutively active P-Akt protected A549 cells by cell growth inhibition and apoptosis following treatment with bortezomib and EGFR inhibitors. The combined treatment with bortezomib and EGFR inhibitors has a synergistic growth inhibitory and pro-apoptotic activity in different human cancer cells which possess a functional EGFR-dependent autocrine growth pathway through to a more efficient and sustained inhibition of Akt.  相似文献   

7.
Inhibitors of the catalytic activity of the 20S proteasome are cytotoxic to tumor cells and are currently in clinical use for treatment of multiple myeloma, whilst the deubiquitinase activity associated with the 19S regulatory subunit of the proteasome is also a valid target for anti-cancer drugs. The mechanisms underlying the therapeutic efficacy of these drugs and their selective toxicity towards cancer cells are not known. Here, we show that increasing the cellular levels of proteasome substrates using an inhibitor of Sec61-mediated protein translocation significantly increases the extent of apoptosis that is induced by inhibition of proteasomal deubiquitinase activity in both cancer derived and non-transformed cell lines. Our results suggest that increased generation of misfolded proteasome substrates may contribute to the mechanism(s) underlying the increased sensitivity of tumor cells to inhibitors of the ubiquitin-proteasome system.  相似文献   

8.
AimIt is of clinical importance to find methods to overcome bortezomib resistance. In the current study, we clarified the relationship between resistance to bortezomib and the differentiation status of myeloma cells, and explored the feasibility of induction of differentiation in overcoming bortezomib resistance in myeloma.MethodsCell morphology, immunoglobulin light-chain protein secretion levels, and XBP-1 expression were used to evaluate the differentiation status of myeloma cells. Low dose 2-ME2 alone or in combination with ATRA was used to induce differentiation in myeloma cells.ResultsThe differentiation status of myeloma cells was related to myeloma sensitivity to bortezomib. After successful induction of differentiation, the myeloma cells were more sensitive to bortezomib with decreased growth and an increased rate of apoptosis. Induction of differentiation increased the proteasome workload in myeloma cells by increasing immunoglobulin secretion, while reducing proteasome capacity by decreasing proteasome activity. The imbalance between increased proteasome workload and decreased proteasome capacity is a possible mechanism by which induction of differentiation overcomes myeloma resistance to bortezomib.ConclusionThe current study demonstrated, for the first time, that myeloma differentiation status is associated with myeloma sensitivity to bortezomib and that induction of differentiation can overcome myeloma resistance to bortezomib.  相似文献   

9.
In multiple myeloma (MM), malignant plasma cells produce large amounts of antibodies and have highly active protein translational machinery. It is not known whether regulation of the abundance and aminoacylation (charging) of transfer RNA (tRNA) takes place in myeloma cells to accommodate for the increased amount of protein translation. Using tRNA-specific microarrays, we demonstrate that tRNA levels are significantly elevated in MM cell lines compared to normal bone marrow cells. We furthermore show that the addition of the proteasome inhibitor, bortezomib (Velcade™, PS-341) results in decreased charging levels of tRNAs, in particular those coding for hydrophobic amino acids. These results suggest that tRNA properties are altered in MM to accommodate for its increased need for protein translation, and that proteasome inhibition directly impacts protein synthesis in MM through effects on tRNA charging.  相似文献   

10.
Pandit B  Gartel AL 《PloS one》2011,6(2):e17110
Thiazole antibiotic, thiostrepton was recently identified as proteasome inhibitor. We investigated the therapeutic potential of the combination of thiostrepton and proteasome inhibitor bortezomib (Velcade) on various human tumor cell lines. Combination of sub-lethal concentrations of thiostrepton and bortezomib induced potent apoptosis and inhibition of long-term colony formation in a wide variety of human cancer cell lines. The synergistic relationship between thiostrepton and bortezomib combination was also quantitatively demonstrated by calculating their combination index values that were much lower than 1 in all studied cell lines. The synergy between these drugs was based on their proteasome inhibitory activities, because thiostrepton modification, thiostrepton methyl ester, which did not have intact quinaldic acid ring and did not inhibit proteasome activity failed to demonstrate any synergy in combination with bortezomib.  相似文献   

11.
Inhibition of the proteasome offers many therapeutic possibilities in inflammation as well as in neoplastic diseases. However, clinical use of proteasome inhibitors is limited by the development of resistance or severe side effects. In our study we characterized the anti-tumor properties of the novel proteasome inhibitor BSc2118. The sensitivity of tumor lines to BSc2118 was analyzed in comparison to bortezomib using crystal violet staining in order to assess cell viability. The In Vivo distribution of BSc2118 in mouse tissues was tracked by a fluorescent-modified form of BSc2118 (BSc2118-FL) and visualized by confocal microscopy. Inhibition of the 20S proteasome was monitored both in cultured cell lines and in mice, respectively. Finally, safety and efficacy of BSc2118 was evaluated in a mouse melanoma model. BSc2118 inhibits proliferation of different tumor cell lines with a similar potency as compared with bortezomib. Systemic administration of BSc2118 in mice is well tolerated, even when given in a dose of 60 mg/kg body weight. After systemic injection of BSc2118 or bortezomib similar proteasome inhibition patterns are observed within the murine organs. Detection of BSc2118-FL revealed correlation of distribution pattern of BSc2118 with inhibition of proteasomal activity in cells or mouse tissues. Finally, administration of BSc2118 in a mouse melanoma model shows significant local anti-tumor effects. Concluding, BSc2118 represents a novel low-toxic agent that might be alternatively used for known proteasome inhibitors in anti-cancer treatment.  相似文献   

12.
The goal of this study was to investigate the role of the ABC transporters in the evolution of tumor cell populations treated with bortezomib. Bortezomib (PS-341, Velcade) is a proteasome inhibitor used for treatment of some malignancies. Several pairs of cell lines different in Pgp expression (P-glycoprotein transporter, ABCB1) have been used in the study. We showed that the influence of the Pgp hyperexpression on cell sensitivity to bortezomib was bidirectional and depended on the tissue type. Bortezomib changed the mRNA level of MDR1 (ABCB1 and MRP1 (ABCC1)) genes, suggesting that the proteasome inhibitor is able to decrease the activity of some regulators of genes/proteins implicated in MDR. Bortezomib treatment increased the levels of proteins (Pgp or MPR1) in 3 out of 4 cell populations studied. Pgp was shown to remain functionally active in the cells cultured in bortezamib-containing medium. The UIC2-shift assay has shown that bortezomib is able to activate Pgp. This means that bortezomib influences Pgp conformation, thus activating the protein (in K562/i-S9 cells). These experiments also demonstrate that bortezomib is Pgp substrate.  相似文献   

13.
14.
The dipeptide boronic acid bortezomib, also termed VELCADE, is a proteasome inhibitor now in use for the treatment of multiple myeloma, and its use for the treatment of other malignancies is being explored. We determined the crystal structure of the yeast 20S proteasome in complex with bortezomib to establish the specificity and binding mode of bortezomib to the proteasome's different catalytically active sites. This structure should enable the rational design of new boronic acid derivatives with improved affinities and specificities for individual active subunits.  相似文献   

15.
Proteasome inhibitors, such as the dipeptide boronic acid bortezomib, are emerging as important tools in the treatment of the fatal hematologic malignancy multiple myeloma. Despite the recent US Food and Drug Administration approval of bortezomib (PS341, Velcade) for the treatment of refractory multiple myeloma, many of the basic pharmacologic parameters of bortezomib and its mode of action on myeloma cells remain to be determined. We describe the synthesis and use of a cell-permeant active site-directed probe, which allows profiling of proteasomal activities in living cells. When we compared proteasome activity patterns in cultured cells and crude cell extracts with this probe, we observed substantial differences, stressing the importance for bioassays compatible with live cells to ensure accuracy of such measurements. Using this probe, we investigated the in vivo subunit specificities of bortezomib and another inhibitor, MG132.  相似文献   

16.
17.
Proteasome inhibitors are emerging as a new class of cancer therapeutics, and bortezomib has shown promise in the treatment of multiple myeloma and mantle cell lymphoma. However, bortezomib has failed to have an effect in preclinical models of glioma. NPI-0052 is a new generation of proteasome inhibitors with increased potency and strong inhibition of all three catalytic activities of the 26S proteasome. In this article, we test the antitumor efficacy of NPI-0052 against glioma, as a single agent and in combination with temozolomide and radiation using five different glioma lines. The intrinsic radiation sensitivities differed for all the lines and correlated with their PTEN expression status. In vitro, NPI-0052 showed a dose-dependent toxicity, and its combination with temozolomide resulted in radiosensitization of only the cell lines with a mutated p53. The effect of NPI-0052 as a single agent on glioma xenografts in vivo was only modest in controlling tumor growth, and it failed to radiosensitize the glioma xenografts to fractionated radiation. We conclude that NPI-0052 is not a suitable drug for the treatment of malignant gliomas despite its efficacy in other cancer types.  相似文献   

18.
The efficacy of proteasome inhibition for myeloma is limited by therapeutic resistance, which may be mediated by activation of the autophagy pathway as an alternative mechanism of protein degradation. Preclinical studies demonstrate that autophagy inhibition with hydroxychloroquine augments the antimyeloma efficacy of the proteasome inhibitor bortezomib. We conducted a phase I trial combining bortezomib and hydroxychloroquine for relapsed or refractory myeloma. We enrolled 25 patients, including 11 (44%) refractory to prior bortezomib. No protocol-defined dose-limiting toxicities occurred, and we identified a recommended phase 2 dose of hydroxychloroquine 600 mg twice daily with standard doses of bortezomib, at which we observed dose-related gastrointestinal toxicity and cytopenias. Of 22 patients evaluable for response, 3 (14%) had very good partial responses, 3 (14%) had minor responses, and 10 (45%) had a period of stable disease. Electron micrographs of bone marrow plasma cells collected at baseline, after a hydroxychloroquine run-in, and after combined therapy showed therapy-associated increases in autophagic vacuoles, consistent with the combined effects of increased trafficking of misfolded proteins to autophagic vacuoles and inhibition of their degradative capacity. Combined targeting of proteasomal and autophagic protein degradation using bortezomib and hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy.  相似文献   

19.
《Autophagy》2013,9(8):1380-1390
The efficacy of proteasome inhibition for myeloma is limited by therapeutic resistance, which may be mediated by activation of the autophagy pathway as an alternative mechanism of protein degradation. Preclinical studies demonstrate that autophagy inhibition with hydroxychloroquine augments the antimyeloma efficacy of the proteasome inhibitor bortezomib. We conducted a phase I trial combining bortezomib and hydroxychloroquine for relapsed or refractory myeloma. We enrolled 25 patients, including 11 (44%) refractory to prior bortezomib. No protocol-defined dose-limiting toxicities occurred, and we identified a recommended phase 2 dose of hydroxychloroquine 600 mg twice daily with standard doses of bortezomib, at which we observed dose-related gastrointestinal toxicity and cytopenias. Of 22 patients evaluable for response, 3 (14%) had very good partial responses, 3 (14%) had minor responses, and 10 (45%) had a period of stable disease. Electron micrographs of bone marrow plasma cells collected at baseline, after a hydroxychloroquine run-in, and after combined therapy showed therapy-associated increases in autophagic vacuoles, consistent with the combined effects of increased trafficking of misfolded proteins to autophagic vacuoles and inhibition of their degradative capacity. Combined targeting of proteasomal and autophagic protein degradation using bortezomib and hydroxychloroquine is therefore feasible and a potentially useful strategy for improving outcomes in myeloma therapy.  相似文献   

20.
目的:研究蛋白酶体抑制剂硼替佐米诱导骨髓瘤RPMI8226、MMH929细胞衰老作用,并进一步探讨其作用机制。方法:硼替佐米0.1-100nmol/L处理骨髓瘤RPMI8226、MMH929细胞48、72h,MTT法检测细胞存活率、药物IC50值。选择药物IC50值1/10剂量处理骨髓瘤RPMI8226、MMH929细胞0、24、48H后检测衰老相关β-半乳糖苷酶染色率。流式细胞术检测细胞周期情况及凋亡率。Western-blot检测相关蛋白表达。结果:硼替佐米处理骨髓瘤细胞RPMI8226、MMH929后48小时IC50值:RPMI8226:19.05 nmol/L,MMH929:18.45nmol/L。以硼替佐米2 nmol/L处理骨髓瘤RPMI8226、MMH929细胞0、24、48H后发现β-半乳糖苷酶染色率、细胞G0/G1期比例明显上升与药物作用时间呈正相关,Western-blot检测细胞周期调控蛋白发现P53、PTEN蛋白无变化,P16蛋白与药物作用时间正相关。结论:硼替佐米通过增强P16蛋白表达诱导骨髓瘤细胞RPMI8226、H929衰老。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号