首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Unifying the relationships of species richness to productivity and disturbance   总被引:11,自引:0,他引:11  
Although species richness has been hypothesized to be highest at 'intermediate' levels of disturbance, empirical studies have demonstrated that the disturbance-diversity relationship can be either negative or positive depending on productivity On the other hand, hypothesized productivity diversity relationships can be positive, negative or unimodal, as confirmed by empirical studies. However, it has remained unclear under what conditions each pattern is realized, and there is little agreement about the mechanisms that generate these diverse patterns. In this study, I present a model that synthesizes these separately developed hypotheses and shows that the interactive effects of disturbance and productivity on the competitive outcome of multispecies dynamics can result in these diverse relationships of species richness to disturbance and productivity The predicted productivity diversity relationship is unimodal but the productivity level that maximizes species richness increases with increasing disturbance. Similarly, the predicted disturbance diversity relationship is unimodal but the peak moves to higher disturbance levels with increasing productivity Further, these patterns are well explained by the opposite effects of productivity and disturbance on competitive outcome that are suggested by the change in community composition along these two environmental gradients: higher productivity favours superior competitors while higher disturbance levels favour inferior competitors.  相似文献   

2.
Productivity and disturbance are major determinants of species diversity, and results from theoretical models predict that species richness should peak at intermediate levels of both factors. Such "unimodal" responses have been documented in many field and laboratory studies and have usually been attributed to differences among species in competitive ability and/or trade-offs between competitive ability and tolerance to disturbance. Here we show that most documented patterns of disturbance-richness and productivity-richness relationships, as well as the observed interactions between the two factors, can be explained by a simple neutral model where all species are ecologically identical and lack trade-offs in species characteristics. This finding suggests that current neutral theories can be extended to explain patterns of species responses to productivity and disturbance.  相似文献   

3.
Predicting the relationships between disturbance, biodiversity and productivity of ecosystems continue to preoccupy ecologists and resource managers. Two hypotheses underpin many of the discussions. The Intermediate Disturbance Hypothesis (IDH), which proposes that biodiversity peaks at intermediate levels of disturbance, is often extended to predict that productivity follows the same response pattern. The Mass Ratio Hypothesis (MRH) proposes that the biological traits of the dominant species are the critical drivers of ecosystem function (e.g., productivity) and that these species increase in biomass rapidly after disturbance then stabilize. As a consequence, species diversity first peaks then declines after disturbance as a few species dominate the site. Both provide a conceptual link among disturbance, species diversity and productivity (an index of ecosystem function). We assessed the current state of empirical support for these two hypotheses with a literature survey and determined if their conformance is related to ecosystem type or site productivity. Conformance of IDH reported in past reviews (considering all ecosystems) ranged from 16 to 21%. This contrasts with our finding that in terrestrial ecosystems conformance to IDH was 46% (22 of 48 studies), 17% studies reported non-compliance, and 23% reported inconclusive results. Most studies explained their results with respect to IDH or MRH. Only two studies were specifically designed to test the validity of IDH or MRH. We conclude that (i) the IDH is mostly applicable to predict species diversity response to disturbance in upland sites of medium to high productivity and the MRH is applicable to organic sites of low productivity; (ii) there is a critical need for more studies specifically designed to test these hypotheses in natural ecosystems using common protocols; and (iii) enhanced understanding of these models will add value in refining management policies and in the selection of meaningful diversity indicators of sustainability.  相似文献   

4.
Biological diversity could enhance ecosystem service provision by increasing the mean level of services provided, and/or by providing more consistent (stable) services over space and time. Ecological theory predicts that when an ecosystem service is provided by many species, it will be stabilized against disturbance by a variety of 'stabilizing mechanisms.' However, few studies have investigated whether stabilizing mechanisms occur in real landscapes affected by human disturbance. We used two datasets on crop pollination by wild native bees to screen for and differentiate among three stabilizing mechanisms: density compensation (negative co-variance among species' abundances); response diversity (differential response to environmental variables among species); and cross-scale resilience (response to the same environmental variable at different scales by different species). In both datasets, we found response diversity and cross-scale resilience, but not density compensation. We conclude that stabilizing mechanisms may contribute to the stability of pollination services in our study areas, emphasizing the insurance value of seemingly 'redundant' species. Furthermore, the absence of density compensation that we found at the landscape scale contrasts with findings of previous small-scale experimental and modelling work, suggesting that we should not assume that density compensation will stabilize ecosystem services in real landscapes.  相似文献   

5.
It is becoming more apparent that species richness alone many not be sufficient to fully understand ecosystem resilience but that functional diversity (diversity of species having similar effects on an ecosystem process) may be more relevant. In particular, response diversity (diversity of species that respond differently to disturbance) within functional groups (FG) is suggested to be critical for resilience. We assess for the first time the use of response diversity as a measure of resilience in an empirical study. Our experimental design consisted of sites with three disturbance intensities during a grazing exclosure period and the same sites, 1 year later, after grazing. Plant FGs were identified based on effect traits related to nutrient cycling and soil retention, and species richness within groups was assessed during exclosure and after grazing. To assess if response diversity could predict loss of species richness (resilience analysis), response diversity was calculated only during the exclosure period, based on traits related to grazing tolerance. We also assessed the contribution of richness to response diversity during exclosure (redundancy analysis). Response diversity was significantly and highly correlated with species richness within FGs during disturbance. That is, FGs with the lowest response diversity were the most affected, disappearing when disturbance appeared. Richness within FGs during exclosure was not significantly correlated with response diversity, showing that higher richness does not ensure resilience. We conclude that response diversity can be used to predict which FGs are more resilient, and hence, less vulnerable to future disturbance.  相似文献   

6.
Aims and Methods Diversity-disturbance research has focused on community diversity, but disturbance frequency could impact diversity within species as well, with important consequences for community diversity and ecosystem function. We examined patterns of genetic diversity of a dominant grass species, Andropogon gerardii, in native North American tallgrass prairie sites located in eastern Kansas that have been subjected to a gradient of fire frequency treatments (burned every 1, 2, 4 or 20 years) since the 1970s. In addition, we were able to assess the relationships between genetic diversity of A. gerardii, species diversity and productivity across this range of fire frequencies.Important findings We found no significant relationships between genetic diversity of A. gerardii at the local scale (1 m 2 plot level) and disturbance frequency (burned 2 to 32 times over a 38-year period). However, at the site level (i.e. across all plots sampled within a site, ~100 m 2) there were differences in genotype richness and composition, as well as genomic dissimilarity among individuals of A. gerardii. Genotype richness was greatest for the site burned at an intermediate (4-year) frequency and lowest for the infrequently (20-year) burned site. In addition, genotypes found in the frequently burned sites were more similar from each other than expected by random chance than those found in the infrequently burned sites. Genotype composition of A. gerardii was not significantly different between the frequently burned sites (annual vs. 2 year) but did differ between frequently burned and infrequently burned sites (1 and 2 year vs. 4 and 20 year, etc.). Together, these results suggest site-level ecological sorting of genotypes in intact prairie across a broad gradient of disturbance frequencies, likely driven by alterations in environmental conditions. Frequent fire promotes the abundance of dominant grass species, reduces plant community diversity and impacts ecosystem processes such as productivity. Our study suggests that genetic diversity within dominant grass species also may be affected by disturbance frequency, which could have important implications for how species are able to respond to disturbance.  相似文献   

7.
Aim The diversity–productivity relationship is a controversial issue in ecology. Diversity is sometimes seen to increase with productivity but a unimodal relationship has often been reported. Competitive exclusion was cited initially to account for the decrease of diversity at high productivity. Subsequently, the roles of evolutionary history (species pool size) and dispersal rate have been acknowledged. We explore how the effects of species pool, dispersal and competition combine to produce different diversity–productivity relationships. Methods We use a series of simulations with a spatially explicit, individual‐based model. Following empirical expectations, we used four scenarios to characterize species pool size along the productivity gradient (uniformly low and high, linear increase and unimodal). Similarly, the dispersal rate varied along the productivity gradient (uniformly low and high, and unimodal). We considered both neutral communities and communities with competitive exclusion. Results and main conclusions Our model predicts that competitive interactions will result in unimodal diversity–productivity relationships. The model often predicts unimodal patterns in neutral communities as well, although the decline in richness at high productivity is less than in competing communities. A positive diversity–productivity relationship is simulated for neutral communities when the species pool size increases with productivity and the dispersal rate is high. This scenario is probably more widespread in nature than the others since positive diversity–productivity relationships have been observed more frequently than previously expected, especially in the tropics and for woody species. Our simulated effects of species pool, dispersal and competition on diversity patterns can be linked to empirical observations to uncover mechanisms behind the diversity–productivity relationship.  相似文献   

8.
T. M. Mata  N. M. Haddad  M. Holyoak 《Oikos》2013,122(1):149-160
Competition for limited resources is considered a key factor controlling invasion success. Resource availability can be viewed in either the long or short‐term. Long‐term availability depends on the baseline nutrient availability in the ecosystem and how those conditions shape the ecological community. Short‐term resource availability fluctuates with disturbances that alter nutrient availability and/or the density and composition of the ecological community. We investigated how species’ traits interact with short and long‐term resource availability to determine the outcome of invasions. We manipulated long‐term baseline resource availability, disturbance intensity, disturbance frequency, and propagule pressure in a fully factorial design using protist microcosms. Our results show that short and long‐term resource availability and the direct mortality from disturbance interact with the traits of resident community members and traits of invaders to determine community invasibility. While competitively dominant invaders with slow growth rates may suffer rather than benefit from short‐term resource fluctuations, quickly growing but competitively inferior invaders can benefit from both the resource fluctuations and the heterogeneity in community composition created by disturbance. Our findings empirically synthesize two explanations for invasion success, namely short‐term resource fluctuations and long‐term resource availability, and highlight the importance of considering traits of invaders and residents, such as growth rate and competitive ability, in the context of productivity and disturbance gradients. This species’ traits approach could resolve idiosyncratic results from natural systems undergoing disturbance and invasion that do not follow patterns predicted by traditional invasion frameworks.  相似文献   

9.
Few ecologists today doubt that competition is an important structuring factor in plant communities, but researchers disagree on the circumstances where it is most intense, and on which traits can be considered to contribute to competitive ability in different species. The distinction between a species' effect on resources and its response to reduced resource levels might help to solve these questions. Whereas classical competition theory predicts competitive exclusion of species with similar requirements, recent ideas stress that species diversity may be explained by a multitude of processes acting at different scales, and that similarities in competitive abilities often may facilitate coexistence.  相似文献   

10.
Interspecific competition in a stable subalpine meadow was investigated experimentally. Vegetation responds to gradients of moisture and disturbance which control species composition. Moisture and snow melt patterns produce a productivity gradient that affects the importance of competition in this vegetation mosaic. Reciprocal transplant and selective removal experiments demonstrated that the intensity of competition is directly related to productivity and that seedlings are more susceptible to competitive effects than are established plants. Competition may reduce diversity in stable, productive habitats, while disturbance and stress limit diversity directly. Habitats of moderate productivity and minor disturbance have maximum diversity. The experiments and observations combine to suggest that habitat heterogeneity and local disturbance interact to control biotic interference and that the relative importance of each varies with productivity.  相似文献   

11.
Productivity has long been argued to be a major driver of species richness patterns. In the present study we test alternative productivity–diversity hypotheses using vegetation data from the vast Eurasian tundra. The productivity–species pool hypothesis predicts positive relationships at both fine and coarse grain sizes, whereas the productivity–interaction hypothesis predicts unimodal patterns at fine grain size, and monotonic positive patterns at coarse grain size. We furthermore expect to find flatter positive (productivity–species pool hypothesis) or more strongly negative (productivity–interaction hypothesis) relationships for lichens and bryophytes than for vascular plants, because as a group, lichens and bryophytes are better adapted to extreme arctic conditions and more vulnerable to competition for light than the taller‐growing vascular plants. The normalised difference vegetation index (NDVI) was used as a proxy of productivity. The generally unimodal productivity–diversity patterns were most consistent with the productivity–interaction hypothesis. There was a general trend of decreasing species richness from moderately to maximally productive tundra, in agreement with an increasing importance of competitive interactions. High richness of vascular plants and lichens occurred in moderately low productive tundra areas, whereas that of bryophytes occurred in the least productive tundra habitats covered by this study. The fine and coarse grain richness trends were surprisingly uniform and no variation in beta diversity along the productivity gradient was seen for vascular plants or bryophytes. However, lichen beta diversity varied along the productivity gradient, probably reflecting their sensitivity to habitat conditions and biotic interactions. Overall, the results show evidence that productivity–diversity gradients exist in tundra and that these appear to be largely driven by competitive interactions. Our results also imply that climate warming‐driven increases in productivity will strongly affect arctic plant diversity patterns.  相似文献   

12.
13.
Russell G. Death 《Oikos》2002,97(1):18-30
The link between substrate disturbance and stream invertebrate species richness is often complicated by the fact that substrate disturbance removes both invertebrates and periphyton (a potential food source). It is never clear whether disturbance acts directly on species diversity by removing animals or indirectly by reducing one of their food sources. To examine this relationship invertebrate diversity patterns were examined in 25 forest streams in Urewera National Park, New Zealand, where light attenuation from the forest canopy was postulated to limit periphyton biomass and remove the confounding influence of periphyton on the link between substrate disturbance and invertebrate diversity. Invertebrate species richness declined linearly with increasing substrate disturbance. Although periphyton biomass was comparatively low, species richness was more strongly related to periphyton biomass than to any disturbance measure. The highly mobile nature and terrestrial reproductive stage of many lotic invertebrates suggest that colonisation dynamics may have a more important influence on diversity patterns than monopolisation of resources for population growth. Although both the intermediate disturbance hypothesis and the dynamic equilibrium model encompass colonisation as a critical determinant of diversity both models also require a trade-off between the colonising and competitive ability of individual species; a phenomenon which does not appear to occur widely in lotic communities. Rather, it is postulated that resource levels will set an upper limit to the species richness of a benthic community that can be achieved through colonisation of taxa in the absence of disturbance, while disturbance removes taxa and resets the colonisation process.  相似文献   

14.
The dynamic equilibrium model of species diversity predicts that ecosystem productivity interacts with disturbance to determine how many species coexist. However, a robust test of this model requires manipulations of productivity and disturbance over a sufficient timescale to allow competitive exclusion, and such long-term experimental tests of this hypothesis are rare. Here we use long-term (27 years), large-scale (8 × 50-m plots), factorial manipulations of soil resource availability and sheep grazing intensity (disturbance) in grasslands to test the dynamic equilibrium model. As predicted by the model, increased productivity not only reduced plant species richness, but also moderated the effects of grazing intensity, shifting them from negative to neutral with increasing productivity. Reductions in species richness with productivity were associated with dominance by faster growing (i.e. high specific leaf area) and taller plants. Conversely, grazing favoured shorter plants and this effect became stronger with greater productivity, consistent with the view that grazing can lead to weaker asymmetric competition for light. Our study shows that the dynamic equilibrium model can help to explain changes in plant species richness following long-term increases in soil resource availability and grazing pressure, two fundamental drivers of change in grasslands worldwide.  相似文献   

15.
Forest diversity-productivity relationships have been intensively investigated in recent decades. However, few studies have considered the interplay between species and structural diversity in driving productivity. We analyzed these factors using data from 52 permanent plots in southwestern Germany with more than 53,000 repeated tree measurements. We used basal area increment as a proxy for productivity and hypothesized that: (1) structural diversity would increase tree and stand productivity, (2) diversity-productivity relationships would be weaker for species diversity than for structural diversity, and (3) species diversity would also indirectly impact stand productivity via changes in size structure. We measured diversity using distance-independent indices. We fitted separate linear mixed-effects models for fir, spruce and beech at the tree level, whereas at the stand level we pooled all available data. We tested our third hypothesis using structural equation modeling. Structural and species diversity acted as direct and independent drivers of stand productivity, with structural diversity being a slightly better predictor. Structural diversity, but not species diversity, had a significant, albeit asymmetric, effect on tree productivity. The functioning of structurally diverse, mixed forests is influenced by both structural and species diversity. These sources of trait diversity contribute to increased vertical stratification and crown plasticity, which in turn diminish competitive interferences and lead to more densely packed canopies per unit area. Our research highlights the positive effects of species diversity and structural diversity on forest productivity and ecosystem dynamics.  相似文献   

16.
种、种的多样性及退化生态系统功能的恢复和维持研究   总被引:41,自引:8,他引:33  
物种多样性是生态系统的重要特征并维持系统的功能支行,生物种和不同种类构成的群落为人类提供诸如营养物质循环、生物生产力、营养功能等形式的重要生态服务,特种多样性与生态系统抵御逆境和干扰的能力紧密相关,多样性的提高会增加系统的稳定性,与单个种和种类的数量相比,功能群和功能多样性对生态系统功能的影响效应要大得多,且易于被用来测度稳定性和预测群落变化,本文提出并探讨了种对生态系统功能作用的几种形式,理解物种多样性与生态系统的功能关系能指导退化生态系统恢复和维持其功能的实践活动,尤其为恢复的初始阶段进行群落的“种类组装”提供生态理论基础。  相似文献   

17.
Ecosystem resilience depends on functional redundancy (the number of species contributing similarly to an ecosystem function) and response diversity (how functionally similar species respond differently to disturbance). Here, we explore how land-use change impacts these attributes in plant communities, using data from 18 land-use intensity gradients that represent five biomes and > 2800 species. We identify functional groups using multivariate analysis of plant traits which influence ecosystem processes. Functional redundancy is calculated as the species richness within each group, and response diversity as the multivariate within-group dispersion in response trait space, using traits that influence responses to disturbances. Meta-analysis across all datasets showed that land-use intensification significantly reduced both functional redundancy and response diversity, although specific relationships varied considerably among the different land-use gradients. These results indicate that intensified management of ecosystems for resource extraction can increase their vulnerability to future disturbances.
Ecology Letters (2010) 13: 76–86  相似文献   

18.
1. Interspecific competition is a major structuring principle in ecological communities. Despite their prevalence, the outcome of competitive interactions is hard to predict, highly context-dependent, and multiple factors can modulate such interactions. 2. We tested predictions concerning how competitive interactions are modified by anthropogenic habitat disturbance in ground-foraging ant assemblages inhabiting fragmented Inter-Andean tropical dry forests in southwestern Colombia, and investigated ant assemblages recruiting to baits in 10 forest fragments exposed to varying level of human disturbance. 3. Specifically, we evaluated how different components of competitive interactions (patterns of species co-occurrence, resource partitioning, numerical dominance, and interspecific trade-offs between discovery and dominance competition) varied with level of habitat disturbance in a human-dominated ecosystem. 4. Multiple lines of evidence suggest that the role of competitive interactions in structuring ground-foraging ant communities at baits varied with respect to habitat disturbance. As disturbance increased, community structure was more likely to exhibit random co-occurrence patterns, higher levels of monopolization of food resources by dominant ants, and disproportionate dominance of a single species, the little fire ant (Wasmannia auropunctata). At a regional scale, we found evidence for a trade-off between dominance and discovery abilities of the 15 most common species at baits. 5. Together, these results suggest that human disturbance modifies the outcome of competitive interactions in ground-foraging ant assemblages and may promote dominant species that reduce diversity and coexistence in tropical ecosystems.  相似文献   

19.
1. The importance of species diversity for the stability of populations, communities and ecosystem functions is a central question in ecology. 2. Biodiversity experiments have shown that diversity can impact both the average and variability of stocks and rates at these levels of ecological organization in single trophic-level ecosystems. Whether these impacts hold in food webs and across trophic levels is still unclear. 3. We asked whether resource species diversity, community composition and consumer feeding selectivity in planktonic food webs impact the stability of resource or consumer populations, community biomass and ecosystem functions. We also tested the relative importance of resource diversity and community composition. 4. We found that resource diversity negatively affected resource population stability, but had no effect on consumer population stability, regardless of the consumer's feeding selectivity. Resource diversity had positive effects on most ecosystem functions and their stability, including primary production, resource biomass and particulate carbon, nitrogen and phosphorus concentrations. 5. Community composition, however, generally explained more variance in population, community and ecosystem properties than species diversity per se. This result points to the importance of the outcomes of particular species interactions and individual species' effect traits in determining food web properties and stability. 6. Among the stabilizing mechanisms tested, an increase in the average resource community biomass with increasing resource diversity had the greatest positive impact on stability. 7. Our results indicate that resource diversity and composition are generally important for the functioning and stability of whole food webs, but do not have straightforward impacts on consumer populations.  相似文献   

20.
Taissa Replansky  Graham Bell 《Oikos》2009,118(2):233-239
Diversity, whether ecological or genetic, is widely believed to be beneficial to the functioning of ecosystems. Although many studies have investigated relationships between environmental complexity, species diversity and ecosystem function, few have examined these factors simultaneously. We propagated combinations of three naturally coexisting yeast species for 200 generations, in environments of increasing complexity represented by combinations of up to eight different carbon sources. We found that competitive ability was transitive, and not related to productivity, which was equal among the species. Species diversity had a positive effect on productivity and overyielding in mixtures was caused primarily by complementation. Environmental complexity and species diversity were positively correlated, though not significantly, and the sole case of coexistence of all three yeasts after 200 generations occurred on a single carbon source, melezitose. Environmental complexity also enhanced productivity, although this relationship failed, for unknown reasons, at the highest level of complexity. Our results suggest that maintaining species diversity contributes to ecosystem productivity, but that the mechanisms responsible for maintaining diversity may not be straightforward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号