首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The effect of 253.7 nm ultraviolet radiation on elongation growth, medium acidification and changes in electric potential difference between vacuole and external medium in cells of maize ( Zea mays L.) coleoptile segments was investigated. It was found that irradiation with 390, 1170, 3900 and 5 850 J m−2 UV-C (ultraviolet radiation 253.7 nm) inhibited elongation growth, whereas at 195 J m−2 stimulation of growth was observed. The administration of IAA (10−5 M ) to the incubation medium of coleoptile segments partially abolished the inhibitory effect of UV-C. The pH of the incubation medium, measured simultaneously with growth, showed that the exposure of the segments to UV-C caused inhibition of H+-extrusion (or stimulation of H+ uptake). The presence of IAA (10−5 M ) in the incubation medium promoted (except after 5850 J m−2 irradiation) H+-extrusion to a level comparable with that produced by IAA in non-irradiated segments. In UV-C irradiated segments the potential difference underwent significant alterations. Irradiation of coleoptile segments with 390 J m−2 caused a transient depolarization, which was fully reversible within 30 min, while at higher doses depolarization was irreversible. The hyperpolarization of the membrane potential (MP) in cells of maize coleoptile induced by IAA was completely nullified by subsequent irradiation with UV-C. It is suggested that UV-C inhibited IAA-induced growth by a mechanism independent of cell wall acidification.  相似文献   

2.
Summary The effects of 253.7 nm ultraviolet (UV) radiation on the membrane properties ofChara corallina have been studied. UV irradiation caused depolarization of the membrane potential (p.d.) and a decrease in membrane resistance. These effects were largely reversible with steady values being obtained within 40 minutes after the UV was turned off. The effects on ionic fluxes of Na+, K+ and Cl have also been studied using radioactive tracer techniques. The influxes were unchanged by irradiation. The chloride efflux was increased sevenfold during the irradiation period but recovered to the pre-irradiation value within 30 minutes after the irradiation period. The potassium efflux was also increased and reached a maximum 10 minutes after irradiation. The resting potential and the average depolarized p.d. reached during irradiation were in good agreement with those calculated from permeability coefficients indicated by the observed passive fluxes, using the Goldman equation for p.d. However, the plasmalemma resistance and its change due to irradiation did not match the values calculated from the same permeability coefficients used to estimate p.d. This disagreement, and an apparent imbalance in the charge transferred across the resting or irradiated plasmalemma, suggest the participation of another ion species as well as K+, Na+ and Cl.  相似文献   

3.
Changes in plasmalemma permeability caused by excessive Cu2+ levels were examined in cells of a freshwater alga (Nitella flexilis) using a conventional microelectrode voltage-clamp technique. A rapid Cu2+-induced increase of plasmalemma conductance starting from 5 [mu]M Cu2+ was shown. Cu2+-induced plasmalemma conductance (ClGm) was nonselective and potential-independent, resembling the conductance of nonselective ionic leakage of the plasmalemma. The K+ channel conductance was shown to be unaltered by Cu2+, and a decrease in plasmalemma Cl- channel conductance at Cu2+ concentrations above 5 [mu]M was found. The depression of Cl- channels and ClGm were time-, dosage-, and Ca2+-dependent processes, revealing a great similarity in all parameters, with Ca2+ causing the preventive effect by shifting the effective Cu2+ concentrations to higher levels. This phenomenon may be explained by the same Cu2+-modified target on the plasmalemma both for ClGm and Cl- channel depression. In addition, a reversible, inhibitory effect of Cu2+ (>10 [mu]M) on the light-stimulated H+-ATPase electrogenic pump in the plasmalemma was demonstrated. This effect was Ca2+- independent, which made it possible to distinguish it from ClGm. Therefore, the Cu2+-induced dramatic alterations in plant cell plasmalemma permeability are caused mainly by nonselective conductance increases and electrogenic pump inhibition.  相似文献   

4.
Effects of amphiphilic derivatives of glycine esters of the general formula (CH3)3N+CH2COOCnH2n+1Cl- (n = 10, 12, 14, 16) on membrane potential and conductance in internodal cells of the alga Nitellopsis obtusa were studied. The compounds decreased the potential difference between vacuole and external medium and increased the electric conductance. The effects depended on the length of the alkyl chain (n) and the concentration of these quaternary ammonium salts. Light-induced hyperpolarization was suppressed by the salts. We suggest that the ammonium salts inhibit the electrogenic proton pump in the plasmalemma and enhance the passive efflux of Cl- from the algal cell.  相似文献   

5.
Summary The electrical properties of theChara cell membrane have been studied using a perfusion method based on that of Williamson, R.E. 1975.J. Cell Sci. 17655. The vacuole, tonoplast, and inner cytoplasm are removed by a brief rapid perfusion. Electrical properties of the plasmalemma indicate that it remains intact after this perfusion.The membrane potential difference after perfusion and with no ATP was close to the potassium equilibrium potential; the current-voltage characteristic had a slope that was time- and voltage-dependent, indicating that the steady-state potassium conductance increased with depolarization. At –125 mV the membrane conductance of the plasmalemma depended on [K+]0. This dependence was inhibited by perfusing with 2.0mm ATP or by clamping at a more negative membrane potential. The addition of ATP to the perfusion medium of unclamped cells caused a hyperpolarization ofca. 50 mV, presumably by activating the proton pump. In clamped cells, perfusion with ATP caused currents ofca. 20 mA m–2, whose magnitude depended on pH0. ATP induced membrane conductance changes which were variable. 2.0mm ADP inhibited the proton pump. The intersection points of current-voltage characteristics can set limits on the stalling potential; the resulting stoichiometry of the proton pump appears to be 1.5–2.0 H+ per ATP.  相似文献   

6.
The Tonoplast Impedance of Chara   总被引:4,自引:0,他引:4  
The capacitance and conductance of the plasmalemma and tonoplastof Chara were measured simultaneously in space-clamped cells.At a frequency of 5 Hz the capacitance and conductance of thetonoplast were 60 ± 5 mF m–2 (i. e. 6.0 µF cm–2) and 6.5 ± 0.6 S m–2 respectively.These values were respectively 2.9 ± 0.3 and 3.7 ±0.4 times greater than those of the plasmalemma. It is shownthat any leakage of current around the cytoplasmic electrodewill not drastically affect the calculated area-specific valuesof the tonoplast parameters under the experimental conditionsused, providing that the cytoplasm possesses a reasonable longitudinalconductivity. An examination of the relative measured impedancesof the plasmalemma and tonoplast supports this conclusion. Key words: Chara tonoplast: Plasmalemma, Capacitance/ conductance  相似文献   

7.
The capacity of sodium orthovanadate to inhibit the plasmalemma H+ ATPase of Nitella translucens internodal cells in vivo was tested. Here we show that 1 millimolar vanadate added externally depolarizes strongly and permanently the membrane potential, both in dark and light, to the Nernst potential for potassium consistent with pump inhibition by vanadate. From the results it is clear that the H+ ATPase is always active, under light or dark conditions, in contradiction with the widespread idea of pump inactivation by darkness. The changes in conductance for light, dark, and vanadate-induced conditions are analyzed. The effect of dark on membrane passive permeabilities and on the possibility that some plasmalemma channels could be regulated by a phosphorylation-dephosphorylation process is discussed.  相似文献   

8.
UV radiation is a spread method used worldwide for the disinfection of water. However, much of the research on the disinfection of bacterial cells by UV has focused on planktonic cells. Many bacterial cells in nature are present in clumps or aggregates, and these aggregates, which are more resistant to disinfection than their planktonic counterparts, can be problematic in engineered water systems. The current research used Pseudomonas putida (P. putida) CP1, an environmental and non-pathogenic microorganism which autoaggregates when grown under certain conditions, as a model organism to simulate aggregated cells. The study investigated the response of both the planktonic and the aggregated forms of the bacterium to UV-C (λ = 253.7 nm) and UV-A/B (λ > 300 nm) disinfection at laboratory scale in a minimal medium. The planktonic cells of P. putida CP1 were inactivated within 60 s by UV-C and in 60 min by UV-A/B; however, the aggregated cells required 120 min of UV-C treatment and 240 min of UV-A/B radiation to become inactive. The size of the aggregate was reduced following UV treatment. Although all the cells had lost culturability, viability as measured by the LIVE/DEAD® stain and epifluorescence microscopy was not completely lost and the cells all demonstrated regrowth after overnight incubation in the dark.  相似文献   

9.
The present contribution is devoted to studying the electrical noise of Acer pseudoplatanus cells in culture suspensions. Spontaneous voltage noise of the cells was recorded by means of a microelectrode inserted in the vacuole. The small signal impedance of the cell was measured so that it was possible to study the intensity spectra of the noise. We recorded intensity spectra with cells incubated in 10−3 molar gramicidin A. Difference spectra showed characteristics of a channel noise. By using the calculated conductance of gramicidin A in an artificial membrane, and by simplifying assumptions for the ionic transports through plasmalemma and tonoplast, we were able to estimate the electrochemical potential difference for K+ ions across the plasmalemma (3.2 ± 1 millivolt).  相似文献   

10.
The combined effects of ultraviolet-B (UV-B, 280–320 nm) radiation and water stress were investigated on the water relations of greenhouse grown soybean [ Glycine max (L.) Merr. cv. Essex]. On a weighted (Caldwell 1971), total daily dose basis, plants received either 0 or 3 000 effective J m2 UV-BBE supplied by filtered FS-40 sunlamps. The latter dose simulated the solar UV-B radiation anticipated at College Park, Maryland, U.S.A. (39°N latitude) in the event that the global stratospheric ozone column is reduced by 25%. Plants were either well-watered or preconditioned by drought stress cycles. Diurnal measurements of water potential and stomatal conductance were made on the youngest fully expanded leaf. Various internal water relations parameters were determined for detached leaves. Plants were monitored before, during and after water stress. There were no significant differences in leaf water potential or stomatal conductance between treatments before plants were preconditioned to water stress. However, drought stress resulted in significantly lower midday and afternoon leaf water potentials and lower leaf conductances as compared to well-watered plants. UV-B radiation had no additional effect on leaf water potential; however, UV did result in lower leaf conductances in plants preconditioned to water stress. Turgid weight:dry weight ratio, elastic modulus, bound water and relative water content were unaffected by UV-B radiation. Osmotic potentials at full and zero turgor were significantly lower in the drought stressed treatments as compared to well-watered plants.  相似文献   

11.
The effects of light on the pH in the vacuole and the electricpotential difference across the plasmalemma and the tonoplastof Nitellopsis obtusa were investigated by means of conventionaland H+-specific glass or antimony microelectrodes. Illuminationis found to bring about a decrease in the pH of the vacuolarsap by 0.1–0.5 units concomitant with a depolarizationof the cell. The light-induced changes of the potential differenceand the vacuolar pH depend in different ways on the pH of theexternal medium (pHo). At pHo 9.0 cells exhibit great light-inducedpotential changes (up to 100 mV), but only small pH changesof the vacuolar sap. At neutral or slightly acidic pHo valuesthe amplitude of the light-induced pH changes in the vacuoleincreases up to 0.3–0.5 pH units, but the amplitudes ofthe potential changes at the plasmalemma are relatively small.At pHo 9.0 a transient acidification of the medium is observedupon illumination whereas at lower pH values light-induced alkalinizationwas only seen. Transfer of the cells from pHo 9.0 to pHo 7.5results in a cell hyperpolarization by 60–80 mV and adecrease of the vacuolar pH by 0.4–0.5 units under lightconditions but has no significant effect on the potential andthe vacuolar pH in the darkness. It is proposed that mechanismsof active H+ extrusion from the cytoplasm are located both inthe plasmalemma and the tonoplast. The observed acidificationin the vacuole appears to be determined by a light-induced increaseof the concentration of H+ in the cytoplasm. The H+ conductionof the plasmalemma seems to increase on illumination. The patternof the light-induced H+ fluxes across the tonoplast and theplasmalemma depends crucially on the extent of the light-inducedchanges in the H+ conductance and on the electrochemical gradientfor H+ at the plasmalemma.  相似文献   

12.
The role of acetylcholine (ACh) as a signalling molecule in plants was investigated using a model system of Characeae cells. The effect of ACh on conductance of K+ channels in Nitella flexilis cells and on the action potential generation in Nitellopsis obtusa cells after H+-ATPase inhibition, where repolarization occurs after the opening of outward rectifying K+ channels, was investigated. Voltage-clamp method based on only one electrode impalement was used to evaluate the activity of separate potassium ion transport system at rest. We found that ACh at high concentrations (1 mM and 5 mM) activates K+ channels as the main membrane transport system at the resting state involved in electrogenesis of Characeaen membrane potential. We observed that ACh caused an increase in duration of AP repolarization of cells in K+ state when plasmalemma electrical characteristics are determined by large conductance K+ channels irrespective of whether AP were spontaneous or electrically evoked. These results indicate interference of ACh with electrical cellular signalling pathway in plants.  相似文献   

13.
The effect of a number of inhibitors on the ATP level in single cells of Chara corallina has been measured using the luciferin-luciferase assay. The uncouplers of phosphorylation, carbonyl cyanide m-chlorophenyl hydrazone and 2,4-dinitrophenol, and the ATPase inhibitors, dicyclohexyl-carbodimide and diethylstilbestrol, all caused a marked reduction of the ATP level. These inhibitors also produced a large increase in the membrane resistance and a depolarization of the membrane potential to the diffusion potential. This is consistent with the plasmalemma containing an ATP-dependent electrogenic pump that provides the primary conductance through the membrane.  相似文献   

14.
L Gorelic  D Parker 《Biochemistry》1978,17(15):3152-3162
The effects of 254-nm radiation on the structural integrities of free and 50S ribosome-bound 5S and 23S ribosomal ribonucleic acids (rRNA) have been elucidated. Irradiation of aqueous solutions of Escherichia coli 50S ribosomes with 253.7-nm radiation results in the formation of single-strand breaks in double-stranded regions of the 23S rRNA component, but not in rRNA chain scission, and destabilization of the secondary structure of the 23S rRNA toward denaturation. The minimum doses of 253.7-nm radiation required for the first detection of the two effects are 7 x 10(19) quanta for the production of single-strand breaks in double-stranded regions of the 23S rRNA, and less than 2.3 x 10(19) quanta for destabilization of the 23S rRNA secondary structure. Free 23S rRNA is resistant toward photoinduced chain breakage at doses of 253.7-nm radiation up to at least 2.3 x 10(20) and is much less sensitive toward destabilization of secondary structure than ribosome-bound 23S rRNA toward chain breakage, 50S ribosome-bound 5S rRNA is resistant toward chain breakage at doses of 253.7-nm radiation up to at least 2.3 x 10(20) quanta. Ribosome-bound 5S and 23S rRNA are also not photosensitive toward intermolecular 5S/23S rRNA crosslinkage.  相似文献   

15.
Potassium ion channels in the plasmalemma   总被引:2,自引:0,他引:2  
The potassium ion is an indispensible cytosolic component of living cells and a key osmolyte of plant cells, crossing the plasmalemma to drive physiological processes like cell growth and motor cell activity. K+ transport across the plasmalemma may be passive through channels, driven by the electrochemical gradient, K+ equilibrium potential (EK) – membrane potential (Vm), or secondary active by coupling through a carrier to the inward driving force of H+ or Na+. Known K+ channels are permeable to monovalent cations, a permeability order being K+ > Rb+ > NH4+ > Na+≥ Li+ > Cs+. The macroscopic K+ currents across a cell or protoplast surface commonly show rectification, i.e. a Vm-dependent conductance which in turn, may be controlled by the cytosolic activity of Ca2+, of K+, of H+, or by the K+ driving force. Analysis by the patch clamp technique reveals that plant K+ channels are similar to animal channels in their single channel conductance (4 to 100 pS), but different in that a given channel population slowly activates and may not inactivate at all. Single-channel kinetics reveal a broad range of open times (ms to s) and closed times (up to 100 s). Further progress in elucidating plant K+ channels will critically depend on molecular cloning, and the availability of channel-specific (phyto)toxins.  相似文献   

16.
The charge-pulse relaxation spectrum of nonperfused and perfused (turgescent) cells of the giant marine alga Ventricaria ventricosa showed two main exponential decays with time constants of approximately 0.1 msec and 10 msec, respectively, when the cells were bathed in artificial sea water (pH 8). Variation of the external pH did not change the relaxation pattern (in contrast to other giant marine algae). Addition of nystatin (a membrane-impermeable and pore-forming antibiotic) to the vacuolar perfusion solution resulted in the disappearance of the slow exponential, whereas external nystatin decreased dramatically the time constant of the fast one. This indicated (by analogy to corresponding experiments with Valonia utricularis, J. Wang, I. Spiess, C. Ryser, U. Zimmermann, J. Membrane Biol. 157: 311-321, 1997) that the fast relaxation must be assigned to the RC-properties of the plasmalemma and the slow one to those of the tonoplast. Consistent with this, external variation of [K+]o or of [Cl-]o as well as external addition of K+- or Cl--channel/carrier inhibitors (TEA, Ba2+, DIDS) affected only the fast relaxation, but not the slow one. In contrast, addition of these inhibitors to the vacuolar perfusion solution had no measurable effect on the charge-pulse relaxation spectrum. The analysis of the data in terms of the "two membrane model" showed that K+- and (to a smaller extent) Cl--conducting elements dominated the plasmalemma conductance. The analysis of the charge-pulse relaxation spectra also yielded the following area-specific data for the capacitance and the conductance for the plasmalemma and tonoplast (by assuming that both membranes have a planar surface): (plasmalemma) Cp = 0.82 * 10(-2) F m-2, Rp = 1.69 * 10(-2) Omega m2, Gp = 5.9 * 10(4) mS m-2, (tonoplast) Ct = 7. 1 * 10(-2) F m-2, Rt = 14.9 * 10(-2) Omega m2 and Gt = 0.67 * 10(4) mS m-2. The electrical data for the tonoplast show that (in contrast to the literature) the area-specific membrane resistance of the tonoplast of these marine giant algal cells is apparently very high as reported already for V. utricularis. The exceptionally high value of the area-specific capacitance could be explained - among other interpretations - by assuming a 9-fold enlargement of the tonoplast surface. The hypothesis of a multifolded tonoplast was supported by transmission electronmicroscopy of cells fixed under maintenance of turgor pressure and of the electrical parameters of the membranes. This finding indicates that the tonoplast of this species exhibited a sponge-like appearance. Taking this result into account, it can be easily shown that the tonoplast exhibits a high-resistance (1.1 Omega m2). Vacuolar membrane potential measurements (performed in parallel with charge-pulse relaxation studies) showed that the potential difference across the plasmalemma was mainly controlled by the external K+-concentration which suggested that the resting membrane potential of the plasmalemma is largely a K+-diffusion potential. After permeabilization of the tonoplast with nystatin the potential of the intact membrane barrier dropped from about slightly negative or positive (-5.1 to +18 mV, n = 13) to negative values (-15 up to -68 mV; n = 8). This indicated that the cytoplasm of V. ventricosa was apparently negatively charged relative to the external medium. Permeabilization of the plasmalemma by addition of external nystatin resulted generally in an increase in the potential to slightly more positive values (-0.8 to +4.3 mV; n = 5), indicating that the vacuole is positively charged relative to the cytoplasm. These findings apparently end the long-term debate about the electrical properties of V. ventricosa. The results presented here support the findings of Davis (Plant Physiol. 67: 825-831, 1981), but are contrary to the results of Lainson and Field (J. Membrane Biol. 29: 81-94, 1976).  相似文献   

17.
The action potential (AP) of excitable plant cells is a multifunctional physiological signal. Its generation in characean algae suppresses the pH banding for 15–30 min and enhances the heterogeneity of spatial distribution of photosynthetic activity. This suppression is largely due to the cessation of H+ influx (OH efflux) in the alkaline cell regions. Measurements of local pH and membrane conductance in individual space-clamped alkaline zones (small cell areas bathed in an isolated pool of external medium) showed that the AP generation is followed by the transient disappearance of alkaline zone in parallel with a large decrease in membrane conductance. These changes, specific to alkaline zones, were only observed under continuous illumination following a relaxation period of at least 15 min after previous excitation. The excitation of dark-adapted cells produced no conductance changes in the post-excitation period. The results indicate that the origin of alkaline zones in characean cells is not due to operation of electroneutral H+/HCO3 symport or OH/HCO3 antiport. It is concluded that the membrane excitation is associated with inactivation of plasmalemma high conductance in the alkaline cell regions.Key words: Chara, membrane conductance, pH banding, action potential, alkaline cell regions, heterogeneity  相似文献   

18.
Continuous and batch cultures of marine sulphate-reducing bacteria (SRB) in North Sea water were irradiated with 110000 to 329500 μWs/cm2 of ultraviolet radiation (wavelength 253.7 nm) with a commercial u.v. sterilizing unit. A 100% kill was obtained with logarithmic cultures of Desulfovibrio desulfuricans NCIMB 8400 at population densities of 10–104/ml. A >99.99% kill was obtained with a mixture (ca 105/ml) of batch grown Desulfovibrio spp. and oilfield SRB enrichments. Ultraviolet irradiation was less effective against the indigenous heterotrophic bacteria in the seawater ( ca 90% kill).  相似文献   

19.
The influence of far-red (FR; 700–800 nm) radiation on steady-state stomatal conductance and net photosynthesis in P. vulgaris has been studied. Whereas FR radiation alone was relatively ineffective, addition of FR to a background of white light (WL; predominantly 400–700 nm) resulted in increased stomatal conductance. Stomata exhibited a marked diurnal sensitivity to FR. The action maximum for enhancing stomatal conductance was near 714 nm. A combination of FR and infra-red (IR; >800 nm) enhanced net photosynthesis when added to a background of WL. When IR alone was added to WL, there was a net decrease in photosynthesis, indicating that it is the FR waveband which is responsible for the observed photosynthetic effects. Naturally occurring levels of FR radiation (235 mol·m-2·s-1) in vegetation-canopy shade enhanced net photosynthetic CO2 gain by 28% when added to a background of 55 mol·m-2·s-1 WL.Abbreviations BL blue - FR far-red - IR infra-red - PAR photosynthetically active radiation - R red - WL white light  相似文献   

20.
The giant marine alga Valonia utricularis is capable of regulating its turgor pressure in response to changes in the osmotic pressure of the sea water. The turgor pressure response comprises two phases, a fast, exponential phase arising exclusively from water shifting between the vacuole and the external medium (time constant about 10 min) and a second very slow, almost exponential phase adjusting (but not always) the turgor pressure near to the original value by release or uptake of KCl (time constant about 5 h). The changes in the vacuolar membrane potential as well as in the individual conductances of the tonoplast and plasmalemma accompanying turgor pressure regulation were measured by using the vacuolar perfusion assembly (with integrated microelectrodes, pressure transducers and pressure‐regulating valves) as described by Wang et al. (J. Membrane Biology 157, 311–321, 1997). Measurements on pressure‐clamped cells gave strong evidence that the turgor pressure, but not effects related to water flow (i.e. electro‐osmosis or streaming potential) or changes in the internal osmotic pressure and in the osmotic gradients, triggers the cascade of osmotic and electrical events recorded after disturbance of the osmotic equilibrium. The findings definitely exclude the existence of osmosensors as postulated for other plant cells and bacteria. There was also evidence that turgor pressure signals were primarily sensed by ion transporters in the vacuolar membrane because conductance changes were first recorded in the many‐folded tonoplast and then significantly delayed in the plasmalemma independent of the direction of the osmotic challenge. Consistently, turgor pressure up‐regulation (but not down‐regulation) could be inhibited reversibly by external addition of the K+ transport inhibitor Ba2+ and/or by the Cl transport inhibitor 4,4′‐diisothiocyanatostilbene‐2,2′‐disulfonic acid (DIDS). Extensive studies under iso‐, hyper‐ and hypo‐osmotic conditions revealed that K+ and Cl contribute predominantly to the plasmalemma conductance. Addition of 0.3 mm NaCN showed further that part of the K+ and Cl transporters depended on ATP. These transporters are apparently up‐regulated upon hyper‐osmotic, but not hypo‐osmotic challenge. These findings explain the strong increase of the K+ influx upon lowering turgor pressure and the less pronounced pressure‐dependence of the Cl influx of V. utricularis reported in the literature. The data derived from the blockage experiments under hypo‐osmotic conditions were also equally consistent with the experimental findings that the K+ efflux is solely passive and progressively increases with increasing turgor pressure due to an increase of the volumetric elastic modulus of the cell wall. However, despite unravelling some of the sequences and other components involved in turgor pressure regulation of V. utricularis the co‐ordination between the ion transporters in the tonoplast and plasmalemma remains unresolved because of the failure to block the tonoplast transporters by addition of Ba2+ and DIDS from the vacuolar side.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号