首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The aim of this study was to examine the expression of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity in human dental pulps and determine whether there are changes of the activity in chronically inflamed pulp tissue. Nineteen pulps with clinical diagnosis of chronic pulpitis were collected during endodontic treatment. The healthy controls were obtained from teeth extracted for orthodontic therapy. The clinical diagnosis was confirmed by histological analysis. Healthy pulps showed stratified odontoblasts in peripheral parts, while in central area there was normal connective tissue. Chronically inflamed pulps showed less expressed stratification of odontoblasts and infiltration of lymphocytes, polymorphonuclear leukocytes, plasma cells and mastocytes. NADPH-d granular reactivity was assessed semi quantitatively under the light microscope by a single observer and scored on an intensity scale from negative reaction to very strong reaction. In healthy human pulps, NADPH-d activity was strong to very strong in odontoblastic layer. Endothelial cells and Schwann cells showed strong NADPH-d reactivity, while the other parts of central area were weakly positive. Similar distribution of reactivity was expressed also in chronically inflamed pulp; moderate to strong reaction was observed in stromal area as result of positive reaction in inflammatory cells and endothelial cells of abundant newly formed capillaries.  相似文献   

2.
Summary The distribution of laminin-like immunoreactivity in adult normal and denervated cat mandibular tooth pulps was studied by the use of fluorescence microscopy and pre-embedding immunogold electron microscopy. Immunoreactivity to collagen IV was also assessed in order to distinguish basement membranes. In normal pulps, light-microscope laminin-like immunoreactivity was strong along blood vessels and Schwann cell sheaths, and a faint immunoreactivity was seen also in the odontoblast layer. Electron microscopy confirmed the laminin-like immunoreactivity of endothelial and Schwann cell basement membranes at all pulpal levels. In the odontoblast layer and the predentine, nerve-like structures lacking basement membranes but possessing strong membrane laminin-like immunoreactivity were encountered. In addition, a clear-cut laminin-like immunoreactivity of plasma membranes of the somata and processes of odontoblasts was seen. Observations on denervated pulps as well as pulps in which nerve regeneration had taken place did not reveal any changes in the pattern of laminin-immunoreactivity in basement membranes or odontoblasts. Distribution of collagen IV-like immunoreactivity was very similar to laminin-like immunoreactivity in basement membranes of blood vessels and Schwann cells, and appeared unaffected by denervation. The odontoblasts and nerve-like profiles in the odontoblast layer were devoid of collagen IV-like immunoreactivity. We propose that odontoblast-associated laminin could be of significance as guidance for regenerating terminal pulpal nerve fibers to appropriate targets.  相似文献   

3.
The coexistence of neuronal NADPH-diaphorase and ACHE activities were investigated in the phaesant spleen by successive double histochemical staining of the same sections. Two types of nerve structures were found in pheasant the spleen: nerve cells and nerve fibres. NADPH-d and ACHE-positive nerve fibres in colocalization enter the spleen in its hilum in the vicinity of splenic artery branches and are gradually distributed in periarterial topography in the white pulp. Only NADPH-d positive nerve cells were seen around the splenic vessels. In the red pulp and splenic capsule, only ACHE-positive nerve fibres were present.  相似文献   

4.
The presence of lymphatic vessels in dental pulp has recently been controversial, and no conclusion has been reached. In this study, we investigated the control of lymphangiogenesis with dental pulp development in the mouse mandibular molar using VEGF-C, VEGF-D, and VEGFR-3 as indices of lymphatic vessel-controlling factors. In addition, to distinguish blood and lymphatic vascular epithelial cells, we performed immunohistochemical analysis using von Willebrand factor (vWF) and statistical analysis. In dental papilla in the bell-stage non-calcified period, mesenchymal cells positive for VEGF-C, VEGF-D, and VEGFR-3 increased and lumen-forming endothelial cells were noted, but vWF was negative, suggesting that these were actively forming lymphatic vessels. Positive undifferentiated mesenchymal cells, an increase in endothelial cells in dental pulp, and lumen expansion were noted early after birth. Positivity was also detected in the odontoblast layer and sheath of Hertwig after birth, suggesting that these factors also play important roles in odontoblast differentiation and maturation and periodontal ligament and tooth root formation. We embryologically clarified lymphatic vessel formation in dental pulp and a process of lymphatic vessel formation from blood vessels, suggesting involvement of the surrounding tissue, odontoblasts, and sheath of Hertwig in vessel formation.  相似文献   

5.
The distribution of the tachykinin receptors neurokinin-1 (NK1), neurokinin-2 (NK2) and neurokinin-3 (NK3), and the calcitonin gene-related peptide-1 (CGRP1) receptor were examined in rat teeth and tooth-supporting tissues by immunohistochemical methods and light and confocal microscopy. Western blot analysis was performed to identify the NK1- and the CGRP1-receptor proteins in the dental pulp. The results showed that odontoblasts and ameloblasts, cementoblasts and cementocytes, osteoblasts and osteocytes are all supported with the tachykinin receptors NK1 and NK2, but a distinct, graded cellular labeling pattern was demonstrated. The ameloblasts were also positive for CGRP1 receptor. Blood vessels in oral tissues expressed the tachykinin receptors NK1, NK2 and NK3, and the CGRP1 receptor. Both gingival and Malassez epithelium were abundantly supplied by NK2 receptor. Pulpal and periodontal fibroblasts demonstrated NK1 and NK2 receptors. Western blot analysis identified both the NK1- and the CGRP1-receptor proteins in the dental pulp. These results clearly indicate that the neuropeptides substance P, neurokinin A, neurokinin B and CGRP, released from sensory axons upon stimulation, directly modulate the function of the different types of bone and dental hard tissue cells, and regulate functions of blood vessels, fibroblasts and epithelial cells in oral tissues.  相似文献   

6.
We investigated the enzymes involved in the NADPH-diaphorase (d) reaction in the rat and pig bladder urothelium. The urothelial cell layer displayed intense and uniform NADPH-d activity. Preincubation with the flavoprotein inhibitor diphenyleneiodionium chloride (DPI) and the alkaline phosphatase inhibitor levamisole concentration-dependently decreased the urothelial NADPH-d activity. Immunoreactivities to neuronal (n), endothelial (e), or inducible (i) nitric oxide synthase (NOS) were not detected in rat or pig urothelial cells. In rats, the urothelium was uniformly immunoreactive for NADPH cytochrome P450 reductase, whereas the pig urothelium displayed inconsistent labeling. In lipopolysaccharide (LPS)-treated rats, the bladder urothelium showed positive iNOS immunoreactivity. The iNOS labeling was found predominantly in cells located in the basal layer of the urothelium. In the pig bladder mucosa, a Ca2+-dependent NOS activity was evident in cytosolic and particulate fractions that was quantitatively comparable to the NOS activity found in the smooth muscle. In ultrastructural studies of urothelial cells, NADPH-d reaction products were found predominantly on membranes of the nuclear envelope, endoplasmatic reticulum and mitochondria. In conclusion, NADPH-d staining of the urothelium cannot be taken as an indicator for the presence of constitutively expressed NOS. Activity of alkaline phosphatase and cytochrome P450 reductase may account for part of the NADPH-d reaction in urothelial cells. However, LPS treatment of rats caused expression of iNOS in urothelial cells.  相似文献   

7.
There are many reports in the literature relating to the dental pathology of ancient peoples. In most instances only visual observations of alveolar lesions have been made, precluding assessment of covert dental lesions. The present paper was undertaken to compare the incidence of alveolar dental lesions determined by both visual and radiographic methods in a group of Australian aboriginal skulls. First molars of the right side were used for the comparison: approximately ten percent more lesions were found by the radiographic method. The data demonstrated the limitation of either technique alone. The strong association between pulp exposure and furcal, angular, and apical lesions suggests that pulpal lesions provoke periodontal changes that have traditionally been assigned to a gingival etiology. The location of the lesions within the periodontium would appear to be determined by the location of the pulpal pathology and the pathways through dentin between that location and the periodontal ligament.  相似文献   

8.
The dentin-pulp complex is capable of repair after tooth injuries including dental procedures. However, few data are available concerning aged changes in pulpal reactions to such injuries. The present study aimed to clarify the capability of defense in aged pulp by investigating the responses of odontoblasts and cells positive for class II major histocompatibility complex (MHC) to cavity preparation in aged rat molars (300–360 days) and by comparing the results with those in young adult rats (100 days). In untreated control teeth, immunoreactivity for intense heat-shock protein (HSP)-25 and nestin was found in odontoblasts, whereas class-II-MHC-positive cells were densely distributed in the periphery of the pulp. Cavity preparation caused two types of pulpal reactions based on the different extent of damage in the aged rats. In the case of severe damage, destruction of the odontoblast layer was conspicuous at the affected site. By 12 h after cavity preparation, numerous class-II-MHC-positive cells appeared along the pulp-dentin border but subsequently disappeared together with HSP-25-immunopositive cells, and finally newly differentiated odontoblast-like cells took the place of the degenerated odontoblasts and acquired immunoreactivity for HSP-25 and nestin by postoperative day 3. In the case of mild damage, no remarkable changes occurred in odontoblasts after operation, and some survived through the experimental stages. These findings indicate that aged pulp tissue still possesses a defense capacity, and that a variety of reactions can occur depending on the difference in the status of dentinal tubules and/or odontoblast processes in individuals.This work was supported in part by a grant from MEXT to promote 2001-multidisciplinary research project (in 2001–2005), KAKENHI (B) to H.O. (no. 16390523), and Daiwa Securities Health Foundation, Japan.  相似文献   

9.
Frozen sections of the growing end of the rat incisor tooth were exposed to antisera or affinity prepared antibodies against partially purified type I, II, or IV procollagen in the hope of detecting the location of the corresponding antigens by the peroxidase-anti-peroxidase technique. The distribution of immunostaining was similar with antisera as with purified antibodies of a given type, but differed for each type; that is, predentin, odontoblasts, pulp and periodontal tissue were the sites of type I; blood vessel walls, pulp and periodontal tissue, of type III; and basement membranes, of type IV antigenicity. It was demonstrated, at least in cases of type I and III, that immunostaining detected the corresponding procollagens and related substances, but not the corresponding collagens. The interpretation of these observations is that: 1) odontoblasts elaborate procollagen I for release to predentin and subsequent transformation to dentinal collagen I; 2) pulp and periodontal cells produce procollagens I and III which presumably become collagens I and III respectively, while the adventitial cells of blood vessels give rise to collagen III; and 3) procollagen IV is associated with basement membranes and, occasionally, adjacent cells.  相似文献   

10.
It is well known that proinflammatory cytokines produced by host cells play an important role in periodontal tissue destruction. However, the localization of the cytokines in in vivo periodontal tissues during development of periodontal disease has not been determined. Immunohistochemical expression of proinflammatory cytokines including IL-1!, IL-1#, and TNF-! was examined at 1 and 3 h, and 1, 2, 3, and 7 days after topical application of lipopolysaccharide (LPS; 5 mg/ml in physiological saline) from E. coli into the rat molar gingival sulcus. In the normal periodontal tissues, a small number of cytokine-positive epithelial cells were seen in the junctional epithelium (JE), oral sulcular and oral gingival epithelium, in addition to macrophages infiltrating in the subjunctional epithelial area and osteoblasts lining the alveolar bone surface. Epithelial remnants of Malassez existing throughout periodontal ligament were intensely positive for IL-1# but negative for the other two cytokines. At 3 h after the LPS treatment, almost all cells in the JE were strongly positive for the cytokines examined. In addition, several cytokine-positive cells, including neutrophils, macrophages, and fibroblasts, were seen in the subjunctional epithelial connective tissue. At day 2, expression of the cytokines in the JE gradually decreased, while cytokine-positive cells in the connective tissue increased in number. Positive staining of the cytokines was seen in osteoclasts and preosteoclasts which appeared along the alveolar bone margin in this period. The number of cytokine-positive cells decreased by day 7. These findings indicate that, in addition to macrophages, neutrophils, and fibroblasts, the JE cells are a potent source of TNF-!, IL-1!, and IL-1# reacting to LPS application, and suggest that JE cells may play an important role in the first line of defense against LPS challenge, and the proinflammatory cytokines transiently produced by various host cells may be involved in the initiation of inflammation and subsequent periodontal tissue destruction.  相似文献   

11.
S100-immunoreactivity (ir) was examined in tooth pulp primary neurons of the rat. An immunofluorescence method demonstrated that the molar tooth pulp contained S100-immunoreactive (ir) nerve fibers. In the root pulp, pulp horn and roof of the pulp chamber, S100-ir smooth and varicose fibers ramified and formed subodontoblastic nerve plexuses. All the fibers became varicose at the base of the odontoblastic layer and extended to the odontoblastic layer. Some varicose endings could be traced into the dentin. The trigeminal neurons retrogradely labeled with fluorogold (FG) from the first and second maxillary molar tooth pulps exhibited S100- and parvalbumin-ir. Approximately 60% and 24% of the labeled cells were ir for S100 and parvalbumin, respectively. Virtually all parvalbumin-ir FG-labeled cells showed S100-ir, while 40% of S100-ir ones coexpressed parvalbumin-ir. An immunoelectron microscopic method revealed that all myelinated axons and half of the unmyelinated axons in the root pulp contained S100-ir. In the odontoblastic layer, predentin and dentin, S100-ir neurites lost the Schwann cell ensheathment and made close contact with cell bodies and processes of odontoblasts. The odontoblastic layer also contained parvalbumin-ir neurites. These neurites were devoid of the Schwann cell ensheathment and in close apposition to cell bodies and processes of odontoblasts. S100-ir pulpal axons seemed to be insensitive to repeated neonatal capsaicin treatment. This study suggests that S100-ir tooth pulp primary neurons are mostly myelinated and that S100-ir unmyelinated axons in the root pulp are preterminal segments of myelinated stem axons.  相似文献   

12.
It is known that the dental follicle (DF) consists of progenitor cells that give rise to the cementum, periodontal ligament, and alveolar bone; but little information is available about the regulation of DF cell differentiation into either cementogenic or osteogenic cell lineages for the regeneration of diseased periodontal tissue. Here, we investigated the roles of DF, Hertwig’s epithelial root sheath (HERS), and pulp cells in the cementum and during alveolar bone formation. We cultured these cells; transplanted them alone or in combination into immunocompromised mice; and observed their effects at 6 and 12 weeks. Histological and immunohistochemical results revealed that DF cells formed cementum-like tissues with immunoreactivity to cementum-derived attached protein, bone sialoprotein, type I collagen, and alkaline phosphatase. In addition, HERS cells played a role in the induction and maturation of cementum-like tissues formed by DF cells. In contrast, implants of DF cells in the presence of pulp cells led to the formation of bone-like tissues. Interestingly, in the presence of both HERS and pulp cells, DF cells formed both cementum-like and bone-like tissues. We demonstrated that while HERS cells are able to induce DF cell differentiation into cementoblasts and promote cementum formation, pulp cells could direct DF cell differentiation into osteoblasts and enhance alveolar bone formation. These results suggest that the combined use of DF, HERS, and pulp cells could direct DF cell differentiation into cementoblasts and/or osteoblasts in vivo, thus providing a novel strategy for the successful repair and regeneration of diseased periodontal tissue.  相似文献   

13.
The activity and distribution of nicotinamide dinucleotide phosphate diaphorase (NADPH-d), an enzyme that is widely distributed in the central nervous system and involved in the production of the free radical nitric oxide, were investigated histochemically in the normal developing and intracranially transplanted retinas. In the normal rat retina, NADPH-d activity was first detected in cells in the ganglion cells layer (GCL) and blood vessels on the first postnatal day (P0). A small but distinct population of NADPH-d positive cells were observed along the inner border of the inner nuclear layer at P7. NADPH-d positive sublaminae began to appear in the inner plexiform layer during the second postnatal week, and several strongly reactive sublaminae resembling those observed in the adult were observed by the fourth postnatal week. The overall spatio- temporal sequence of development of NADPH-d positive cells in the transplanted retina was similar to that of the normal retina, except a lack of reactive in the inner plexiform layer in more mature transplants as compared with normal retinas of corresponding ages. These results indicate that the time course of development and distribution of NADPH-d cells in early postnatal retina requires signals mainly of intraretinal origin and is independent of influence from the surroundings. While this finding is supportive to the notion that neurons that are rich in NADPH-d are resistant to injury or perturbation, the observation of a lack of well organized NADPH-d reactive sublaminae in the inner plexiform layer in older transplants suggests a possible alteration in the synaptic circuitry in the inner retina with increasing postgrafting survival time.  相似文献   

14.
Transforming growth factor (TGF)-β isoforms have been implicated in cellular signalling during tooth development and repair, but little is known of their cellular localisation or distribution within the dental tissues in the mature tooth. This study investigated the presence of TGF-β1, β2 and β3 isoforms in tissues of sound and carious human molar teeth, to understand better the expression of TGF-βs during health and disease. In healthy tissues, odontoblasts, cells of the cell rich layer, pulpal fibroblasts and endothelial cells were stained to varying degrees for all isoforms, with TGF-β3 showing the greatest intensity and TGF-β1 the weakest intensity. Similar patterns of staining were observed in carious teeth; however, TGF-β1 showed significantly increased staining intensity within odontoblasts and pulpal cells of carious teeth (p<0.001). Biochemical analysis showed greater amounts of TGF-β1 in tertiary dentine than in primary dentine samples. The expression of TGF-βs in odontoblasts and the increased presence of TGF-β1 in tertiary dentine suggest that these isoforms may be important in odontoblast behaviour and the modulation of the tissue response to injury.  相似文献   

15.
Summary The distribution of nerve fibers in molars, periodontal ligament and gingiva of the rat shows a complex pattern. Decalcified material including the alveolar bone was sectioned in three different planes and stained by means of immunohistochemistry for detection of the neurofilament protein (NFP); the immunoreactive neural elements were clearly visualized in three-dimensional analyses. NFP-positive nerve fibers formed a subodontoblastic plexus in the roof area of the dental pulp; some of them entered the predentin and dentin directly through the dentinal tubules. This penetration was found mainly in the pulp horn, and was limited to a distance of about 100 m from the pulpo-dentinal junction. In the periodontal ligament, NFP-positive nerve fibers were found densely distributed in the lower half of the alveolar socket. Two types of nerve terminals were recognized in the periodontal ligament: free nerve endings with tree-like ramifications, and expanded nerve terminals showing button- or glove-like shapes. The former tapered among the periodontal fibers, some even reaching the cementoblastic layer. The latter were located, frequently in groups, within the ligament restricted to the lower third of the alveolar socket. A well-developed plexus of NFP-positive nerves was revealed in the lamina propria of the free gingiva, the innervation being denser toward the epithelium of the gingival crevice. The characteristic distribution of NFP-immunoreactive nerve fibers revealed in this study is discussed in relation to region-specific sensations in the teeth and surrounding tissues.  相似文献   

16.
Lazarov N  Dandov A 《Acta anatomica》1998,163(4):191-200
The trigeminal ganglion (TrG) and mesencephalic trigeminal nucleus (MTN) neurons are involved in the transmission of orofacial sensory information. The presence of nitric oxide (NO), a putative neurotransmitter substance in the nervous system, was examined in the cat TrG and MTN using nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry and nitric oxide synthase (NOS) immunohistochemistry. In the TrG, where the majority of the trigeminal primary afferent perikarya are located, most of the intensely NADPH-d/ NOS-stained cells were small in size and distributed randomly throughout the ganglion. The medium-sized neurons were moderately stained. A plexus of pericellular varicose arborizations around large unstained ganglion cells and densely stained fibers in-between could also be observed. In the caudal part of the MTN, both NADPH-d activity and NOS immunoreactivity was present in MTN neurons. In addition, a few scattered NADPH-d/NOS-containing neurons were found in the mesencephalic-pontine junction part of the nucleus. In contrast, only nerve fibers and their terminals were present at a more rostral level in the mid- and rostral MTN. MTN neuronal perikarya were enveloped in fine basket-like NADPH-d/ NOS-positive networks. Differential expression patterns of NOS and its marker NADPH-d suggest that trigeminal sensory information processing in the cat MTN is controlled by nitrergic input through different mechanisms. We introduce the concept that NO can act as a neurotransmitter in mediating nociceptive and proprioceptive information from periodontal mechanoreceptors but may also participate in modulating the activity of jaw-closing muscle afferent MTN neurons.  相似文献   

17.
The distribution of NADPH-diaphorase (NADPH-d) activity was investigated and compared in the rat, rabbit and pheasant thoracic spinal cord. The investigation of all spinal cord regions (laminae) in three experimental species revealed marked differences in the distribution of NADPH-d activity. Cross sectional analysis of the spinal cord of the rat, rabbit and pheasant confirmed differences in the shape of the gray matter in all examined species. More detailed investigation of Rexed's laminas showed similar distribution of NADPH-d activity in the spinal cord of the rat and rabbit, which were different when compared with the spinal cord of the pheasant. Ventral horn of the rat and rabbit showed no labelling whereas in pheasant this area possessed a number of scattered, intensively stained neurons. In the location of autonomic preganglionic neurons, differences were found as well. In the rat there was seen a number of densely packed, clearly dark blue coloured neurons. Similarly, these neurons were present in the rabbit spinal cord but they were less numerous. No staining was found in this region of pheasant. Pericentral area (lamina X) and intermediate zone (laminaVII) revealed the presence of NADPH-d positive neurons in all examined species although they differed in number and shape of their bodies. The dorsal horn showed the presence of NADPH-d staining in all three animals but its distribution was different in medio-lateral direction. It can be suggested that observed differencies in the presence and distribution of NADPH-d activity across the examined species may reflect different fylogenetic development.  相似文献   

18.
In the current study, we aimed at investigating the presence of nitric oxide synthase (NOS) positive nerve fibers in rat meibomian glands (MGs) at various stages of development. There is good evidence to suggest that nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) is a surrogate for neuronal nitric oxide synthase (NOS). Sections of the central, upper eyelids of Wistar rats were processed histochemically for NADPH-d to investigate the presence and distribution of NOS-positive nerve fibers at the following time points: day 1 and weeks 1, 2 and 3 post partum, and in adult controls. At day 1, MG acini were lightly stained and located at a distance from the mucosal border. Vessels were accompanied by intensely stained NADPH-d positive nerve fibers. At the week 1 time point, both the vessels and the NADPH-d positive fibers were still present, but less numerous. MGs were now closer to the mucosa, so that the submucosa was thinner. The acini were mostly pale but occasionally darker. At week 3, there were fewer blood vessels in both the submucosa and within the septa. Darker acini were more common than lightly stained acini. NADPH-d positive dots were observed in the vicinity of the MGs. At the week 3 time point, MGs were adjacent to the mucosal border and stained more intensely than at earlier times; almost all acini were stained. The microscopic appearances were almost identical with those of adult palpebra. Submucosal and septal blood vessels and NADPH-d positive nerve fibers were less numerous. NADPH-d histochemical staining confirmed differences in the density of stained nerve fibers at different developmental stages. The greatest density of NADPH-d -positive nerve fibers occurred in 1-day-old rats whereas they were less numerous in adult rat eyelids. Nerves innervating MGs utilize nitric oxide (NO) as a neurotransmitter mostly in early developmental stages and this need thereafter decreases and stabilizes at 3 weeks postnatally.  相似文献   

19.
Initial responses of odontoblasts and immunocompetent cells to cavity preparation by laser ablation were investigated in rat molars. In untreated control teeth, intense heat shock protein (Hsp) 25 immunoreactivity was found in the cell bodies of odontoblasts, whereas cells immunopositive for the class II major histocompatibility complex (MHC) antigen were predominantly located beneath the odontoblast layer in the dental pulp. Cavity preparation caused the destruction of the odontoblast layer and the shift of most class-II-MHC-positive cells from the pulp-dentin border toward the pulp core at the affected site. Twelve hours after cavity preparation, numerous class-II-MHC-positive cells appeared along the pulp-dentin border and extended their processes deep into the exposed dentinal tubules, but subsequently disappeared from the pulp-dentin border together with Hsp-25-immunopositive cells by 24 h after the operation. By 3–5 days postoperation, distinct abscess formation consisting of polymorphonuclear leukocytes was found in the dental pulp. The penetration of masses of oral bacteria was recognizable in the dentinal tubules beneath the prepared cavity. These findings indicate that cavity preparation by laser ablation induces remarkable inflammation by continuous bacterial infections via dentinal tubules in this experimental model, thereby delaying pulpal regeneration.This work was supported by Grant-in-Aid for Scientific Research to promote 2001-Multidisciplinary Research Projects in 2001–2005, and KAKENHI (C) (nos. 12671765 and 14571727 to H.O.) from MEXT  相似文献   

20.
The present immunohistochemical study by use of antisera against neurofilament protein (NFP) and S-100 protein dealt with the innervation of the upper incisors and periodontal ligament in five species of rodents including the guinea pig, hamster, Mongolian gerbil (Meriones unguicularis), mouse and squirrel (Tamias sibiricus). The innervation pattern of the periodontal ligament and dental pulp in the incisors of five rodents was fundamentally identical to that in the rat, which we have previously demonstrated by the same method. The NFP-positive Ruffini-like corpuscles were concentrated in the middle region of the lingual periodontal ligament in all the species examined, suggesting that this particular arrangement of Ruffini-like corpuscles, possibly stretch receptors, was essential to the rodent incisor. The labial periodontal ligament, on the other hand, contained less numerous NFP-positive nerves, these terminating among collagen fibers as free endings. The gerbil and squirrel in particular possessed only a few nerve fibers in the labial periodontal ligament. It was thus presumed that the labial periodontal ligament might be less significant as a mechanoreceptive site than the lingual periodontal ligament. The NFP-positive pulpal nerves, beaded or smooth in shape, ran parallel to the tooth axis, but never extended to the odontoblastic layer; no subodontoblastic plexus was found in the incisors of any of the rodents. S-100-immunopositive nervous elements were distributed in the periodontal ligament and dental pulp of all the rodent species examined, showing a distribution pattern similar to the NFP-positive nerves. Only in the squirrel did odontoblasts show an intense S-100 immunoreactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号