首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The antigen I/II (AgI/II) family polypeptides, ranging from 1310 to 1653 amino acid (aa) residues, are cell wall anchored adhesins expressed by most indigenous species of oral streptococci. The polypeptides interact with a wide range of host molecules, in particular salivary agglutinin glycoprotein (SAG or gp340), and with ligands on other oral bacteria. To determine the receptor recognition properties of six different AgI/II family polypeptides from strains of Streptococcus gordonii, Streptococcus intermedius and Streptococcus mutans, the genes were cloned and expressed on the surface of the surrogate host Lactococcus lactis. The S. gordonii SspA and SspB polypeptides mediated higher binding levels of L. lactis cells to surface immobilized gp340 than did S. intermedius Pas protein, or S. mutans SpaP or PAc proteins. However, the AgI/II proteins were all similar in their abilities to mediate aggregation of lactococci by fluid phase gp340. The SpaP(I) polypeptide from S. mutans Ingbritt, which was C-terminally truncated by approximately 400 aa residues, did not bind gp340. Lactococci expressing AgI/II proteins, including SpaP(I), were aggregated by a synthetic 16 aa residue peptide SRCRP2 derived from the aa repeat block sequences within gp340. In coaggregation assays, SspB from S. gordonii was unique in mediating coaggregation with only group A and group E strains of Actinomyces naeslundii. All the other AgI/II polypeptides mediated coaggregation with group C and group D strains of A. naeslundii. Analysis of chimeric protein constructs revealed that coaggregation specificity was determined by sequences within the N-terminal half of AgI/II protein. A synthetic peptide (20 aa residues), which defines a putative adhesion epitope within the C-terminal region of polypeptide, inhibited AgI/II-mediated aggregation by gp340 but did not affect coaggregation with A. naeslundii. These results suggest that different mechanisms operate in interactions of AgI/II family polypeptides with native gp340, gp340 SRCR domain peptide, and A. naeslundii. Specificity of these interactions appears to be determined by discontinuous but interacting regions of the polypeptides, thus providing flexibility in receptor recognition for streptococcal colonization of the human host.  相似文献   

2.
The Antigen I/II (AgI/II) family of proteins are cell wall anchored adhesins expressed on the surface of oral streptococci. The AgI/II proteins interact with molecules on other bacteria, on the surface of host cells, and with salivary proteins. Streptococcus gordonii is a commensal bacterium, and one of the primary colonizers that initiate the formation of the oral biofilm. S. gordonii expresses two AgI/II proteins, SspA and SspB that are closely related. One of the domains of SspB, called the variable (V‐) domain, is significantly different from corresponding domains in SspA and all other AgI/II proteins. As a first step to elucidate the differences among these proteins, we have determined the crystal structure of the V‐domain from S. gordonii SspB at 2.3 Å resolution. The domain comprises a β‐supersandwich with a putative binding cleft stabilized by a metal ion. The overall structure of the SspB V‐domain is similar to the previously reported V‐domain of the Streptococcus mutans protein SpaP, despite their low sequence similarity. In spite of the conserved architecture of the binding cleft, the cavity is significantly smaller in SspB, which may provide clues about the difference in ligand specificity. We also verified that the metal in the binding cleft is a calcium ion, in concurrence with previous biological data. It was previously suggested that AgI/II V‐domains are carbohydrate binding. However, we tested that hypothesis by screening the SspB V‐domain for binding to over 400 glycoconjucates and found that the domain does not interact with any of the carbohydrates.  相似文献   

3.
The highly conserved antigen I/II family of polypeptides produced by oral streptococci are believed to be colonization determinants and may mediate adhesion of bacterial cells to salivary glycoproteins adsorbed to cells and tissues in the human oral cavity. Streptococcus gordonii is shown to express, on the cell surface, two antigen I/II polypeptides designated SspA and SspB (formerly Ssp-5) that are the products of tandemly arranged chromosomal genes. The structure and arrangement of these genes is similar in two independently isolated strains, DL1 and M5, of S. gordonii. The mature polypeptide sequences of M5 SspA (1539 amino acid (aa) residues) and SspB (1462 aa residues) are almost wholly conserved (98% identical) in the C-terminal regions (from residues 796 in SspA and 719 in SspB, to the respective C-termini), well-conserved (84%) at the N-terminal regions (residues 1–429), and divergent (only 27% identical residues) within the intervening central regions. Insertional inactivation of the sspA gene in S. gordonii DL1 resulted in reduced binding of cells to salivary agglutinin glycoprotein (SAG), human erythrocytes, and to the oral bacterium Actinomyces naeslundii. Further reductions in streptococcal cell adhesion to SAG and to two strains of A. naeslundii were observed when both sspA and sspB genes were inactivated. The results suggest that both SspA and SspB polypeptides are involved in adhesion of S. gordonii cells to human and bacterial receptors.  相似文献   

4.
Lipoteichoic acid (LTA) is thought to play a role in the interactions between Streptococcus pyogenes and host cells. We have examined the effect of exogenous LTA on the adherence and entry of S. pyogenes JRS4 strain into HEp-2 epithelial cells. LTA markedly inhibited bacterial entry in a concentration-dependent manner, up to 250 microg ml(-1). In contrast, LTA had only a slight inhibitory effect on adherence. LTA also inhibited the entry but not adherence of Salmonella typhimurium strain into HEp-2 cells. Binding experiments showed a dose-dependent binding of LTA to cells up to 10 microg ml(-1). Confocal laser microscopy imaging and analysis revealed that LTA was internalized by the epithelial cells and colocalized with F-actin. These results might imply that, following binding, exogenous LTA enters HEp-2 cells and exerts a cytotoxic effect that interferes with bacterial internalization. A possible target for LTA activity might be the actin cytoskeleton, which is known to be essential for bacterial uptake.  相似文献   

5.
6.
Streptococcus pyogenes utilizes multiple mechanisms for adherence to and internalization by epithelial cells. One of the molecules suggested of being involved in adherence and internalization is the M protein. Although strains of the M3 serotype form the second largest group isolated from patients with severe invasive diseases and fatal infections, not much information is known regarding the interactions of M3 protein with mammalian cells. In this study we have constructed an emm3 mutant of an invasive M3 serotype (SP268), and demonstrated that the M3 protein is involved in both adherence to and internalization by HEp-2 cells. Fibronectin promoted both adherence and internalization of SP268 in an M3-independent pathway. Utilizing speB and speB/emm3 double mutants, it was found that M3 protein is not essential for the maturation of SpeB, as was reported for the M1 protein. Increased internalization efficiency observed in both the speB and emm3/speB mutants suggested that inhibition of S. pyogenes internalization by SpeB is not related to the presence of an intact M3 protein. Thus, other proteins in SP268, which serve as targets for SpeB activity, have a prominent role in the internalization process.  相似文献   

7.
Sequences contributing to epitopes recognized by a panel of monoclonal antibodies (mAbs) against the Streptococcus mutans surface protein P1 were delineated by Western blot and enzyme-linked immunosorbent assay using a battery of deletion constructs and recombinant polypeptides. mAbs that recognize complex discontinuous epitopes reconstituted by combining the alanine-rich and proline-rich repeat domains and varying degrees of flanking sequence were identified as well as mAbs that bound epitopes contained within contiguous segments of P1. Cross-reactivity with SspA and SspB from Streptococcus gordonii is also reported. This information enables insight into the structure and function of a streptococcal adhesin and its correlates of protection and furthers our understanding of the immunomodulatory and bacterial-adherence inhibition activities of anti-P1 mAbs.  相似文献   

8.
The streptococcal antigen I/II (AgI/II)-family polypeptides are cell wall-anchored adhesins expressed by most indigenous oral streptococci. Proteins sharing 30-40% overall amino acid sequence similarities with AgI/II-family proteins are also expressed by Streptococcus pyogenes. The S. pyogenes M28_Spy1325 polypeptide (designated AspA) displays an AgI/II primary structure, with alanine-rich (A) and proline-rich (P) repeats flanking a V region that is projected distal from the cell. In this study it is shown that AspA from serotype M28 S. pyogenes, when expressed on surrogate host Lactococcus lactis, confers binding to immobilized salivary agglutinin gp-340. This binding was blocked by antibodies to the AspA-VP region. In contrast, the N-terminal region of AspA was deficient in binding fluid-phase gp-340, and L. lactis cells expressing AspA were not agglutinated by gp-340. Deletion of the aspA gene from two different M28 strains of S. pyogenes abrogated their abilities to form biofilms on saliva-coated surfaces. In each mutant strain, biofilm formation was restored by trans complementation of the aspA deletion. In addition, expression of AspA protein on the surface of L. lactis conferred biofilm-forming ability. Taken collectively, the results provide evidence that AspA is a biofilm-associated adhesin that may function in host colonization by S. pyogenes.  相似文献   

9.
Oral streptococci adhere to tooth-immobilized glycoprotein 340 (GP340) via the surface protein antigen I/II (AgI/II) and its homologs as the first step in pathogenesis. Studying this interaction using recombinant proteins, we observed that calcium increases the conformational stability of the scavenger-rich cysteine repeat (SRCRs) domains of GP340. Our results also show that AgI/II adheres specifically with nanomolar affinity to the calcium-induced SRCR conformation in an immobilized state and not in solution. This interaction is significantly dependent on the O-linked carbohydrates present on the SRCRs. This study also establishes that a single SRCR domain of GP340 contains the two surfaces to which the apical and C-terminal regions of AgI/II noncompetitively adhere. Compared with the single SRCR domain, the three tandem SRCR domains displayed a collective/cooperative increase in their bacterial adherence and aggregation. The previously described SRCRP2 peptide that was shown to aggregate several oral streptococci displayed limited aggregation and also nonspecific adherence compared to SRCR domains. Finally, we show distinct species-specific adherence/aggregation between Streptococcus mutans AgI/II and Streptococcus gordonii SspB in their interaction with the SRCRs. This study concludes that identification of the metal ion and carbohydrate adherence motifs on both SRCRs and AgI/II homologs could lead to the development of anti-adhesive inhibitors that could deter the adherence of pathogenic oral streptococci and thereby prevent the onset of infections.  相似文献   

10.
The molecular pathogenesis of infections caused by group A Streptococcus (GAS) is not fully understood. We recently reported that a recombinant protein derived from the collagen-like surface protein, Scl1, bound to the human collagen receptor, integrin α2β1. Here, we investigate whether the same Scl1 variant expressed by GAS cells interacts with the integrin α2β1 and affects the biological outcome of host–pathogen interactions. We demonstrate that GAS adherence and internalization involve direct interactions between surface expressed Scl1 and the α2β1 integrin, because (i) both adherence and internalization of the scl1- inactivated mutant were significantly decreased, and were restored by in-trans complementation of Scl1 expression, (ii) GAS internalization was reduced by pre-treatment of HEp-2 cells with anti-α2 integrin-subunit antibody and type I collagen, (iii) recombinant α2-I domain bound the wild-type GAS cells and (iv) internalization of wild-type cells was significantly increased in C2C12 cells expressing the α2β1 integrin as the only collagen-binding integrin. Next, we determined that internalized GAS re-emerges from epithelial cells into the extracellular environment. Taken together, our data describe a new molecular mechanism used by GAS involving the direct interaction between Scl1 and integrins, which increases the overall capability of the pathogen to survive and re-emerge.  相似文献   

11.
The antigen I/II (AgI/II) protein is a major surface protein that mediates the attachment of Streptococcus mutans (S. mutans) to the saliva-coated pellicle. Numerous studies have investigated not only the mechanisms by which AgI/II signaling is transduced within cells, but have also attempted to use AgI/II-specific antibodies to treat dental caries and host immune responses. However, little information is available about the effects of AgI/II on basic cellular events in bone cells. In this study, we examined the effects of the His-tagged recombinant N-terminal half of the AgI/II protein (rAgI/II-N) generated from S. mutans GS-5 on the viability, proliferation, and cell cycle progression of primary calvarial osteoblasts. We also investigated the mechanisms involved in the rAgI/II-N-mediated survival of serum-starved osteoblasts. We found that rAgI/II treatment attenuated the serum deprivation-induced decrease in cell viability and proliferation of osteoblasts. rAgI/II-N also prevented the loss of mitochondrial membrane potential (MMP), alterations in levels of two key mitochondrial Bcl-2 family proteins, and the accumulation of numerous cells into the sub-G(1) phase that were observed in serum-starved osteoblasts. Pharmacological inhibitors of phosphoinositide 3-kinase (PI3K), but not of extracellular signal-regulated kinase or Ras, blocked the rAgI/II-N-mediated protection against serum deprivation-induced cell death. Additional experiments revealed that the integrin α5β1-mediated PI3K pathway is required for rAgI/II-N-mediated Akt phosphorylation in osteoblasts. Collectively, these results suggest that rAgI/II-N induces survival signals in serum-starved osteoblasts through integrin-induced PI3K/Akt signaling pathways.  相似文献   

12.
13.
Microbial interactions with host molecules, and programmed responses to host environmental stimuli, are critical for colonization and initiation of pathogenesis. Bacteria of the genus Streptococcus are primary colonizers of the human mouth. They express multiple cell-surface adhesins that bind salivary components and other oral bacteria and enable the development of polymicrobial biofilms associated with tooth decay and periodontal disease. However, the mechanisms by which streptococci invade dentine to infect the tooth pulp and periapical tissues are poorly understood. Here we show that production of the antigen I/II (AgI/II) family polypeptide adhesin and invasin SspA in Streptococcus gordonii is specifically upregulated in response to a collagen type I signal, minimally the tri-peptide Gly-Pro-Xaa (where Xaa is hydroxyproline or alanine). Increased AgI/II polypeptide expression promotes bacterial adhesion and extended growth of streptococcal cell chains along collagen type I fibrils that are characteristically found within dentinal tubules. These observations define a new model of host matrix signal-induced tissue penetration by bacteria and open the way for novel therapy opportunities for oral invasive diseases.  相似文献   

14.
Binding of bacteria to beta 1 chain integrin receptors results in either bacterial adherence or uptake by cultured cells (Isberg, 1991). In this report we show that Staphylococcus aureus coated with high affinity ligands for the beta 1 chain integrin family can be internalized efficiently, whereas bacteria coated with low affinity ligands are poorly internalized. Overproduction of the alpha 5 beta 1 integrin increased the efficiency of bacterial internalization, indicating that the uptake efficiency is directly related to the level of expression of the receptor. By using latex beads or S. aureus coated with mAbs directed against the alpha 5 beta 1 integrin, a roughly semi-logarithmic correlation was observed between the affinity of the receptor-ligand interaction and the rate of bacterial internalization. Evidence is presented that high affinity binding of the bacterium allows the microorganism to compete efficiently with receptor-ligand interactions at the basolateral surface of the cell.  相似文献   

15.
Communication based on autoinducer 2 (AI-2) is widespread among gram-negative and gram-positive bacteria, and the AI-2 pathway can control the expression of genes involved in a variety of metabolic pathways and pathogenic mechanisms. In the present study, we identified luxS, a gene responsible for the synthesis of AI-2, in Streptococcus gordonii, a major component of the dental plaque biofilm. S. gordonii conditioned medium induced bioluminescence in an AI-2 reporter strain of Vibrio harveyi. An isogenic mutant of S. gordonii, generated by insertional inactivation of the luxS gene, was unaffected in growth and in its ability to form biofilms on polystyrene surfaces. In contrast, the mutant strain failed to induce bioluminescence in V. harveyi and was unable to form a mixed species biofilm with a LuxS-null strain of the periodontal pathogen Porphyromonas gingivalis. Complementation of the luxS mutation in S. gordonii restored normal biofilm formation with the luxS-deficient P. gingivalis. Differential display PCR demonstrated that the inactivation of S. gordonii luxS downregulated the expression of a number of genes, including gtfG, encoding glucosyltransferase; fruA, encoding extracellular exo-beta-D-fructosidase; and lacD encoding tagatose 1,6-diphosphate aldolase. However, S. gordonii cell surface expression of SspA and SspB proteins, previously implicated in mediating adhesion between S. gordonii and P. gingivalis, was unaffected by inactivation of luxS. The results suggest that S. gordonii produces an AI-2-like signaling molecule that regulates aspects of carbohydrate metabolism in the organism. Furthermore, LuxS-dependent intercellular communication is essential for biofilm formation between nongrowing cells of P. gingivalis and S. gordonii.  相似文献   

16.
Very little is known about the biological functions of pili that have recently been found to be expressed by important Gram-positive pathogens such as Corynebacterium diphtheriae, Streptococcus agalacticae, S. pneumoniae and S. pyogenes. Using various ex vivo tissue and cellular models, here we show that pili mediate adhesion of serotype M1 S. pyogenes strain SF370 to both human tonsil epithelium and primary human keratinocytes, which represent the two main sites of infection by this human-specific pathogen. Mutants lacking minor pilus subunits retained the ability to express cell-surface pili, but these were functionally defective. In contrast to above, pili were not required for S. pyogenes adhesion to either immortalized HEp-2 or A549 cells, highlighting an important limitation of these extensively used adhesion/invasion models. Adhering bacteria were internalized very effectively by both HEp-2 and A549 cells, but not by tonsil epithelium or primary keratinocytes. While pili acted as the primary adhesin, the surface M1 protein clearly enhanced adhesion to tonsil, but surprisingly, had the opposite effect on adhesion to keratinocytes. These studies provide clear evidence that S. pyogenes pili display an adhesive specificity for clinically relevant human tissues and are likely to play a critical role in the initial stages of infection.  相似文献   

17.
Streptococcus mutans antigen I/II (AgI/II) protein was one of the first cell wall‐anchored adhesins identified in Gram‐positive bacteria. It mediates attachment of S. mutans to tooth surfaces and has been a focus for immunization studies against dental caries. The AgI/II family polypeptides recognize salivary glycoproteins, and are also involved in biofilm formation, platelet aggregation, tissue invasion and immune modulation. The genes encoding AgI/II family polypeptides are found among Streptococcus species indigenous to the human mouth, as well as in Streptococcus pyogenes, S. agalactiae and S. suis. Evidence of functionalities for different regions of the AgI/II proteins has emerged. A sequence motif within the C‐terminal portion of Streptococcus gordonii SspB (AgI/II) is bound by Porphyromonas gingivalis, thus promoting oral colonization by this anaerobic pathogen. The significance of other epitopes is now clearer following resolution of regional crystal structures. A new picture emerges of the central V (variable) region, predicted to contain a carbohydrate‐binding trench, being projected from the cell surface by a stalk formed by an unusual association between an N‐terminal α‐helix and a C‐terminal polyproline helix. This presentation mode might be important in determining functional conformations of other Gram‐positive surface proteins that have adhesin domains flanked by α‐helical and proline‐rich regions.  相似文献   

18.
Genetically engineering bacteria to express surface proteins which can antagonize the colonization of other microorganisms is a promising strategy for altering bacterial environments. The fimbriae of Porphyromonas gingivalis play an important role in the pathogenesis of periodontal diseases. A structural subunit of the P. gingivalis fimbriae, fimbrillin, has been shown to be an important virulence factor, which likely promotes adherence of the bacterium to saliva-coated oral surfaces and induces host responses. Immunization of gnotobiotic rats with synthetic peptides based on the predicted amino acid sequence of fimbrillin has also been shown to elicit a specific immune response and protection against P. gingivalis-associated periodontal destruction. In this study we engineered the human oral commensal organism Streptococcus gordonii to surface express subdomains of the fimbrillin polypeptide fused to the anchor region of streptococcal M6 protein. The resulting recombinant S. gordonii strains expressing P. gingivalis fimbrillin bound saliva-coated hydroxyapatite in a concentration-dependent manner and inhibited binding of P. gingivalis to saliva-coated hydroxyapatite. Moreover, the recombinant S. gordonii strains were capable of eliciting a P. gingivalis fimbrillin-specific immune response in rabbits. These results show that functional and immunologically reactive P. gingivalis fimbrillin polypeptides can be expressed on the surface of S. gordonii. The recombinant fimbrillin-expressing S. gordonii strains may provide an effective vaccine or a vehicle for replacement therapy against P. gingivalis. These experiments demonstrated the feasibility of expressing biologically active agents (antigens or adhesin molecules) by genetically engineered streptococci. Such genetically engineered organisms can be utilized to modulate the microenvironment of the oral cavity.  相似文献   

19.
Cell surface protein receptors in oral streptococci   总被引:19,自引:0,他引:19  
Abstract Streptococci have a vast repertoire of adherence properties which include binding to human tissue components, epithelial cells and to other bacterial cells. These interactions are determined by the expression of cell-surface receptors some of which are species-specific. In the oral streptococci, two families of surface protein receptors with highly conserved amino acid sequences have been identified. The antigen I/II family of polypeptides are wall-associated high molecular mass proteins (158–166 kDa) with several binding functions that may be attributed to different domains of the receptor molecules. The LraI family of polypeptides are surface-associated lipoproteins (32–33 kDa) involved in adherence of streptococci to salivary glycoprotein pellicle and to oral Actinomyces . A region of amino acid sequence similarity is evident amongst members of the two protein families in Streptococcus gordonii . Ligand-binding specificities of these receptor polypeptides may account for species-specific adherence and site-directed colonization of streptococci within the human oral cavity.  相似文献   

20.
迟缓爱德华氏菌对Hep-2细胞的侵袭特性   总被引:7,自引:0,他引:7  
用细胞裂解计数法及超薄切片电镜观察法分析了迟缓爱德华氏菌侵袭HEp-2细胞的基本特性。在15株来源各异的迟缓爱德华氏菌中,有6株细菌具有对HEp-2细胞的侵袭能力。细菌侵入细胞后,主要位于空泡内。侵入细胞内的迟缓爱德华氏菌不仅可在细胞内增殖,而且可从细胞内释放出来。用细胞松弛素破坏微丝后可抑制其侵袭作用,而且表现出剂量依赖关系,而在秋水仙素破坏微管后不影响其侵袭力。这表明在迟缓爱德华氏菌对HEp-  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号