首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 816 毫秒
1.
The purpose of this study was to determine the nature of the CD4(+) Th cell responses induced after nasal-pulmonary immunization, especially those coinciding with previously described pulmonary inflammation associated with the use of the mucosal adjuvant, cholera toxin (CT). The major T cell population in the lungs of naive mice was CD4(+), and these cells were shown to be predominantly of Th2 type as in vitro polyclonal stimulation resulted in IL-4, but not IFN-gamma, production. After nasal immunization with influenza Ag alone, Th2 cytokine mRNA (IL-4 and IL-5) levels were increased, whereas there was no change in Th1 cytokine (IL-2 and IFN-gamma) mRNA expression. The use of the mucosal adjuvant, CT, markedly enhanced pulmonary Th2-type responses; however, there was also a Th1 component to the T cell response. Using in vitro Ag stimulation of pulmonary lymphocytes, influenza virus-specific cytokine production correlated with the mRNA cytokine results. Furthermore, there was a large increase in CD4(+) Th cell numbers in lungs after nasal immunization using CT, correlating with the pulmonary inflammatory infiltrate previously described. Coincidentally, both macrophage-inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta mRNA expression increased in the lungs after immunization with Ag plus CT, while only MIP-1beta expression increased when mice were given influenza Ag alone. Our study suggests a mechanism to foster Th1 cell recruitment into the lung, which may impact on pulmonary immune responses. Thus, while Th2 cell responses may be prevalent in modulating mucosal immunity in the lungs, Th1 cell responses contribute to pulmonary defenses during instances of intense immune stimulation.  相似文献   

2.
We showed previously that cecal bacterial Ag (CBA)-specific CD4(+) T cells induce colitis when transferred into SCID mice. The purpose of this study was to generate and characterize CBA-specific regulatory T cells in C3H/HeJBir (Bir) mice. CD4(+) T cells were stimulated with CBA-pulsed APC in the presence of IL-10 every 10-14 days. After four or more cycles, these T cells produced high levels of IL-10, low levels of IL-4 and IFN-gamma, and no IL-2, consistent with the phenotype of T regulatory-1 (Tr1) cells. Bir Tr1 cells proliferated poorly, but their proliferation was dependent on CD28-B7 interactions and was MHC class II-restricted. Transfer of Bir Tr1 cells into SCID mice did not result in colitis, and cotransfer of Bir Tr1 T cells with pathogenic Bir CD4(+) Th1 cells prevented colitis. Bir Tr1 cells inhibited proliferation and IFN-gamma production of a CBA-specific Th1 cell line in vitro. Such inhibition was partly due to IL-10 and TGFbeta1, but cognate interactions with either APCs or Th1 cells were also involved. Normal intestinal lamina propria CD4(+) T cells had Tr1-like activity when stimulated with CBA-pulsed APCs. We conclude that CD4(+) T cells with the properties of Tr1 cells are present in the intestinal lamina propria and hypothesize that these cells maintain intestinal immune homeostasis to the enteric flora.  相似文献   

3.
Although exogeneous "danger" signals such as LPS can activate APC to produce a Th1 response, the nature of events initiating a Th2 response is controversial. We now show that pathogen-derived products have the capacity to induce bone marrow-derived dendritic cell cultures to acquire a phenotype that promotes the differentiation of naive CD4+ T cells toward either a Th1 or Th2 phenotype. Thus, LPS-matured dendritic cells (DC1) promote a Th1 response (increased generation of IFN-gamma and reduced production of IL-4) by Ag-stimulated CD4+ T cells from the DO.11.10 transgenic mouse expressing a TCR specific for an OVA peptide (OVA323-339). In contrast, a phosphorylcholine-containing glycoprotein, ES-62, secreted by the filarial nematode, Acanthocheilonema viteae, which generates a Th2 Ab response in vivo, is found to induce the maturation of dendritic cells (DC2) with the capacity to induce Th2 responses (increased IL-4 and decreased IFN-gamma). In addition, we show that the switch to either Th1 or Th2 responses is not effected by differential regulation through CD80 or CD86 and that a Th2 response is achieved in the presence of IL-12.  相似文献   

4.
Mouse and human CD4 T cells primed during an immune response may differentiate into effector phenotypes such as Th1 (secreting IFN-gamma) or Th2 (secreting IL-4) that mediate effective immunity against different classes of pathogen. However, primed CD4 T cells can also remain uncommitted, secreting IL-2 and chemokines, but not IFN-gamma or IL-4. We now show that human CD4 T cells primed by protein vaccines mostly secreted IL-2, but not IFN-gamma, whereas in the same individuals most CD4 T cells initially primed by infection with live pathogens secreted IFN-gamma. We further demonstrate that many tetanus-specific IL-2+IFN-gamma- cells are uncommitted and that a single IL-2+IFN-gamma- cell can differentiate into Th1 or Th2 phenotypes following in vitro stimulation under appropriate polarizing conditions. In contrast, influenza-specific IL-2+IFN-gamma- CD4 cells maintained a Th1-like phenotype even under Th2-polarizing conditions. Similarly, adoptively transferred OTII transgenic mouse T cells secreted mainly IL-2 after priming with OVA in alum, but were biased toward IFN-gamma secretion when primed with the same OVA peptide presented as a pathogen Ag during live infection. Thus, protein subunit vaccines may prime a unique subset of differentiated, but uncommitted CD4 T cells that lack some of the functional properties of committed effectors induced by infection. This has implications for the design of more effective vaccines against pathogens requiring strong CD4 effector T cell responses.  相似文献   

5.
6.
Celiac disease (CD) results from a permanent intolerance to dietary gluten and is due to a massive T cell-mediated immune response to gliadin, the main component of gluten. In this disease, the regulation of immune responses to dietary gliadin is altered. Herein, we investigated whether IL-10 could modulate anti-gliadin immune responses and whether gliadin-specific type 1 regulatory T (Tr1) cells could be isolated from the intestinal mucosa of CD patients in remission. Short-term T cell lines were generated from jejunal biopsies, either freshly processed or cultured ex vivo with gliadin in the presence or absence of IL-10. Ex vivo stimulation of CD biopsies with gliadin in the presence of IL-10 resulted in suppression of Ag-specific proliferation and cytokine production, indicating that pathogenic T cells are susceptible to IL-10-mediated immune regulation. T cell clones generated from intestinal T cell lines were tested for gliadin specificity by cytokine production and proliferative responses. The majority of gliadin-specific T cell clones had a Th0 cytokine production profile with secretion of IL-2, IL-4, IFN-gamma, and IL-10 and proliferated in response to gliadin. Tr1 cell clones were also isolated. These Tr1 cells were anergic, restricted by DQ2 (a CD-associated HLA), and produced IL-10 and IFN-gamma, but little or no IL-2 or IL-4 upon activation with gliadin or polyclonal stimuli. Importantly, gliadin-specific Tr1 cell clones suppressed proliferation of pathogenic Th0 cells. In conclusion, dietary Ag-specific Tr1 cells are present in the human intestinal mucosa, and strategies to boost their numbers and/or function may offer new therapeutic opportunities to restore gut homeostasis.  相似文献   

7.
Modulation of CD4 Th cell differentiation by ganglioside GD1a in vitro   总被引:1,自引:0,他引:1  
Cell surface gangliosides are shed by tumors into their microenvironment. In this study they inhibit cellular immune responses, including APC development and function, which is critical for Th1 and Th2 cell development. Using human dendritic cells (DCs) and naive CD4(+) T cells, we separately evaluated Th1 and Th2 development under the selective differentiating pressures of DC1-inducing pertussis toxin (PT) and DC2-inducing cholera toxin (CT). High DC IL-12 production after PT exposure and high DC IL-10 production after CT exposure were observed, as expected. However, when DCs were first preincubated with highly purified G(D1a) ganglioside, up-regulation of costimulatory molecules was blunted, and PT-induced IL-12 production was reduced, whereas CT-induced IL-10 production was increased. The combination of these effects could contribute to a block in the Th1 response. In fact, when untreated naive T cells were coincubated with ganglioside-preincubated, Ag-exposed DCs, naive Th cell differentiation into Th effector cells was reduced. Both the subsequent DC1-induced T cell production of IFN-gamma (Th1 marker) and DC2-induced T cell IL-4 production (Th2) were inhibited. Thus, ganglioside exposure of DC impairs, by at least two distinct mechanisms, the ability to induce Th differentiation, which could adversely affect the development of an effective cellular antitumor immune response.  相似文献   

8.
It is clear that dendritic cells (DCs) are essential for priming of T cell responses against tumors. However, the distinct roles DC subsets play in regulation of T cell responses in vivo are largely undefined. In this study, we investigated the capacity of OVA-presenting CD4-8-, CD4+8-, or CD4-8+ DCs (OVA-pulsed DC (DC(OVA))) in stimulation of OVA-specific T cell responses. Our data show that each DC subset stimulated proliferation of allogeneic and autologous OVA-specific CD4+ and CD8+ T cells in vitro, but that the CD4-8- DCs did so only weakly. Both CD4+8- and CD4-8+ DC(OVA) induced strong tumor-specific CD4+ Th1 responses and fully protective CD8+ CTL-mediated antitumor immunity, whereas CD4-8- DC(OVA), which were less mature and secreted substantial TGF-beta upon coculture with TCR-transgenic OT II CD4+ T cells, induced the development of IL-10-secreting CD4+ T regulatory 1 (Tr1) cells. Transfer of these Tr1 cells, but not T cells from cocultures of CD4-8- DC(OVA) and IL-10-/- OT II CD4+ T cells, into CD4-8+ DC(OVA)-immunized animals abrogated otherwise inevitable development of antitumor immunity. Taken together, CD4-8- DCs stimulate development of IL-10-secreting CD4+ Tr1 cells that mediated immune suppression, whereas both CD4+8- and CD4-8+ DCs effectively primed animals for protective CD8+ CTL-mediated antitumor immunity.  相似文献   

9.
Pertussis toxin enhances Th1 responses by stimulation of dendritic cells   总被引:8,自引:0,他引:8  
Pertussis toxin (PTX) has been widely used as an adjuvant to induce Th1-mediated organ-specific autoimmune diseases in animal models. However, the cellular and molecular mechanisms remain to be defined. In this study, we showed that dendritic cells (DC) stimulated with PTX (PTX-DC) were able to substitute for PTX to promote experimental autoimmune uveitis (EAU). EAU induced by PTX-DC revealed a typical Th1 response, characterized by high uveitogenic retinal Ag interphotoreceptor retinoid-binding protein (IRBP)-specific IFN-gamma and IL-12 production in the draining lymph nodes, as well as increased levels of anti-IRBP IgG2a and decreased levels of anti-IRBP IgG1 in the serum of IRBP-immunized mice. Furthermore, PTX-DC preferentially induced T cells to produce the Th1 cytokine, IFN-gamma. After being stimulated with PTX, DC exhibited up-regulation of MHC class II, CD80, CD86, CD40, and DEC205. PTX-DC had also increased allostimulatory capacity and IL-12 and TNF-alpha production. Serum IL-12 was increased in naive mice that received PTX-DC i.p. In addition, PTX activated extracellular signal-regulated kinase in DC. Following the inhibition of extracellular signal-regulated kinase signaling, the maturation of PTX-DC was reduced. Subsequently, the ability of PTX-DC to promote IFN-gamma production by T cells in vitro and to induce EAU in vivo was blocked. The results suggest that PTX might exert an adjuvant effect on DC to promote their maturation and the production of proinflammatory cytokines, thereby eliciting a Th1 response.  相似文献   

10.
Recombinant Streptococcus gordonii expressing on the surface the C-fragment of tetanus toxin was tested as an Ag delivery system for human monocyte-derived dendritic cells (DCs). DCs incubated with recombinant S. gordonii were much more efficient than DCs pulsed with soluble C-fragment of tetanus toxin at stimulating specific CD4+ T cells as determined by cell proliferation and IFN-gamma release. Compared with DCs treated with soluble Ag, DCs fed with recombinant bacteria required 102- to 103-fold less Ag and were at least 102 times more effective on a per-cell basis for activating specific T cells. S. gordonii was internalized in DCs by conventional phagocytosis, and cytochalasin D inhibited presentation of bacteria-associated Ag, but not of soluble Ag, suggesting that phagocytosis was required for proper delivery of recombinant Ag. Bacteria were also very potent inducers of DC maturation, although they enhanced the capacity of DCs to activate specific CD4+ T cells at concentrations that did not stimulate DC maturation. In particular, S. gordonii dose-dependently up-regulated expression of membrane molecules (MHC I and II, CD80, CD86, CD54, CD40, CD83) and reduced both phagocytic and endocytic activities. Furthermore, bacteria promoted in a dose-dependent manner DC release of cytokines (IL-6, TNF-alpha, IL-1beta, IL-12, TGF-beta, and IL-10) and of the chemokines IL-8, RANTES, IFN-gamma-inducible protein-10, and monokine induced by IFN-gamma. Thus, recombinant Gram-positive bacteria appear a powerful tool for vaccine design due to their extremely high capacity to deliver Ags into DCs, as well as induce DC maturation and secretion of T cell chemoattractans.  相似文献   

11.
There is evidence that donor-derived dendritic cells (DC), particularly those at a precursor/immature stage, may play a role in the immune privilege of liver allografts. Underlying mechanisms are poorly understood. We have examined the influence of in vitro generated mouse liver-derived DC progenitors (DCp) on proliferative, cytotoxic, and Th1/Th2 cytokine responses induced in allogeneic T cells. Liver DCp, propagated in GM-CSF from C57B10 mice (H2b), induced only minimal proliferation, and weak cytotoxic responses in allogeneic (C3H; H2k) T cells compared with mature bone marrow (BM)-derived DC. Flow-cytometric analysis of intracellular cytokine staining revealed that mature BM DC, but not liver DCp, elicited CD4+ T cell production of IFN-gamma. Intracellular expression of IL-10 was very low in both BM DC- and liver DCp-stimulated CD4+ T cells. Only stimulation by liver DCp was associated with IL-10 secretion in primary MLR. Notably, these liver DCp cocultured with allogeneic T cells stained strongly for IL-10. Following local (s.c. ) injection in allogeneic recipients, both BM DC and liver DCp homed to T cell areas of draining lymph nodes and spleen, where they were readily detected by immunohistochemistry up to 2 wk postinjection. Liver DCp induced clusters of IL-10- and IL-4-secreting mononuclear cells, whereas Th2 cytokine-secreting cells were not detected in mice injected with mature BM DC. By contrast, comparatively high numbers of IFN-gamma+ cells were induced by BM DC. Modulation of Th2 cytokine production by donor-derived DCp may contribute to the comparative immune privilege of hepatic allografts.  相似文献   

12.
It is widely believed that generation of mature dendritic cells (DCs) with full T cell stimulatory capacity from human monocytes in vitro requires 5-7 days of differentiation with GM-CSF and IL-4, followed by 2-3 days of activation. Here, we report a new strategy for differentiation and maturation of monocyte-derived DCs within only 48 h of in vitro culture. Monocytes acquire immature DC characteristics by day 2 of culture with GM-CSF and IL-4; they down-regulate CD14, increase dextran uptake, and respond to the inflammatory chemokine macrophage inflammatory protein-1alpha. To accelerate DC development and maturation, monocytes were incubated for 24 h with GM-CSF and IL-4, followed by activation with proinflammatory mediators for another 24 h (FastDC). FastDC expressed mature DC surface markers as well as chemokine receptor 7 and secreted IL-12 (p70) upon CD40 ligation in the presence of IFN-gamma. The increase in intracellular calcium in response to 6Ckine showed that chemokine receptor 7 expression was functional. When FastDC were compared with mature monocyte-derived DCs generated by a standard 7-day protocol, they were equally potent in inducing Ag-specific T cell proliferation and IFN-gamma production as well as in priming autologous naive T cells using tetanus toxoid as a model Ag. These findings indicate that FastDC are as effective as monocyte-derived DCs in stimulating primary, Ag-specific, Th 1-type immune responses. Generation of FastDC not only reduces labor, cost, and time required for in vitro DC development, but may also represent a model more closely resembling DC differentiation from monocytes in vivo.  相似文献   

13.
Resistance to Leishmania major in mice is associated with the generation of distinct CD4+ Th subsets, termed TH1 and TH2. To define the factors contributing to the genesis of these Th cells, we first investigated when these subsets developed following L. major infection. Lymph node (LN) cells collected 3 days after infection of BALB/c mice secreted IL-4 and IL-5 in vitro, but little IFN-gamma, whereas LN cells from a resistant strain, C3H/HeN, secreted IFN-gamma and no IL-4 or IL-5. Cytokine production was eliminated in both cases by in vivo or in vitro depletion of CD4+ cells, but not after depletion of CD8+ cells. Similar responses were observed after inoculation of killed promastigotes or a soluble leishmanial Ag preparation. These data indicate that the development of Th1- and Th2-like responses can precede lesion formation and does not require a live infection. We next investigated whether IFN-gamma was important in the differentiation of Th1 and Th2 cells. C3H/HeN mice have previously been shown to be susceptible to leishmanial infection after treatment with anti-IFN-gamma. We confirmed this observation and found that the abrogation of resistance was associated with enhanced production of IL-4 and IL-5, and decreased production of IFN-gamma by cells taken from these mice. Conversely, LN cells from BALB/c mice inoculated with parasites plus IFN-gamma produced significantly higher levels of IFN-gamma, and decreased levels of IL-4 and IL-5, than mice infected with parasites alone. Finally, we determined if IFN-gamma might augment vaccine induced immunity. We found that s.c. immunization with soluble leishmanial Ag, the bacterial adjuvant, Corynebacterium parvum and IFN-gamma could protect mice against L. major infection, and that this protection was associated with induction of Th1 responses. From these data we conclude that levels of IFN-gamma at the time of infection or immunization dramatically alters the type of response elicited: high levels of IFN-gamma favor Th1 type responses, whereas low levels promote a Th2 response.  相似文献   

14.
Dendritic cells (DC) derived from plasmacytoid precursors depend on IL-3 for survival and proliferation in culture, and they induce preferentially Th2 responses. Monocytes express not only GM-CSF receptors, but also IL-3Rs. Therefore, we examined whether IL-3 had an effect on the functional plasticity of human monocyte-derived DC generated in a cell culture system that is widely used in immunotherapy. DC were generated with IL-3 (instead of GM-CSF) and IL-4. Yields, maturation, phenotype (surface markers and Toll-like receptors), morphology, and immunostimulatory capacity were similar. Only CD1a was differentially expressed, being absent on IL-3-treated DC. In response to CD40 ligation DC generated in the presence of IL-3 secreted significantly less IL-12 p70 and more IL-10 compared with DC grown with GM-CSF. Coculture of naive allogeneic CD4(+) T cells with DC generated in the presence of IL-3 induced T cells to produce significantly more IL-5 and IL-4 and less IFN-gamma compared with stimulation with DC generated with GM-CSF. These data extend the evidence that different cytokine environments during differentiation of monocyte-derived DC can modify their Th cell-inducing properties. A hitherto unrecognized effect of IL-3 on DC was defined, namely suppression of IL-12 secretion and a resulting shift from Th1 toward Th2.  相似文献   

15.
Preclinical studies demonstrated that certain cytokines are potentially useful for the induction of antitumor immune responses. However, their administration in clinical settings was only marginally useful and evoked serious toxicity. In this study, we demonstrate that the combination of autologous inactivated tumor cells expressing IL-12 and IL-10 induced tumor remission in 50-70% of mice harboring large established colon or mammary tumors and spontaneous lung metastases, with the consequent establishment of an antitumor immune memory. Mice treatment with tumor cells expressing IL-12 was only marginally effective, while expression of IL-10 was not effective at all. Administration of the combined immunotherapy stimulated the recruitment of a strong inflammatory infiltrate that correlated with local, increased expression levels of the chemokines MIP-2, MCP-1, IFN-gamma-inducible protein-10, and TCA-3 and the overexpression of IFN-gamma, but not IL-4. The combined immunotherapy was also therapeutically effective on established lung metastases from both colon and mammary tumors. The antitumor effect of the combined immunotherapy was mainly dependent on CD8+ cells although CD4+ T cells also played a role. The production of IFN-gamma and IL-4 by spleen cells and the development of tumor-specific IgG1 and IgG2a Abs indicate that each cytokine stimulated its own Th pathway and that both arms were actively engaged in the antitumor effect. This study provides the first evidence of a synergistic antitumor effect of IL-12 and IL-10 suggesting that a Th1 and a Th2 cytokine can be effectively combined as a novel rational approach for cancer immunotherapy.  相似文献   

16.
Clarifying how an initial protective immune response to tuberculosis may later loose its efficacy is essential to understand tuberculosis pathology and to develop novel vaccines. In mice, a primary vaccination with Ag85B-encoding plasmid DNA (DNA-85B) was protective against Mycobacterium tuberculosis (MTB) infection and associated with Ag85B-specific CD4+ T cells producing IFN-gamma and controlling intramacrophagic MTB growth. Surprisingly, this protection was eliminated by Ag85B protein boosting. Loss of protection was associated with a overwhelming CD4+ T cell proliferation and IFN-gamma production in response to Ag85B protein, despite restraint of Th1 response by CD8+ T cell-dependent mechanisms and activation of CD4+ T cell-dependent IL-10 secretion. Importantly, these Ag85B-responding CD4+ T cells lost the ability to produce IFN-gamma and control MTB intramacrophagic growth in coculture with MTB-infected macrophages, suggesting that the protein-dependent expansion of non-protective CD4+ T cells determined dilution or loss of the protective Ag85B-specific CD4+ induced by DNA-85B vaccination. These data emphasize the need of exerting some caution in adopting aggressive DNA-priming, protein-booster schedules for MTB vaccines. They also suggest that Ag85B protein secreted during MTB infection could be involved in the instability of protective anti-tuberculosis immune response, and actually concur to disease progression.  相似文献   

17.
The Ag-specific CD4(+) regulatory T (Tr) cells play an important role in immune suppression in autoimmune diseases and antitumor immunity. However, the molecular mechanism for Ag-specificity acquisition of adoptive CD4(+) Tr cells is unclear. In this study, we generated IL-10- and IFN-gamma-expressing type 1 CD4(+) Tr (Tr1) cells by stimulation of transgenic OT II mouse-derived naive CD4(+) T cells with IL-10-expressing adenovirus (AdV(IL-10))-transfected and OVA-pulsed dendritic cells (DC(OVA/IL-10)). We demonstrated that both in vitro and in vivo DC(OVA/IL-10)-stimulated CD4(+) Tr1 cells acquired OVA peptide MHC class (pMHC) I which targets CD4(+) Tr1 cells suppressive effect via an IL-10-mediated mechanism onto CD8(+) T cells, leading to an enhanced suppression of DC(OVA)-induced CD8(+) T cell responses and antitumor immunity against OVA-expressing murine B16 melanoma cells by approximately 700% relative to analogous CD4(+) Tr1 cells without acquired pMHC I. Interestingly, the nonspecific CD4(+)25(+) Tr cells can also become OVA Ag specific and more immunosuppressive in inhibition of OVA-specific CD8(+) T cell responses and antitumor immunity after uptake of DC(OVA)-released exosomal pMHC I complexes. Taken together, the Ag-specificity acquisition of CD4(+) Tr cells via acquiring DC's pMHC I may be an important mean in augmenting CD4(+) Tr cell suppression.  相似文献   

18.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

19.
The biology of IL-12: coordinating innate and adaptive immune responses   总被引:13,自引:0,他引:13  
Cytokines play critical roles in regulating all aspects of immune responses, including lymphoid development, homeostasis, differentiation, tolerance and memory. Interleukin (IL)-12 is especially important because its expression during infection regulates innate responses and determines the type and duration of adaptive immune response. IL-12 induces interferon-gamma (IFN-gamma) production by NK, T cells, dendritic cells (DC), and macrophages. IL-12 also promotes the differentiation of na?ve CD4+ T cells into T helper 1 (Th1) cells that produce IFN-gamma and aid in cell-mediated immunity. As IL-12 is induced by microbial products and regulates the development of adaptive immune cells, IL-12 plays a central role in coordinating innate and adaptive immunity. IL-12 and the recently identified cytokines, IL-23 and IL-27, define a family of related cytokines that induce IFN-gamma production and promote T cell expansion and proliferation.  相似文献   

20.
UV-induced immune suppression is a risk factor for sunlight-induced skin cancer. Exposure to UV radiation has been shown to suppress the rejection of highly antigenic UV-induced skin cancers, suppresses delayed and contact hypersensitivity, and depress the ability of dendritic cells to present Ag to T cells. One consequence of UV exposure is altered activation of T cell subsets. APCs from UV-irradiated mice fail to present Ag to Th1 T cells; however, Ag presentation to Th2 T cells is normal. While this has been known for some time, the mechanism behind the preferential suppression of Th1 cell activation has yet to be explained. We tested the hypothesis that this selective impairment of APC function results from altered cytokine production. We found that dendritic cells/macrophages (DC/Mphi) from UV-irradiated mice failed to secrete biologically active IL-12 following in vitro stimulation with LPS. Instead, DC/Mphi isolated from the lymphoid organs of UV-irradiated mice secreted IL-12p40 homodimer, a natural antagonist of biologically active IL-12. Furthermore, when culture supernatants from UV-derived DC/Mphi were added to IL-12-activated T cells, IFN-gamma secretion was totally suppressed, indicating that the IL-12p40 homodimer found in the supernatant fluid was biologically active. We suggest that by suppressing DC/Mphi IL-12p70 secretion while promoting IL-12p40 homodimer secretion, UV exposure preferentially suppress the activation of Th1 cells, thereby suppressing Th-1 cell-driven inflammatory immune reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号