首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Summary Hydrogen evolution from root nodules has been reported to decrease the efficiency of the nitrogen fixing system. Mutants ofRhizobium meliloti andRhizobium leguminosarum were selected which were deficient in H2-uptake capacity (Hup). The relative efficiency of the nitrogen fixation for both species assessed with C2H2 reduction was 0.66.The hydrogen production was monitored using a simple root incubation method. As such, hydrogen production up to 3.83 and 15.57 ml.day–1.g–1 plant dry weight were recorded forPisum sativum — Rhizobium leguminosarum 4.20 Hup andMedicago sativa — Rhizobium meliloti 1.5 Hup respectively. In a closed container (250 ml), hydrogen concentrations up to 20% (v/v) could be reached in the root phase ofMedicago sativa in a time period of 320 hours.  相似文献   

2.
Hydrogenase-negative (Hup-) mutants of Azorhizobium caulinodans ORS571 were isolated by means of Tn5 mutagenesis. The colony test used for screening for Hup- strains was based on the absence of reduction of triphenyltetrazolium chloride with hydrogen. Suspensions from cultures of the mutant strains grown under derepressing conditions did not use hydrogen with methylene blue or oxygen as the hydrogen acceptor. The mutants were shown to carry single Tn5 insertions at different locations in the A. caulinodans genome. Molar growth yields (corrected for poly--hydroxybutyrate formation) in chemostat cultures of the mutants were similar to those of the wild type. Molar growth yields of the mutants were not increased by passing additional hydrogen through chemostat cultures, which is in agreement with the hydrogenase-negative phenotype of the mutants. H2/N2 ratios (mol H2 formed per mol N2 fixed) were calculated from the hydrogen content of the effluent gas and the N-content of the bacterial dry weight. Low H2/N2 ratios (between 1.2 and 1.9) were found in both energy-limited (oxygen or succinate) cultures and in cultures limited by the supply of an anabolic substrate (Mg2+). ATP/2e values (mol ATP used at the transport of 2e to nitrogen or H+) were calculated from the H2/N2 ratios and the molar growth yields of nitrogen-fixing and ammonia-assimilating cultures. ATP/2e values were between 7 and 11. It was concluded that the calculated ATP/2e values comprise not only 4 mol ATP used at the transport of 2e through nitrogenase but also energy equivalents needed for reversed electron flow from NADH to the low-potential hydrogen donor used by nitrogenase.  相似文献   

3.
The ability to recycle H2 evolved by nitrogenase is thought to be of importance in increasing the efficiency of N2 fixation and to be a factor in increasing plant yield in symbiotic systems. To determine whether this ability is a significant factor in the Rhizobium leguminosarum-Pisum sativum L. system, plants were inoculated with R. leguminosarum isolates which differed in their ability to oxidize H2 and in their relative efficiency of N2 fixation. These plants were grown at three levels of irradiance and harvested after 3, 4, and 5 weeks of growth for determination of C2H2 reduction, H2 evolution and uptake, plant dry weight, and N content. Plants inoculated with uptake hydrogenase-positive (Hup+) isolates did not exhibit higher dry weight or N content than those inoculated with Hup isolates under any of the growth conditions studied. The efficiency of the nitrogenase system of Hup isolates increased at a low irradiance, a factor which may allow them to compete successfully with Hup+ isolates. In some Hup+R. leguminosarum isolates, H2 oxidation is coupled to ATP formation, whereas in others, it is not. There were no differences in plant dry weight and N content in plants inoculated with the two types and grown for 5 weeks at three irradiance levels. The addition of H2 to Hup+ nodules whose supply of photosynthate had been removed by stem excision did not increase C2H2 reduction in either coupled or uncoupled types.  相似文献   

4.
The conditions necessary for coordinate derepression of nitrogenase and O2-dependent hydrogenase activities in free-living cultures of Rhizobium japonicum were studied. Carbon sources were screened for their ability to support nitrogenase, and then hydrogenase activities. There was a positive correlation between the level of nitrogenase and corresponding hydrogenase activities among the various carbon substrates. The carbon substrate -ketoglutarate was able to support the highest levels of both nitrogenase and hydrogenase activities. When cells were incubated in -ketoglutarate-containing medium, without added H2 but in the presence of acetylene (to block H2 evolution from nitrogenase) significant hydrogenase activity was still observed. Complete inhibition of nitrogenase-dependent H2 evolution by acetylene was verified by the use of a Hup- mutant. Hydrogen is therefore not required to induce hydrogenase. The presence of 10% acetylene inhibited derepression of hydrogenase. Constitutive (Hupc) mutants were isolated which contained up to 9 times the level of hydrogenase acitivity than the wild type in nitrogenase induction medium. These mutants did not have greater nitrogenase activities than the wild type.This is contribution number 1254 from the Department of Biology and the McCollum-Pratt Institute Abbreviations: -Ketoglutarate-containing medium (LOKG) and pre-adaptation medium (SRM) as described in Materials and methods  相似文献   

5.
Summary An hydrogenase-deficient (Hup) mutant of Rhodobacter capsulatus was obtained by adventitious insertion of IS21 DNA into an hydrogenase structural gene (hup) of the wild-type strain 1310. The resulting Hup mutant, strain JP91, selected by its inability to grow autotrophically (Aut phenotype) together with other Hup mutant strains obtained by classical ethyl methane sulphonate mutagenesis were used in R plasmid-mediated conjugation experiments to map the hup/aut loci on the chromosome of R. capsulatus. The hup genes tested in this study were found to cluster on the chromosome in the proximity of the his-1 marker. A cluster of hup genes comprising the structural genes was isolated from a gene bank constructed in the cosmid vector pHC79 with 40 kb insert DNA. The clustered hup genes, characterized by hybridization studies and complementation analyses of the R. capsulatus Hup mutants, span 15–20 kb of DNA.  相似文献   

6.
The purple sulfur phototrophic bacterium Thiocapsa roseopersicina BBS synthesizes at least three NiFe hydrogenases (Hox, Hup, Hyn). We characterized the physiological H2 consumption/evolution reactions in mutants having deletions of the structural genes of two hydrogenases in various combinations. This made possible the separation of the functionally distinct roles of the three hydrogenases. Data showed that Hox hydrogenase (unlike the Hup and Hyn hydrogenases) catalyzed the dark fermentative H2 evolution and the light-dependent H2 production in the presence of thiosulfate. Both Hox+ and Hup+ mutants demonstrated light-dependent H2 uptake stimulated by CO2 but only the Hup+ mutant was able to mediate O2-dependent H2 consumption in the dark. The ability of the Hox+ mutant to evolve or consume hydrogen was found to depend on a number of interplaying factors including both growth and reaction conditions (availability of glucose, sulfur compounds, CO2, H2, light). The study of the redox properties of Hox hydrogenase supported the reversibility of its action. Based on the results a scheme is suggested to describe the role of Hox hydrogenase in light-dependent and dark hydrogen metabolism in T. roseopersicina BBS.  相似文献   

7.
The effect of the Bradyrhizobium japonicum hydrogenase on nitrogen fixation was evaluated by comparing the growth of Vigna and Glycine species inoculated with a Hup mutant and its Hup+ revertant. In all experiments, the growth of plants inoculated with the strain without hydrogenase was at least equal to the growth of the strain with hydrogenase. For Glycine usuriensis and Glycine max cv. Hodgson in liquid culture, the growth was higher with the Hup strain. It is possible that reduced rates of nitrogen fixation in the presence of hydrogenase are due to O2 depletion caused by the hydrogen oxidizing, since the oxygen pressure in the air appears to be a limiting factor of symbiotic nitrogen fixation in the soybean.  相似文献   

8.
9.
The influence of reduced sulfur compounds (including stored S0) on H2 evolution/consumption reactions in the purple sulfur bacterium, Thiocapsa roseopersicina BBS, was studied using mutants containing only one of the three known [NiFe] hydrogenase enzymes: Hox, Hup or Hyn. The observed effects depended on the kind of hydrogenase involved. The mutant harbouring Hox hydrogenase was able to use S2O32−, SO32−, S2− and S0 as electron donors for light-dependent H2 production. Dark H2 evolution from organic substrates via Hox hydrogenase was inhibited by S0. Under light conditions, endogenous H2 uptake by Hox or Hup hydrogenases was suppressed by S compounds. СО2-dependent H2 uptake by Hox hydrogenase in the light required the additional presence of S compounds, unlike the Hup-mediated process. Dark H2 consumption via Hyn hydrogenase was connected to utilization of S0 as an electron acceptor and resulted in the accumulation of H2S. In wild type BBS, with high levels of stored S0, dark H2 production from organic substrates was significantly lower, but H2S accumulation significantly higher, than in the mutant GB1121(Hox+). There is a possibility that H2 produced via Hox hydrogenase is consumed by Hyn hydrogenase to reduce S0.  相似文献   

10.
Twelve Tn5-induced mutants of Bradyrhizobium japonicum unable to grow chemoautotrophically with CO2 and H2 (Aut) were isolated. Five Aut mutants lacked hydrogen uptake activity (Hup). The other seven Aut mutants possessed wild-type levels of hydrogen uptake activity (Hup+), both in free-living culture and symbiotically. Three of the Hup mutants lacked hydrogenase activity both in free-living culture and as nodule bacteroids. The other two mutants were Hup only in free-living culture. The latter two mutants appeared to be hypersensitive to repression by oxygen, since Hup activity could be derepressed under 0.4% O2. All five Hup mutants expressed both ex planta and symbiotic nitrogenase activities. Two of the seven Aut Hup+ mutants expressed no free-living nitrogenase activity, but they did express it symbiotically. These two strains, plus one other Aut Hup+ mutant, had CO2 fixation activities 20 to 32% of the wild-type level. The cosmid pSH22, which was shown previously to contain hydrogenase-related genes of B. japonicum, was conjugated into each Aut mutant. The Aut Hup mutants that were Hup both in free-living culture and symbiotically were complemented by the cosmid. None of the other mutants was complemented by pSH22. Individual subcloned fragments of pSH22 were used to complement two of the Hup mutants.  相似文献   

11.
Improvement in H2 production was achieved through redirection of metabolic pathways by blocking formation of alcohol and some organic acids in Enterobacter cloacae IIT-BT 08. The wild type strain was more susceptible to allyl alcohol (7 mM) and to the combined effect of NaBr and NaBrO3 (40 mM each at pH 5.5) than were double mutants, with defects in both alcohol and organic acid formation pathways, which had higher H2 yields (3.4 mol mol–1 glucose) than the wild type strain (2.1 mol mol–1 glucose).  相似文献   

12.
H2 production from glucose by Ruminococcus albus was almost completely inhibited by 10–5 M molybdate only when sulfide was present in the growth medium. Inhibition was accompanied by a significant increase in the production of formate. Extracts of molybdate-sulfide-grown cells did not contain hydrogenase activity. Active enzyme in extracts of uninhibited cells was not inhibited by the molybdate-sulfide-containing growth medium. The results indicate that a complex formed from molybdate and sulfide prevents the formation of active hydrogenase and electrons otherwise used to form H2 are used to reduce CO2 to formate. Growth was significantly inhibited when molybdate was increased to 10–4 M. Reversal of growth inhibition but not inhibition of H2 production occurred between 10–4 and 10–3 M molybdate. H2 production by R. bromei but not by R. flavefaciens, Butyrivibrio fibrisolvens, Veillonella alcalescens, Klebsiella pneumoniae and Escherichia coli was inhibited by molybdate and sulfide.  相似文献   

13.
White clover plants were grown for 97 days under two temperature regimes (20/15°C and 8/5°C day/night temperatures) and were supplied with either small amounts (a total of 80 mg N pot–1) of ammonium (NH 4 + ) or nitrate (NO 3 ) nitrogen, or received no mineral N and relied on N2 fixation. Greatest growth and total leaf area of clover plants occurred in N2 fixing and NO 3 -fed plants grown at 20/15°C and poorest growth occurred in NH 4 + -fed plants grown at 8/5°C. Nodule mass per plant was greater at 8/5°C due to increased nodule numbers rather than increased dry weight per nodule. This compensated to some extent for the reduced N2-fixing activity per unit dry weight of nodule tissue found at the low growth temperature up to 116 d after sowing, but thereafter both activity per nodule dry weight and activity per plant were greater at the low temperature. Highest nitrate reductase activity (NRA) per g fresh weight and total activity per leaf, petiole or root occurred in NO 3 -fed plants at 8/5°C. Low growth temperature resulted in a greater partitioning of total plant NRA to the roots of NO 3 -fed plants. The results are considered in relation to the use of N fertiliser in the spring under field conditions.  相似文献   

14.
Chromosomal mutants of Alcaligenes eutrophus unable to grow with molecular hydrogen as the energy source also failed to grow with nitrate as the terminal electron acceptor or as a nitrogen source. The mutants (Hno) (i) formed neither soluble nor particulate hydrogenase antigens, (ii) expressed only about 50% the wild type level of ribulosebisphosphate carboxylase activity, and (iii) transported nickel, an essential constituent of active hydrogenase, at a significantly lower rate than wild type cells. Moreover, the mutants grew very slowly with urea as nitrogen source and did not express urease. Growth on formamide was also affected and formamidase activity was induced to only a very low level. Growth of the Hno mutants on succinate, glutamate, fumarate, and malate was significantly slower than wild type, and a reduced rate of succinate incorporation into the mutant cells was demonstrated. The highly pleiotropic phenotype of Hno mutants is indicative of a chromosomal gene with a considerable physiological importance. It affected the expression of both chromosomal and megaplasmid encoded systems of energy, carbon, and nitrogen metabolism. Thus, the hno mutation restricts the metabolic versatility but does not affect the basic metabolic functions of the organism.  相似文献   

15.
Increases of 23- (5.6 mmol acetylene reduced mg dry wt–1) and 16- (4 mmol acetylene reduced mg dry wt–1) fold in nitrogenase activity and 12- (671 l H2 mg dry wt–1 h–1) and 6- (349 l mg dry wt–1 h–1) fold in H2 photoproduction in Rhodopseudomonas palustris JA1 over 24 h were achieved with pyrazine 2-carboxylate (3 mM) and 3-picoline (3 mM), respectively, and were higher than earlier reports of enhancement (1.5 to 5- fold) in biological H2 production using various alternative methods.  相似文献   

16.
Three differently metabolically engineered strains, 2 single PHA- and Hup- mutants and one double PHA-/Hup- mutant, of the purple nonsulfur photosynthetic bacterium Rhodobacter sphaeroides RV, were constructed to improve a light-driven biohydrogen production process combined with the disposal of solid food wastes. These phenotypes were designed to abolish, singly or in combination, the competition of H2 photoproduction with polyhydroxyalkanoate (PHA) accumulation by inactivating PHA synthase activity, and with H2 recycling by abolishing the uptake hydrogenase enzyme. The performance of these mutants was compared with that of the wild-type strain in laboratory tests carried out in continuously fed photobioreactors using as substrates both synthetic media containing lactic acid and media from the acidogenic fermentation of actual fruit and vegetable wastes, containing mainly lactic acid, smaller amounts of acetic acia, and traces of higher volatile acids. With the lactic acid-based synthetic medium, the single Hup- and the double PHA-/Hup- mutants, but not the single PHA- mutant, exhibited increased rates of H2 photoproduction, about one third higher than that of the wild-type strain. With the food-waste-derived growth medium, only the single Hup- mutant showed higher rates of H2 production, but all 3 mutants sustained a longer-term H2 photoproduction phase than the wild-type strain, with the double mutant exhibiting overall the largest amount of H2 evolved. This work demonstrates the feasibility of single and multiple gene engineering of microorganisms to redirect their metabolism for improving H2 photoproduction using actual waste-derived substrates.  相似文献   

17.
Summary In the growing season no net H2 evolution is detected when root nodules ofAlnus glutinosa are incubated in air or in argon containing 20% O2. Due to the hydrogenase activity, N2-fixing root nodules consume added H2 at a rate of about 1.4 moles H2.g fresh nodule–1.h–1. The uptake of H2 is only found in summer. At the end of the season, in autumn, nodules evolve significant quantities of H2 although the nodules still continue to fix nitrogen. In-vitro studies with fractionated homogenates of summer-harvested nodules show that the recovery of the hydrogenase is high when using methylene-blue or phenazine metasulfate as electron acceptors. No hydrogenase activity is detected in homogenates of autumn-harvested nodules.The hydrogenase is localised in the microsymbiont.  相似文献   

18.
Peas (Pisum sativum L.) were inoculated with strains of Rhizobium leguminosarum having different levels of uptake hydrogenase (Hup) activity and were grown in sterile Leonard jars under controlled conditions. Rates of H2 evolution and acetylene reduction were determined for intact nodulated roots at intervals after the onset of darkness or after removal of the shoots. Hup activity was estimated using treatment plants or equivalent plants from the growth chamber, by measuring the uptake of H2 or 3H2 in the presence of acetylene. In all cases, the rate of H2 evolution was a continuous function of the rate of acetylene reduction. In symbioses with no demonstrable Hup activity, H2 evolution increased in direct proportion to acetylene reduction and the slopes were similar with the Hup strains NA502 and 128C79. Hup activity was similar in strains 128C30 and 128C52 but significantly lower in strain 128C54. With these strains, the slopes of the H2 evolution versus acetylene reduction curves initially increased with acetylene reduction, but became constant and similar to those for the Hup strains at high rates of acetylene reduction. On these parallel portions of the curves, the decreases in H2 evolution by Hup+ strains were similar in magnitude to their H2-saturated rates of Hup activity. The curvilinear relationship between H2 evolution and acetylene reduction for a representative Hup+ strain (128C52) was the same, regardless of the experimental conditions used to vary the nitrogenase activity.  相似文献   

19.
W. Claussen 《Plant and Soil》2002,247(2):199-209
Tomato plants (Lycopersicon esculentum Mill. cv. Counter) were grown in 12-L polyethylene containers in aerated and CaCO3-buffered nutrient solutions containing different concentrations of complete stock solutions with either nitrate (stock solution N) or ammonium (stock solution A) as the only nitrogen source (X1 = standard concentration with 5 mM NO3 -N or NH4 +-N, and X3, X5.5, X8 and X11 = 3, 5.5, 8, 11 times the standard concentration), or a mixture of both stock solutions (N:A ratio = 100:0, 75:25, 50:50, 25:75, 0:100) at moderate nutrient concentration (X3). Total dry matter production and fruit dry weight were only slightly affected by increasing nutrient concentration if nitrate was supplied as the sole nitrogen source. Compared to nitrate, ammonium nitrogen caused a decrease in total dry weight (32–86% between X1 and X11), but led to an increase in both total dry weight and fruit dry weight (11% and 30%) at low concentration if supplied in addition to nitrate nitrogen (N:A ratio = 75:25). Dry matter partitioning in plants was affected by the strength of the nutrient solution, but even more by ammonium nitrogen. Fruits accumulated relatively less dry matter than did the vegetative parts of tomato plants when supplied with nutrient solutions containing ammonium as the only nitrogen source (fruit dry weight to total dry weight ratio 0.37 and 0.15 at low and high nutrient concentration), while nitrate nitrogen rather supported an increase in dry matter accumulation in the reproductive organs (fruit dry weight to total dry weight ratio 0.39–0.46). The water use efficiency (WUE) was only slightly affected by the strength of the nutrient solutions containing nitrate nitrogen (2.9–3.4 g DW (kg H2O)–1), while ammonium nitrogen led to a decrease in WUE from 2.4 to 1.3 g DW (kg H2O)–1at low (X1) and high (X11) nutrient concentration, respectively. The proline content of leaves fluctuated (0.1–5.0 mol (g fresh weight)–1) according to nutrient concentration and global radiation, and reflected enhanced sensitivity of plants to these potential stress factors if ammonium was the predominant N source supplied. It was concluded, that proline is a reliable indicator of the environmental stress imposed on hydroponically grown tomato plants.  相似文献   

20.
We measured F420-dependent N5,N10-methylenetetrahydro-methanopterin dehydrogenase, N5, N10-methenyltetrahydro-methanopterin cyclohydrolase, and F420-reducing hydrogenase levels in Methanosarcina barkeri grown on various substrates. Variation in dehydrogenase levels during growth on a specific substrate was usually <3-fold, and much less for cyclohydrolase. H2–CO2-, methanol-, and H2–CO2+ methanol-grown cells had roughly equivalent levels of dehydrogenase and cyclohydrolase. In acetate-grown cells cyclohydrolase level was lowered 2 to 3-fold and dehydrogenase 10 to 80-fold; this was not due to repression by acetate, since, if cultures growing on acetate were supplemented with methanol or H2–CO2, dehydrogenase levels increased 14 to 19-fold, and cyclohydrolase levels by 3 to 4-fold. Compared to H2–CO2- or methanol-grown cells, acetate-or H2–CO2 + methanol-grown cells had lower levels of and less growth phase-dependent variation in hydrogenase activity. Our data are consistent with the following hypotheses: 1. M. barkeri oxidizes methanol via a portion of the CO2-reduction pathway operated in the reverse direction. 2. When steps from CO2 to CH3-S-CoM in the CO2-reduction pathway (in either direction) are not used for methanogenesis, hydrogenase activity is lowered.Abbreviations MF methanofuran - H4MPT 5,6,7,8-tetrahydromethanopterin - HS-HTP 7-mercaptoheptanoylthreonine phosphate - CoM-S-S-HTP heterodisulfide of HS-CoM and HS-HTP - F420 coenzyme F420 (a 7,8-didemethyl-8-hydroxy-5-deaza-riboflavin derivative) - H2F420 reduced coenzyme F420 - HC+=H4MPT N5,N10-methenyl-H4MPT - H2C=H4MPT N5,N10-methylene-H4MPT - H3C=H4MPT N5-methyl-H4MPT - BES 2-bromoethanesulfonic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号