首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The excision of internal eliminated sequences (IESs) occurs during the differentiation of a new somatic macronuclear genome in ciliated protozoa. In Paramecium tetraurelia, IESs show few conserved features with the exception of an invariant 5'-TA-3' dinucleotide that is part of an 8-bp inverted terminal repeat consensus sequence with similarity to the ends of mariner/Tc1 transposons. We have isolated and analyzed two mutant cell lines that are defective in excision of individual IESs in the A-51 surface antigen gene. Each cell line contains a mutation in the flanking 5'-TA-3' dinucleotide of IES6435 and IES1835 creating a 5'-CA-3' flanking sequence that prevents excision. The results demonstrate that the first position of the 5'-TA-3' is required IES excision just as previous mutants have shown that the second position (the A residue) is required. Combining these results with other Paramecium IES mutants suggests that there are few positions essential for IES excision in Paramecium. Analysis of many IESs reveals that there is a strong bias against particular nucleotides at some positions near the IES termini. Some of these strongly biased positions correspond to known IES mutations, others correlate with unusual features of excision.  相似文献   

2.
In the ciliate Paramecium aurelia complex, thousands of internal eliminated sequences (IESs) are excised from the germline micronuclear DNA during macronuclear differentiation. Based on the resemblance of Paramecium IES end sequences to Tc1 transposon termini, it has been proposed that Paramecium IESs might have degenerately evolved from Tc1 family transposons, and still be removed by an enzyme homologous to a Tc1 transposase. In this study, we found that transposase preferentially cleaved (or nicked) 58 sites near the IESs in Paramecium DNA, at sequences consisting of TT or TCTA. Since one excision junction of the P. primaurelia W2 IES was included in such sites, this suggests that a Tc1-like transposase is involved in the IES excision process, although it is probably not a sole factor responsible for the precise cleavage. In addition, unmethylated substrate DNA appeared to decrease the cleavage specificity, suggesting an involvement of DNA methylation in the cleavage. Although these results do not directly address the transposon origin of Paramecium IESs, it is likely that the enzymatic machinery responsible for the initial cleavage is derived from a Tc1-like transposase. The mechanism necessary for precise excision is discussed, in relation to recent knowledge of IES excision obtained in Tetrahymena and Paramecium.  相似文献   

3.
4.
Germ line micronuclear genes in ciliated protozoa contain two types of interrupting sequences. Some genes contain introns, but internal eliminated segments (IESs) are much more prevalent. IESs are AT-rich DNA segments that separate macronucleus-destined segments (MDSs) in micronuclear genes. All IESs are excised and destroyed when a micronucleus develops into a macronucleus after each cell mating. IESs have no discernible function. Therefore, an investigation of the behavior of IESs in evolution has been undertaken to assess their possible significance. The IESs in the micronuclear gene encoding the beta-subunit of the telomere-binding protein (beta-TP) are not conserved in number, position, sequence, or length during the evolution of four oxytrichid ciliates. In contrast, the scrambled pattern of MDSs and IESs of the micronuclear actin I gene has been conserved during evolution; however, the precise positions, sequences, and lengths of the IESs differ among species, and in some organisms the actin I gene contains an additional IES and MDS. Corresponding IESs in the actin I genes among the different organisms have shifted positions by 1 to 14 bp, presumably by a mutation-shifting mechanism, creating differences in the repeat sequences flanking IESs. Thus, conservation of a particular repeat sequence among species is not required for IES excision. The changes in IES number and position in the beta-TP genes among ciliates are in sharp contrast to the stability of the intron position. Therefore, IESs are volatile, hypermutable elements that are inserted, removed, shifted, and modified continuously in the germ line through evolutionary time.  相似文献   

5.
Internal eliminated sequences (IESs) often interrupt ciliate genes in the silent germline nucleus but are exactly excised and eliminated from the developing somatic nucleus from which genes are then expressed. Some long IESs are transposons, supporting the hypothesis that short IESs are ancient transposon relics. In light of that hypothesis and to explore the evolutionary history of a collection of IESs, we have compared various alleles of a particular locus (the 81 locus) of the ciliated protozoa Oxytricha trifallax and O. fallax. Three short IESs that interrupt two genes of the locus are found in alleles from both species, and thus must be relatively ancient, consistent with the hypothesis that short IESs are transposon relics. In contrast, TBE1 transposon interruptions of the locus are allele-specific and probably the results of recent transpositions. These IESs (and the TBE1s) are precisely excised from the DNA of the developing somatic macronucleus. Each IES interrupts a highly conserved sequence. A few nucleotides at the ends of each IES are also conserved, suggesting that they interact critically with IES excision machinery. However, most IES nucleotide positions have evolved at high rates, showing little or no selective constraint for function. Nonetheless, the length of each IES has been maintained (+/- 3 bp). While one IES is approximately 33 bp long, three other IESs have very similar sizes, approximately 70 bp long. Two IESs are surrounded by direct repeats of the sequence TTCTT. No other sequence similarities were found between any of the four IESs. However, the ends of one IES do match the inverted terminal repeat consensus sequence of the "TA" IESs of Paramecium. Three O. trifallax alleles appear to have been recipients in recent conversion events that could have been provoked by double-strand breaks associated with IES ends subsequent to IES transposition. Our findings support the hypothesis that short IESs evolved from ancient transposons that have lost most of their sequences, except those necessary for precise excision during macronuclear development.   相似文献   

6.
We examined both the somatic (macro-) and the germinal (micronuclear) DNAs that encode two K+-channel isoforms. PAK1 and PAK11 , in Paramecium tetraurelia. The coding regions of these two isoforms are 88% identical in nucleotides and 95% identical in amino acids. Their introns are also highly conserved. Even some of the internal eliminated sequences in PAK1 and PAK11 are clearly related. PAK1 has five IESs; PAK11 has four. The first (5'-most) IESs of the two genes are located at the same site in the coding sequence but differ in size. The 2nd IES in PAK1 (206-bp), the largest among the nine IESs, has no PAK11 counterpart. The 3rd, 4th and 5th IESs in PAK1 have a counterpart in PAK11 that is similar in size and in sequence, and identical in its position in the coding sequence. In addition, the first IES of PAK11 bears some resemblance to the 4th one of PAK1. The similarities and differences between the two sets of IESs are discussed with respect to the origin and divergence of the two K+-channel isoforms.  相似文献   

7.
ABSTRACT Internal eliminated segments (IESs) are sequences that interrupt coding and noncoding regions of germline (micronuclear) genes of ciliated protozoa. IESs are flanked by short, unique repeat sequences, which are presumably required for precise IES excision during macronuclear development. Coding and noncoding segments of genes separated by IESs are called macronuclear-destined segments, or MDSs. We have compiled the characteristics of 89 individual IESs in 12 micronuclear genes in the Oxytricha and Stylonychia genera to define the IES phenomenon precisely, a first step in determining the origin, function and significance of IESs. Although all 89 IESs among the 12 different genes are AT-rich, they show no other similarity in sequence, length, position or number. Two main types of IESs are present. IESs that separate scrambled MDSs are significantly shorter and more frequent and have longer flanking repeat sequences than IESs that intervene between nonscrambled MDSs. A comparison of the nonscrambled gene encoding β-telomere binding protein in three species of hypotrichs shows that even in the same gene IESs are not conserved in sequence, length, position, or number from species to species. A comparison of IESs in the scrambled gene encoding actin I in the three species shows that the evolutionary behavior of IESs in a scrambled gene may be more constrained. However, IESs in the scrambled actin I gene have shifted along the DNA molecule during evolution. In total, the various studies show that IESs are hypermutable in sequence and length. They insert, excise, and shift along DNA molecules more or less randomly during evolution, with no discernible function or consequences.  相似文献   

8.
Ciliated protozoa have separate germline and somatic nuclei, yet unlike larger organisms, both nuclei reside in the same cytoplasm. The micronuclei contain the germline and the macronucleus is the somatic nucleus. Thousands of DNA elements are normally removed from the micronuclear genome as it forms a new macronucleus during each sexual cycle. A recent study directly links the excision of these internal eliminated sequences (IESs) to mating type determination by showing that a pleiotropic mutation affecting mating type also prevents the excision of an IES from a surface protein gene(1). Remarkably, once the IES is present in the old macronucleus it prevents excision of that specific IES during formation of the next macronucleus.  相似文献   

9.
Paramecium internal eliminated sequences (IESs) are short AT-rich DNA elements that are precisely eliminated from the germ line genome during development of the somatic macronucleus. They are flanked by one 5'-TA-3' dinucleotide on each side, a single copy of which remains at the donor site after excision. The timing of their excision was examined in synchronized conjugating cells by quantitative PCR. Significant amplification of the germ line genome was observed prior to IES excision, which starts 12 to 14 h after initiation of conjugation and extends over a 2- to 4-h period. Following excision, two IESs were shown to form extrachromosomal circles that can be readily detected on Southern blots of genomic DNA from cells undergoing macronuclear development. On these circular molecules, covalently joined IES ends are separated by one copy of the flanking 5'-TA-3' repeat. The similar structures of the junctions formed on the excised and donor molecules point to a central role for this dinucleotide in IES excision.  相似文献   

10.
Extensive programmed DNA rearrangements occur during the development of the somatic macronucleus from the germ line micronucleus in the sexual cycle of the ciliated protozoan Tetrahymena thermophila. Using an in vivo processing assay, we analyzed the role of micronucleus-limited DNA during the programmed deletion of mse2.9, an internal eliminated sequence (IES). We identified a 200-bp region within mse2.9 that contains an important cis-acting element which is required for the targeting of efficient programmed deletion. Our results, obtained with a series of mse2.9-based chimeric IESs, led us to suggest that the cis-acting elements in both micronucleus-limited and macronucleus-retained flanking DNAs stimulate programmed deletion to different degrees depending on the particular eliminated sequence. The mse2.9 IES is situated within the second intron of the micronuclear locus of the ARP1 gene. We show that the expression of ARP1 is not essential for the growth of Tetrahymena. Our results also suggest that mse2.9 is not subject to epigenetic regulation of DNA deletion, placing possible constraints on the scan RNA model of IES excision.  相似文献   

11.
We have isolated and characterized the micronuclear gene encoding the regulatory subunit of cAMP-dependent protein kinase of the ciliated protozoan Euplotes octocarinatus, as well as its macronuclear version and the corresponding cDNA. Analyses of the sequences revealed that the micronuclear gene contains one small 69-bp internal eliminated sequence (IES) that is removed during macronuclear development. The IES is located in the 5'-noncoding region of the micronuclear gene and is flanked by a pair of tetranucleotide 5'-TACA-3' direct repeats. The macronuclear DNA molecule carrying this gene is approximately 1400 bp long and is amplified to about 2000 copies per macronucleus. Sequence analysis suggests that the expression of this gene requires a +1 ribosomal frameshift. The deduced protein shares 31% identity with the cAMP-dependent protein kinase type I regulatory subunit of Homo sapiens, and 53% identity with the regulatory subunit R44 of one of the two cAMP-dependent protein kinases of Paramecium. In addition, it contains two highly conserved cAMP binding sites in the C-terminal domain. The putative autophosphorylation site ARTSV of the regulatory subunit of E. octocarinatus is similar to that of the regulatory subunit R44 of Paramecium but distinct from the consensus motif RRXSZ of other eukaryotic regulatory subunits of cAMP-dependent protein kinases.  相似文献   

12.
Gratias A  Bétermier M 《Biochimie》2001,83(11-12):1009-1022
The development of a new somatic nucleus (macronucleus) during sexual reproduction of the ciliate Paramecium aurelia involves reproducible chromosomal rearrangements that affect the entire germline genome. Macronuclear development can be induced experimentally, which makes P. aurelia an attractive model for the study of the mechanism and the regulation of DNA rearrangements. Two major types of rearrangements have been identified: the fragmentation of the germline chromosomes, followed by the formation of the new macronuclear chromosome ends in association with imprecise DNA elimination, and the precise excision of internal eliminated sequences (IESs). All IESs identified so far are short, A/T rich and non-coding elements. They are flanked by a direct repeat of a 5'-TA-3' dinucleotide, a single copy of which remains at the macronuclear junction after excision. The number of these single-copy sequences has been estimated to be around 60,000 per haploid genome. This review focuses on the current knowledge about the genetic and epigenetic determinants of IES elimination in P. aurelia, the analysis of excision products, and the tightly regulated timing of excision throughout macronuclear development. Several models for the molecular mechanism of IES excision will be discussed in relation to those proposed for DNA elimination in other ciliates.  相似文献   

13.
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated.  相似文献   

14.
Somatic genome assembly in the ciliate Paramecium involves the precise excision of thousands of short internal eliminated sequences (IESs) that are scattered throughout the germline genome and often interrupt open reading frames. Excision is initiated by double-strand breaks centered on the TA dinucleotides that are conserved at each IES boundary, but the factors that drive cleavage site recognition remain unknown. A degenerate consensus was identified previously at IES ends and genetic analyses confirmed the participation of their nucleotide sequence in efficient excision. Even for wild-type IESs, however, variant excision patterns (excised or nonexcised) may be inherited maternally through sexual events, in a homology-dependent manner. We show here that this maternal epigenetic control interferes with the targeting of DNA breaks at IES ends. Furthermore, we demonstrate that a mutation in the TA at one end of an IES impairs DNA cleavage not only at the mutant end but also at the wild-type end. We conclude that crosstalk between both ends takes place prior to their cleavage and propose that the ability of an IES to adopt an excision-prone conformation depends on the combination of its nucleotide sequence and of additional determinants.  相似文献   

15.
The development of a new somatic nucleus (macronucleus) during sexual reproduction of the ciliate Paramecium aurelia involves reproducible chromosomal rearrangements that affect the entire germline genome. Macronuclear development can be induced experimentally, which makes P. aurelia an attractive model for the study of the mechanism and the regulation of DNA rearrangements. Two major types of rearrangements have been identified: the fragmentation of the germline chromosomes, followed by the formation of the new macronuclear chromosome ends in association with imprecise DNA elimination, and the precise excision of internal eliminated sequences (IESs). All IESs identified so far are short, A/T rich and non-coding elements. They are flanked by a direct repeat of a 5’-TA-3’ dinucleotide, a single copy of which remains at the macronuclear junction after excision. The number of these single-copy sequences has been estimated to be around 60 000 per haploid genome. This review focuses on the current knowledge about the genetic and epigenetic determinants of IES elimination in P. aurelia, the analysis of excision products, and the tightly regulated timing of excision throughout macronuclear development. Several models for the molecular mechanism of IES excision will be discussed in relation to those proposed for DNA elimination in other ciliates.  相似文献   

16.
The micronuclear versions of genes in stichotrichous ciliates are interrupted by multiple, short, non-coding DNA segments called internal eliminated segments, or IESs. IESs divide a gene into macronuclear destined segments, or MDSs. In some micronuclear genes MDSs are in a scrambled disorder. During development of a micronucleus into a macronucleus after cell mating the IESs are excised from micronuclear genes and the MDSs are spliced in the sequentially correct order. Pairs of short repeat sequences in the ends of MDSs undergo homologous recombination to excise IESs and splice MDSs. However, the repeat sequences are too short to guide unambiguously their own alignment in preparation for recombination. Based on experiments by others on the distantly related ciliate, Paramecium, we propose a molecular model of template-guided recombination to explain the excision of the 100,000-150,000 IESs and splicing of MDSs, including unscrambling, in the genome of stichotrichous ciliates. The model solves the problem of correct pairing of pointers, precisely identifies MDS-IES junctions, and provides for irreversible recombination.  相似文献   

17.
Thousands of single-copy internal eliminated sequences (IESs) are excised from the germ line genome of ciliates during development of the polygenomic somatic macronucleus, following sexual events. Paramecium IESs are short, noncoding elements that frequently interrupt coding sequences. No absolutely conserved sequence element, other than flanking 5′-TA-3′ direct repeats, has been identified among sequenced IESs; the mechanisms of their specific recognition and precise elimination are unknown. Previous work has revealed the existence of an epigenetic control of excision. It was shown that the presence of one IES in the vegetative macronucleus results in a specific inhibition of the excision of the same element during the development of a new macronucleus, in the following sexual generation. We have assessed the generality and sequence specificity of this transnuclear maternal control by studying the effects of macronuclear transformation with 13 different IESs. We show that at least five of them can be maintained in the new macronuclear genome; sequence specificity is complete both between genes and between different IESs in the same gene. In all cases, the degree of excision inhibition correlates with the copy number of the maternal IES, but each IES shows a characteristic inhibition efficiency. Short internal IES-like segments were found to be excised from two of the IESs when excision between normal boundaries was inhibited. Available data suggest that the sequence specificity of these maternal effects is mediated by pairing interactions between homologous nucleic acids.  相似文献   

18.
Ciliates are unicellular eukaryotes with both a germline genome and a somatic genome in the same cytoplasm. The somatic macronucleus (MAC), responsible for gene expression, is not sexually transmitted but develops from a copy of the germline micronucleus (MIC) at each sexual generation. In the MIC genome of Paramecium tetraurelia, genes are interrupted by tens of thousands of unique intervening sequences called internal eliminated sequences (IESs), which have to be precisely excised during the development of the new MAC to restore functional genes. To understand the evolutionary origin of this peculiar genomic architecture, we sequenced the MIC genomes of 9 Paramecium species (from approximately 100 Mb in Paramecium aurelia species to >1.5 Gb in Paramecium caudatum). We detected several waves of IES gains, both in ancestral and in more recent lineages. While the vast majority of IESs are single copy in present-day genomes, we identified several families of mobile IESs, including nonautonomous elements acquired via horizontal transfer, which generated tens to thousands of new copies. These observations provide the first direct evidence that transposable elements can account for the massive proliferation of IESs in Paramecium. The comparison of IESs of different evolutionary ages indicates that, over time, IESs shorten and diverge rapidly in sequence while they acquire features that allow them to be more efficiently excised. We nevertheless identified rare cases of IESs that are under strong purifying selection across the aurelia clade. The cases examined contain or overlap cellular genes that are inactivated by excision during development, suggesting conserved regulatory mechanisms. Similar to the evolution of introns in eukaryotes, the evolution of Paramecium IESs highlights the major role played by selfish genetic elements in shaping the complexity of genome architecture and gene expression.

A comparative genomics study of nine Paramecium species reveals successful invasion of genes by transposable elements in their germline genomes, showing that the internal eliminated sequences (IESs) followed an evolutionary trajectory remarkably similar to that of spliceosomal introns.  相似文献   

19.
More than 100,000 interstitial segments of DNA (internal eliminated sequences [IESs]) are excised from the genome during the formation of a new macronucleus in Euplotes crassus. IESs include unique sequence DNA as well as two related families of transposable elements, Tec1 and Tec2. Here we describe a new class of E. crassus transposons, Tec3, which is present in 20 to 30 copies in the micronuclear genome. Tec3 elements have long inverted terminal repeats and contain a degenerate open reading frame encoding a tyrosine-type recombinase. One characterized copy of Tec3 (Tec3-1) is 4.48 kbp long, has 1.23-kbp inverted terminal repeats, and resides within the micronuclear copy of the ribosomal protein L29 gene (RPL29). The 23 bp at the extreme ends of this element are very similar to those in other E. crassus IESs and, like these other IESs, Tec3-1 is excised during the polytene chromosome stage of macronuclear development to generate a free circular form with an unusual junction structure. In contrast, a second cloned element, Tec3-2, is quite similar to Tec3-1 but lacks the terminal 258 bp of the inverted repeats, so that its ends do not resemble the other E. crassus IES termini. The Tec3-2 element appears to reside in a large segment of the micronuclear genome that is subject to developmental elimination. Models for the origins of these two types of Tec3 elements are presented, along with a discussion of how some members of this new transposon family may have come to be excised by the same machinery that removes other E. crassus IESs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号