首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thirty isolates of mungbean Rhizobium were tested for the presence of H2-recycling system. All the isolates were preliminary screened for detecting H2-recycling system in free culture using triphenyltetrazolium chloride reduction as screening procedure. The isolates which reduced the dye rapidly at early stages of growth were found to recycle hydrogen both in vivo as well as in vitro. Nitrogen fixing efficiency of hydrogenase positive, hydrogenase negative isolates and Hup mutants was compared by green house experiments. There was 13–56% increase in dry matter and 21–46% increase in total nitrogen of the plants inoculated with H2-recycling isolates over the plants inoculated with non-recycling isolates. There was reduction in dry matter and total nitrogen content of the plants inoculated with Hup mutants as compared to plants inoculated with wild type strain. The per cent decrease due to inoculation with Hup mutants over wild type strain was 19–22 and 20–26 of dry weight and total nitrogen in plants, respectively.Abbreviations TTC triphenyltetrazolium chloride  相似文献   

2.
The role of the dicarboxylic acid transport (dct) system in the Rhizobium meliloti-Alfalfa symbiosis was investigated. Mutants of R. meliloti CM2 unable to grow on medium containing succinate as the sole carbon source were isolated following chemical and transposon mutagenesis. These mutants were also unable to utilize malate or fumarate as the sole source of carbon. Transport studies with 14C-labelled succinate showed that the mutants were specifically defective in succinate transport. Revertants of both chemical and transposon mutants were obtained at a frequency of 10-5–10-6. The R. meliloti dct mutants were able to nodulate Alfalfa plants but the nodules formed were unable to fix nitrogen. Revertants of the mutants were fully effective on plants. The mutants unable to transport succinate were used to isolate dct genes from a R. meliloti gene bank. Two plasmids containing a common 26.5 Mdal insert were found to complement some of the mutants. The presence of this DNA insert in the complementing mutant strains restored their effectivenss of plants. This DNA fragment encoding succinate transport function(s) was used to produce genetically engineered R. meliloti strains with an increased rate of succinate uptake.Abbreviation dct dicarboxylic acid transport  相似文献   

3.
Escherichia coli mutants, unable to grown on 4-hydroxyphenylacetate, have been isolated and found to be defective in the NAD-dependent succinate semialdehyde dehydrogenase. When the mutants are grown with 4-aminobutyrate as sole nitrogen source an NAD-dependent succinate semialdehyde dehydrogenase seen in the parental strain is absent but, as in the parental strain, an NADP-dependent enzyme is induced. Growth of the mutants is inhibited by 4-hydroxyphenylacetate due to the accumulation of succinate semialdehyde. The mutants are more sensitive to inhibition by exogenous succinate semialdehyde than is the parental strain. Secondary mutants able to grow in the presence of 4-hydroxyphenylacetate but still unable to use it as sole carbon source were defective in early steps of 4-hydroxyphenylacetate catabolism and so did not form succinate semialdehyde from 4-hydroxyphenylacetate. The gene encoding the NAD-dependent succinate semialdehyde dehydrogenase of Escherichia coli K-12 was located at min 34.1 on the genetic map.  相似文献   

4.
To investigate the role of ammonium-assimilating enzyme in heterocyst differentiation, pattern formation and nitrogen fixation, MSX-resistant and GS-impaired mutants of Anabaena 7120 were isolated using transposon (Tn5-1063) mutagenesis. Mutant Gs1 and Gs2 (impaired in GS activity) exhibited a similar rate of nitrogenase activity compared to that of the wild type under dinitrogen aerobic conditions in the presence and absence of MSX. Filaments of Gs1 and Gs2 produced heterocysts with an evenly spaced pattern in N2-grown conditions, while addition of MSX altered the interheterocyst spacing pattern in wild type as well as in mutant strains. The wild type showed complete repression of heterocyst development and nitrogen fixation in the presence of NO3 or NH4 +, whereas the mutants Gs1 and Gs2 formed heterocysts and fixed nitrogen in the presence of NO3 and NH4 +. Addition of MSX caused complete inhibition of glutamine synthetase activity in wild type but Gs1 and Gs2 remained unaffected. These results suggest that glutamine but not ammonium is directly involved in regulation of heterocyst differentiation, interheterocyst spacing pattern and nitrogen fixation in Anabaena.  相似文献   

5.
Summary Two auxotrophic mutants ofRhizobium trifolii which are deficient in nodulating ability have been isolated. Both mutants (strain RS 164 His and strain RS213 Leu) appear to synthesize abnormal extracellular polysaccharides as compared with the wild type strain RS 55. Simultaneous recovery of nodulating ability and wild type polysaccharide composition has been found in a Leu+ revertant of strain RS 213.Abbreviation EPS Extracellular Polysaccharide - NIG N-Methyl-N-Nitro-N-Nitrosoguanidine  相似文献   

6.
Transformation of tobacco with the potato gene encoding the subunit of pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) in the antisense orientation under the control of the constitutive CaMV 35S promoter, followed by selfing and crossing of the transformants, generated a line of tobacco (5–37) with up to an 85% reduction in PFP activity in the shoot. Transformants containing a sense construct (4-40-91) contained only 1–3% of wild-type PFP, presumably due to co-suppression. Rates of photosynthesis and partitioning between sucrose and starch in source leaves were identical in 4-40-91 transformants and the wild type. In the dark in sink leaves of 4-40-91 transformants, levels of hexose phosphates were up to 50% higher, glycerate-3-phosphate 30% lower and fructose-2,6-bisphosphate threefold higher than in the wild type; inorganic pyrophosphate, pyruvate and the ATP/ADP ratio were unaltered. Low -PFP and wild-type plants did not differ significantly in their rate of growth at 25° C and 200 mol quanta · m–2 · s–1 on full nutrient medium. Growth on limiting phosphate and limiting nitrogen was inhibited identically in the wild type and transformants, and transformants adjusted their shoot/root ratio in an identical manner to the wild type. Differences in fructose-2,6-bisphosphate and glycolytic metabolites between the wild type and transformants were no larger in these suboptimal nutrient conditions, than in optimal conditions. Growth of the wild type and 4-40-91 transformants was inhibited identically at 12° C compared to 25° C. Differences in fructose-2,6-bisphosphate were smaller when the genotypes were compared at 12° C than at 25° C. We conclude that PFP does not play an essential role in photosynthate partitioning in source leaves. During respiratory metabolism in sink leaves it catalyzes a net glycolytic flux, as in potato tubers. However, tobacco seedlings are able to compensate for a large decrease in expression of PFP without loss of growth, or the ability to cope with suboptimal phosphate, nitrogen or temperature.Abbreviations F2,6BP fructose-2,6-bisphosphate - F6P fructose-6-phosphate - G6P glucose-6-phosphate - PFK phosphofructokinase - PFP pyrophosphate-dependent fructose-6-phosphate 1-phosphotransferase - 3-PGA glycerate-3-phosphate - PPi inorganic pyrophosphate - PEP phosphoenolpyruvate This work was supported by the Bundesministerium für Forschung and Technologie (M.S, U.S.) and the Canadian Research Council (S.C., D.D). M.P. was supported by a Royal Society Fellowship.  相似文献   

7.
Summary When Mycobacterium strain MorG was grown with morpholine as sole source of carbon and nitrogen, enzymes for ethanolamine catabolism (via the ethanolamine-O-phosphate pathway) and glycollate catabolism (via the glycerate pathway) were strongly induced. Almost all morpholine-negative (Mor) mutants of MorG failed to utilize glycollate as a carbon source and were shown to be effective in one or more enzymes for its metabolism via the glycerate pathway. Growth of MorG with morpholine also induced the jacoby and Fredericks pathway for pyrrolidine catabolism, Mor mutants had invariably lost the ability to grow on pyrrolidine and 2(2-aminoethoxy)acetate was shown to be an intermediate in morpholine catabolism. This indicates that morpholine is initially catabolised by an analogous route to pyrrolidine, producing 2(2-aminoethoxy)acetate which can be oxidatively cleaved to give rise directly to glycollate and indirectly to ethanolamine. Offprint requests to: W. A. Venables  相似文献   

8.
Summary Two hundred and eleven nitrate reductase-deficient mutants (NR) were isolated from mutagenized Nicotiana plumbaginifolia protoplast cultures by chlorate selection and regenerated into plant. More than 40% of these clones were classified as cnx and presumed to be affected in the biosynthesis of the molybdenum cofactor, the remaining clones being classified as nia mutants. A genetic analysis of the regenerated plants confirmed this proportion of nia and cnx clones. All mutants regenerated were found to carry monogenic recessive mutations that impaired growth on nitrate as sole nitrogen source. Mutants propagated by grafting on N. tabacum systematically displayed a chlorotic leaf phenotype. This chlorosis was therefore related to the NR deficiency. The observation of leaves with NR chlorotic sectors surrounded by NR+ wild-type tissues suggeests that an NR deficiency is not corrected by diffusible factors. Periclinal chimeras between wild-type tobacco and the NR graft were also observed. In this type of chimeric tissue chlorosis was no longer detectable when NR+ cells were in the secondmost (L2) layer, but was still detectable when NR cells were in the secondmost layer. The genetic analysis of nia mutants revealed that they belong to a single complementation group. However three nia mutants were found to complement some of the other nia mutants. The apoenzyme of nitrate reductase was immunologically detected in several nia mutants but not in other members of this complementation group. Some of the nia mutants, although they were NR, still displayed methylviologenitrate reductase activity at a high level. These data show that the nia complementation group corresponds to the structural gene of nitrate reductase. Some of the mutations affecting this structural gene result in the overproduction of an inactive nitrate reductase, suggesting a feedback regulation of the level of the apoenzyme in the wild type.  相似文献   

9.
Spontaneous mutants of the cyanobacteriumSynechococcus PCC 7002 resistant to chlorate were isolated. Either 40mM or 400mM Na2ClO3 was used as the selective agent. Putative Chlr colonies were picked onto medium containing ammonia as the sole N source, then replicaplated to media containing either NH4 +, NO2 as N sources. Of 252 putative mutants, 106 were able to use either NH4Cl or NaNO2 but not NaNO3 as their sole source of nitrogen. All of the mutant isolates had generation times similar to wild-type 7002 when grown on either ammonium (3.8–4.1 h/generation) or nitrite (4.5–4.7 h/generation). None had detectable methyl viologensupported nitrate reductase activity and are thus phenotypically NRase. The Chlr mutants had photomediated O2 production and dark O2 uptake rates similar to the wild type and responded similarly to selected metabolic inhibitors. They expressed increased levels of phycocyanin (PC) synthesis under normal, nitrogen-replete growth conditions, but rapidly lapsed into a chlorotic state upon a shift to either medium containing nitrate or to N-free medium. Genetic analysis of the Chl4 mutants indicated that each could be rescued by direct transformation with chromosomally derived DNA from the wild-type strain. Frequencies of transformation for the mutants were characteristic for single genetic lesions in this cyanobacterium. On the basis of marker rescue by a cosmid library of wild-type DNA, the NRase mutants could be grouped into five distinctive genotypic families.  相似文献   

10.
Improvement in H2 production was achieved through redirection of metabolic pathways by blocking formation of alcohol and some organic acids in Enterobacter cloacae IIT-BT 08. The wild type strain was more susceptible to allyl alcohol (7 mM) and to the combined effect of NaBr and NaBrO3 (40 mM each at pH 5.5) than were double mutants, with defects in both alcohol and organic acid formation pathways, which had higher H2 yields (3.4 mol mol–1 glucose) than the wild type strain (2.1 mol mol–1 glucose).  相似文献   

11.
Summary Aspergillus nidulans uses an acetamidase enzyme to grow on acetamide as a carbon or as a nitrogen source. Acrylamide is a substrate for the enzyme but does not induce its synthesis. Mutants capable of growing on acrylamide as a nitrogen source have been isolated. Two classes of mutant have been found —amdR c mutants on linkage group II andamdT c on linkage group III.amdR c mutants produce high constitutive acetamidase levels. The enzyme is still inducible by amides, but to a lesser extent than wild type, and is still subject to repression by ammonia and by carbon metabolites derived from glucose.amdR c mutants are semi-dominant to the wild type allele in heterozygous, diploids. TheamdT c mutant is not subject to carbon metabolite repression, of the acetamidase. The enzyme is inducible by amides and repressible by ammonia. TheamdT c mutation also results in reduced ability to grow on formamide as a nitrogen source and to lowered levels of a second amidase enzyme.amdT c is semi-dominant in heterozygous diploids.  相似文献   

12.
Summary An hydrogenase-deficient (Hup) mutant of Rhodobacter capsulatus was obtained by adventitious insertion of IS21 DNA into an hydrogenase structural gene (hup) of the wild-type strain 1310. The resulting Hup mutant, strain JP91, selected by its inability to grow autotrophically (Aut phenotype) together with other Hup mutant strains obtained by classical ethyl methane sulphonate mutagenesis were used in R plasmid-mediated conjugation experiments to map the hup/aut loci on the chromosome of R. capsulatus. The hup genes tested in this study were found to cluster on the chromosome in the proximity of the his-1 marker. A cluster of hup genes comprising the structural genes was isolated from a gene bank constructed in the cosmid vector pHC79 with 40 kb insert DNA. The clustered hup genes, characterized by hybridization studies and complementation analyses of the R. capsulatus Hup mutants, span 15–20 kb of DNA.  相似文献   

13.
Summary Strains with mutations in 23 of the 30 genes and open reading frames in the major nif gene cluster of A. vinelandii were tested for ability to grow on N-free medium with molybdenum (Nif phenotype), with vanadium (Vnf phenotype), or with neither metal present (Anf phenotype). As reported previously, nifE, nifty, nifU, nifS and nifV mutants were Nif (failed to grow on molybdenum) while nifM mutants were Nif, Vnf and Anf. nifV, nifS, and nifU mutants were found to be unable to grow on medium with or without vanadium, i.e. were Vnf Anf. Therefore neither vnf nor anf analogoues of nifU, nifS, nifV or nifM are expected to be present in A. vinelandii.  相似文献   

14.
Chlorate resistant spontaneous mutants ofAzospirillum spp. (syn.Spirillum lipoferum) were selected in oxygen limited, deep agar tubes with chlorate. Among 20 mutants fromA. brasilense and 13 fromA. lipoferum all retained their functional nitrogenase and 11 from each species were nitrate reductase negative (nr). Most of the mutants were also nitrite reductase negative (nir), only 3 remaining nir+. Two mutants from nr+ nir+ parent strains lost only nir and became like the nr+ nir parent strain ofA. brasilense. No parent strain or nr+ mutant showed any nitrogenase activity with 10 mM NO 3 . In all nr mutants, nitrogenase was unaffected by 10 mM NO 3 . Nitrite inhibited nitrogenase activity of all parent strains and mutants including those which were nir. It seems therefore, that inhibition of nitrogenase by nitrate is dependent on nitrate reduction. Under aerobic conditions, where nitrogenase activity is inhibited by oxygen, nitrate could be used as sole nitrogen source for growth of the parent strains and one mutant (nr nir) and nitritite of the parent strains and 10 mutants (all types). This indicates the loss of both assimilatory and dissimilatory nitrate reduction but only dissimilatory nitrite reduction in the mutants selected with chlorate.  相似文献   

15.
Succinate-limited continuous cultures of an Azorhizobium caulinodans strain were grown on ammonia or nitrogen gas as a nitrogen source. Ammonia-grown cells became oxygen limited at 1.7 μM dissolved oxygen, whereas nitrogen-fixing cells remained succinate limited even at dissolved oxygen concentrations as low as 0.9 μM. Nitrogen-fixing cells tolerated dissolved oxygen concentrations as high as 41 μM. Succinate-dependent oxygen uptake rates of cells from the different steady states ranged from 178 to 236 nmol min−1 mg of protein−1 and were not affected by varying chemostat-dissolved oxygen concentration or nitrogen source. When equimolar concentrations of succinate and β-hydroxybutyrate were combined, oxygen uptake rates were greater than when either substrate was used alone. Azide could also used alone as a respiratory substrate regardless of nitrogen source; however, when azide was added following succinate additions, oxygen uptake was inhibited in ammonia-grown cells and stimulated in nitrogen-fixing cells. Use of 25 mM succinate in the chemostat resevoir at a dilution rate of 0.1 h−1 resulted in high levels of background respiration and nitrogenase activity, indicating that the cells were not energy limited. Lowering the reservoir succinate to 5 mM imposed energy limitation. Maximum succinate-dependent nitrogenase activity was 1,741 nmol of C2H4h−1 mg (dry weight)−1, and maximum hydrogen-dependent nitrogenase activity was 949 nmol of C2H4 h−1 mg (dry weight)−1. However, when concentration of 5% (vol/vol) hydrogen or greater were combined with succinate, nitrogenase activity decreased by 35% in comparison to when succinate was used alone. Substitution of argon for nitrogen in the chemostat inflow gas resulted in “washout,” proving that ORS571 can grow on N2 and that there was not a nitrogen source in the medium that could substitute.  相似文献   

16.
A 7.1 kb EcoRI fragment from Azospirillum brasilense, that hybridized with a probe carrying the ntrBC genes from Bradyrhizobium japonicum, was cloned. The nucleotide sequence of a 3.8 kb subfragment was established. This led to the identification of two open reading frames, encoding polypeptides of 401 and 481 amino acids, that were similar to NtrB and NtrC, respectively. A broad host range plasmid containing the putative Azospirillum ntrC gene was shown to restore nitrogen fixation under free-living conditions to a ntrC-Tn5 mutant of Azorhizobium caulinodans. Several Tn5 insertion mutants were isolated in the ntrBC coding region in A. brasilense. These mutants were prototrophic and Nif+. However, their nitrogenase activity was slightly lower than in the wild type and they were unable to grow on nitrate as sole nitrogen source. Under microaerobiosis and in the absence of ammonia, a nifA-lacZ fusion was expressed in the mutants at about 60% of the level in the wild type. In the presence of ammonia, the fusion was similarly expressed (60% of the maximum) both in the wild type and mutants. Addition of ammonia to a nitrogen-fixing culture of ntrBC mutants did not abolish nitrogenase activity, in contrast with the wild type. It thus appears that in Azospirillum the ntrBC genes are not essential for nitrogen fixation, although NtrC controls nifA expression to some extent. They are, however, required for the switch-off of nitrogenase activity.  相似文献   

17.
We have isolated a new class of respiration-defective, i.e petite, mutants of the yeast Saccharomyces cerevisiae. Mutations in the GEF1 gene cause cells to grow slowly on rich media containing carbon sources utilized by respiration. This phenotype is suppressed by adding high concentrations of iron to the growth medium. Gef1 mutants also fail to grow on a fermentable carbon source, glucose, when iron is reduced to low concentrations in the medium, suggesting that the GEF1 gene is required for efficient metabolism of iron during growth on fermentable as well as respired carbon sources. However, activity of the iron uptake system appears to be unaffected in gef1 mutants. Fe(II) transporter activity and regulation is normal in gef1 mutants. Fe(III) reductase induction during iron-limited growth is disrupted, but this appears to be a secondary effect of growth rate alterations. The wild-type GEF1 gene was cloned and sequenced; it encodes a protein of 779 amino acids, 13 possible transmembrane domains, and significant similarity to chloride channel proteins from fish and mammals, suggesting that GEF1 encodes an integral membrane protein. A gef1 deletion mutation generated in vitro and introduced into wild-type haploid strains by gene transplacement was not lethal. Oxygen consumption by intact gef1 cells and by mitochondrial fractions isolated from gef1 mutants was reduced 25–50% relative to wild type, indicating that mitochondrial function is defective in these mutants. We suggest that GEF1 encodes a transport protein that is involved in intracellular iron metabolism.  相似文献   

18.
Two nitrogen-deregulated mutants of Phanerochaete chrysosporium, der8-2 and der8-5, were isolated by subjecting wild type conidia to gamma irradiation, plating on Poly-R medium containing high levels of nitrogen, and identifying colonies that are able to decolorize Poly-R. The mutants showed high levels of ligninolytic activity (14C-synthetic lignin 14CO2), and lignin peroxidase, manganese peroxidase and glucose oxidase activities in both low nitrogen (2.4 mM) and high nitrogen (24 mM) media. The wild type on the otherhand displayed these activities in low nitrogen medium but showed little or no activities in high nitrogen medium. Fast protein liquid chromatographic analyses showed that the wild type as well as the der mutants produce three major lignin peroxidase peaks (designated L1, L2 and L3) with lignin peroxidase activity in low nitrogen medium. Furthermore, in low nitrogen medium, mutant der8-5 produced up to fourfold greater lignin peroxidase activity than that produced by the wild type. In high nitrogen medium, the wild type produced no detectable lignin peroxidase peaks whereas the mutants produced peaks L1 and L2, but not L3, and a new lignin peroxidase protein peak designated LN. Mutants der8-2 and der8-5 also produced high levels of glucose oxidase, an enzyme known to be associated with secondary metabolism and an important source of H2O2 in ligninolytic cultures, both in low and high nitrogen media. In contrast, the wild type produced high levels of glucose oxidase in low nitrogen medium and only trace amounts of this enzyme in high nitrogen medium. The results of this study indicate that the der mutants are nitrogen-deregulated for the production of a set of secondary metabolic activities associated with lignin degradation such as lignin peroxidases, manganese peroxidases and glucose oxidase.  相似文献   

19.
Mutations in the chromosomal virulence (chv) region ofA. tumefaciens strain A723 reduce virulence, motility, and ability of the bacteria to bind to plant cells. We conducted experiments to assess the ability ofchv mutants to colonize the rhizosphere ofPisum sativum. The mutation had no effect on ability of bacteria to grow with a defined number of root cap cells as the sole carbon and nitrogen source. Ten days after inoculation, there were up to 103-fold more wild type thanchv mutant bacteria present in the rhizosphere of inoculated plants.  相似文献   

20.
Transformed Nicotiana plumbaginifolia plants with constitutive expression of nitrate reductase (NR) activity were grown at different levels of nitrogen nutrition. The gradients in foliar NO 3 content and maximum extractable NR activity observed with leaf order on the shoot, from base to apex, were much decreased as a result of N-deficiency in both the transformed plants and wild type controls grown under identical conditions. Constitutive expression of NR did not influence the foliar protein and chlorophyll contents under any circumstances. A reciprocal relationship between the observed maximal extractable NR activity of the leaves and their NO 3 content was observed in plants grown in nitrogen replete conditions at low irradiance (170 mol photons·m–2 ·s–1). This relationship disappeared at higher irradiance (450 mol photons·m–2·S–1) because the maximal extractable NR activity in the leaves of the wild type plants in these conditions increased to a level that was similar to, or greater than that found in constitutive NR-expressors. Much more NO 3 accumulated in the leaves of plants grown at 450 mol photons·m–2·s–1 than in those grown at 170 mol photons·m–2·s–1 in N-replete conditions. The foliar NO 3 level and maximal NR activity decreased with the imposition of N-deficiency in all plant types such that after prolonged exposure to nitrogen depletion very little NO 3 was found in the leaves and NR activity had decreased to almost zero. The activity of NR decreased under conditions of nitrogen deficiency. This regulation is multifactoral since there is no regulation of NR gene expression by NO 3 in the constitutive NR-expressors. We conclude that the NR protein is specifically targetted for destruction under nitrogen deficiency. Consequently, constitutive expression of NR activity does not benefit the plant in terms of increased biomass production in conditions of limiting nitrogen.Abbreviations Chl chlorophyll - N nitrogen - NR NADH-nitrate reductase - WT wild type  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号