首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We reported previously that a transient occlusion followed by reperfusion of the portal vein and the hepatic artery of the rat significantly decreased the transhepatic transport of a cholephilic compound, and that this decrease was prevented by pretreating animals with poly(styrene co-maleic acid butyl ester)-conjugated superoxide dismutase (SM-SOD). To elucidate the mechanism for oxidative injury of the liver and the site for the generation of superoxide radicals, the effect of a portosystemic bypass on the liver function was examined in the rat whose hepatic vessels were temporarily occluded. A portosystemic bypass inhibited the reperfusion-induced decrease in hepatic transport of bromosulfophthalein as effectively as did SM-SOD. Kinetic analysis using 125I-labeled albumin revealed that the permeability of the small intestine markedly increased after a transient occlusion. The increase in intestinal permeability was also inhibited either by SM-SOD or by the portosystemic bypass. Xanthine oxidase activity in portal plasma markedly increased during occlusion and reperfusion, while it remained within normal ranges in the bypassed group. Thus, superoxide radical, and/or its metabolite(s), might play a critical role in increasing the intestinal permeability and in the pathogenesis of reperfusion-induced liver injury.  相似文献   

2.
《Free radical research》2013,47(1):391-399
Although oxygen toxicity of tissues can be decreased by a variety of antioxidants and some enzymes, such as SOD and catalase, their protective effect on tissue injury in various diseases are fairly small predominantly because of their unfavorable in vivo behavior. To minimize oxidative stress in various diseases. such as ischemic myocardial injury, circulatory disturbance and corneal inflammation, we synthesized three types of SOD derivatives by gene and protein engineering technique. One type of SOD (SM-SOD covalently linked with hydrophobic anions) circulates bound to albumin with a half life of 6 h and accumulates in tissues whose local pH is decreased. The other type of SOD (AC-SOD covalently linked with long chain fatty acids via the ?-amino group of lysyl residues) anchors onto membranc/lipid bilaycrs of various cells. The last type of SOD (HB-SOD synthesized by constructing a fusion gene coding human CuZn-type SOD and a C-terminal heparin-binding domain) binds to heparin-like proteoglycans on vascular cndothelial cell surface. Intravenous administration of either SM-SOD or HB-SOD markedly inhibited postischcmic reflow arrhythmias in the rat. When the left anterior descending artery was occluded permanently. about 65 % of animals died within 30 min predominantly due to irreversible ventricular fibrillation; the motality of animals decreased to 15 % by administering SM-SOD either before or after occlusion. Topically administered AC-SOD bound to the corneal epithelial cell surface and polyrnorp%onuclear leukocytes and efficiently dismutated superoxide radicals at their cell surface. Thus,' endotoxin-induced kcratitis was inhibited markedly by topical instillation of AC-SOD. Unmodified SOD itself failed to inhibit the pathologic events occurring in these disease models. Thus, these SOD derivatives permit in vivo studies on the mechanism and the site for oxygen toxicity in various diseases and provide a new strategy for targeting enzymes and bioactive peptides for medical use to appropriate site(s) of their action.  相似文献   

3.
M Inoue  I Ebashi  N Watanabe  Y Morino 《Biochemistry》1989,28(16):6619-6624
Protection of tissues from oxidative stress is one of the major prerequisites for aerobic life. Since intravenously injected Cu2+/Zn2+-type superoxide dismutase (SOD) disappears from the circulation with a short half-life of 5 min, its clinical use as a scavenger for superoxide radical is limited. We synthesized a human erythrocyte type SOD derivative (SM-SOD) by linking 2 mol of hydrophobic organic anion, alpha-4-[( 6-(N-maleimido)hexanoyloxymethyl]cumyl]half-butyl-esterified poly(styrene-co-maleic acid) (SM), to the cysteinyl residues of the dimeric enzyme without decreasing enzymic activity. SM-SOD, but not SOD, bound to an albumin-Sepharose column; the bound SM-SOD was eluted by a buffer solution containing 0.5% sodium dodecyl sulfate or 10 mM warfarin, suggesting that SM-SOD reversibly binds to the warfarin site on albumin. Due to the amphipathic nature of the SMI moiety, SM-SOD bound also to cell membranes particularly when the pH was decreased. In vivo analysis in the rat revealed that intravenously injected SM-SOD circulated bound to albumin with a half-life of 6 h. Postischemic reperfusion arrhythmias were almost completely prevented by a single dose of SM-SOD, but not SOD. Thus, the prolonged half-life of SM-SOD in the circulation and its preferential accumulation in an injured site with decreased pH appeared to be responsible for preventing myocardial injury. These results suggest that superoxide radical and/or its metabolite(s) would play an important role in the pathogenesis of postischemic reperfusion arrhythmias and that SM-SOD may be useful for decreasing tissue injury in ischemic heart disease.  相似文献   

4.
Although the possible involvement of superoxide radical and its metabolite(s) in the pathogenesis of various types of edema have been suggested, direct evidence supporting this concept is lacking. Since intravenously administered Cu2+Zn2(+)-type superoxide dismutase (SOD) rapidly disappeared from the circulation with a half-life of 4 min, the enzyme could not be used to test whether superoxide radicals played a critical role in the modulation of vascular permeability. We previously synthesized a SOD derivative (SM-SOD) by linking poly(styrene co-maleic acid butyl ester) (SM) to the enzyme (Ogino, T., Inoue, M., Ando, Y., Awai, M., Maeda, H. and Morino Y. (1988) Int. J. Pept. Protein Res. 32, 1583-1588); SM-SOD circulates bound to albumin with a half-life of 6 h. To test whether superoxide radicals play an important role in the regulation of vascular permeability, the effect of SM-SOD on experimental paw edema was studied in the rat. Subcutaneous injections of carrageenin to the paw rapidly induced local edema by increasing vascular permeability. Intravenous administration of SM-SOD markedly inhibited the carrageenin-induced increase in vascular permeability and suppressed the development of paw edema. In contrast, the same dose of SOD showed no such inhibitory effect. These results suggest that superoxide radical and/or its metabolite(s) might play a critical role in the pathogenesis of carrageenin-induced vasogenic edema.  相似文献   

5.
Since cytochrome c and acetylated cytochrome c disappear from the circulation with a half-life of 4 min, these proteins cannot be used for in vivo detection of superoxide radicals and related metabolites. To determine superoxide and other radicals in vivo, a cytochrome c derivative (SMAC) was synthesized by linking 1 mol of poly(styrene-co-maleic acid) butyl ester (SM) to cytochrome c, followed by acetylation of its lysyl amino groups. SMAC retained 8 and 80% of cytochrome c activity to react with ascorbyl and superoxide radicals, respectively. However, SMAC did not serve as a substrate for cytochrome c reductase and cytochrome c oxidase. When injected intravenously to the rat, SMAC circulated bound to albumin with a half-life of 130 min. SMAC was rapidly reduced in the circulation of intact animals. Treatment of animals with paraquat markedly enhanced the reduction of the circulating SMAC. We have synthesized an SM-conjugated superoxide dismutase (SOD) derivative (SM-SOD) that circulates bound to albumin with a half-life of 6 h. Kinetic analysis revealed that SM-SOD effectively inhibited the superoxide-dependent reduction of SMAC either in the presence or absence of 0.5 mM albumin. However, the reduction of the circulating SMAC was not inhibited by SM-SOD both in normal and paraquat-treated animals. Plasma samples from both animal groups also reduced cytochrome c and SMAC by an SOD-insensitive mechanism. However, after treatment with ascorbate oxidase, both plasma samples lost their activity to reduce cytochrome c and SMAC. These and other results suggest that ascorbyl radical might principally be responsible for the reduction of circulating SMAC and that plasma levels of ascorbyl radical might increase in paraquat-treated animals.  相似文献   

6.
Therapeutic effects of four types of recombinant superoxide dismutase (SOD) derivatives, conjugates with polysaccharides, carboxymethyl (SOD-CMD) and diethylaminoethyl (SOD-DEAED) dextrans and galactosylated (Gal-SOD) and mannosylated (Man-SOD) derivatives, on hepatic ischemia/reperfusion injury were studied in rats. Hepatic injury induced by transient occlusion and subsequent reflow of hepatic blood was evaluated by the analysis of biliary excretion of bromosulfophthalein (BSP) injected intravenously. At a dose of 10000 units/kg, native SOD and SOD-DEAE did not show any significant effect and SOD-CMD showed slight effect. On the other hand, Gal-SOD and Man-SOD, targeted to the liver parenchymal and nonparenchymal cells, respectively, by a receptor-mediated endocytosis, exhibited superior inhibitory effects. These results demonstrated that these glycosylated SOD derivatives were useful for the prevention of hepatic ischemia/reperfusion injury.  相似文献   

7.
The inhibition of lipid peroxidation by oligomeric derivatives synthesized from prostaglandin E1 (PGE1) and PGB2 was studied using two rat models. In an in vitro model, the brain was exposed to decapitation-ischemia, the cortex was removed and homogenized, and the formation of thiobarbituric acid reactive substances (TBAR) was measured after exposing the homogenate to in vitro reoxygenation either in the presence or absence of oligomers. It was found that these oligomers could inhibit lipid peroxidation, and that their activities were higher than that of superoxide dismutase (SOD). In an in vivo administration model, either the oligomer or the vehicle was injected i.p. 30 min before decapitation. The brain was exposed to decapitation-ischemia, the cortex was homogenized and exposed to 'in vitro' reoxygenation, after which TBAR value was determined. Ester-type compounds had a greater activity than free-acid type compounds in inhibiting lipid peroxidation. A possible mechanism of the protective effect of these oligomers in ischemia/reperfusion injury may be to scavenge oxygen free radicals.  相似文献   

8.
The study of the influence of the age of animals (13 to 53 weeks) on total liver thiobarbituric acid reactive substances (TBAR) content showed an increase which is maximal in rats of 39 weeks of age compared to young animals (13 weeks), followed by a dimunition in the 53 weeks old group. In this situation, the content of hepatic GSH and total GSH equivalents as well as the GSH/GSSG ratio were decreased with ageing, while GSSG levels were enhanced in the oldest group studied. Acute ethanol intoxication resulted in a marked increase in liver TBAR content in young animals, together with a decline in GSH, total GSH equivalents and GSH/GSSG ratio, and an enhancement in GSSG. These changes elicited by ethanol intake were reduced with ageing. It is concluded that ethanol-induced oxidative stress in the liver is diminished during ageing, despite the progressive decrease in the glutathione content of the tissue observed in control animals.  相似文献   

9.
In vivo and in vitro studies were conducted using transgenic mice with 1.8-fold increased SOD activity in the cytoplasmic fraction compared to normal mice in order to evaluate the role of cytoplasmic superoxide dismutase (SOD) in hepatic ischemia-reperfusion injury. In the in vivo study, after inducing 15 min 70% partial hepatic ischemia followed by 45 min reperfusion, we determined the plasma levels of ALT, hyaluronic acid, and phosphatidylcholine hydroperoxide (PCOOH) as the membranous lipoperoxide of the hepatic tissue. In addition, in vitro ischemia-reperfusion studies for cultured hepatocytes were conducted in an anaerobic chamber that could create a hypoxic or oxygen-rich environment in order to clarify the amelioration of reperfusion injuries in the SOD rich hepatocytes. High levels of ALT and PCOOH were found as a result of reperfusion in normal mice, while a suppression of the increase in these levels was noted in the transgenic mice. In both groups, the hyaluronic acid levels were not modified. These results suggest that intracellular superoxide production is involved in the mechanism of hepatic ischemia-reperfusion injury, and that an improvement of the ability to eliminate intracellular superoxide species can contribute to the prevention of reperfusion injury.  相似文献   

10.
Free radicals and other toxic oxygen species play a role in the pathogenesis of ischemic organ damage. The abdominal skin flap has been used as a model to study the effects of superoxide dismutase on the survival of ischemic skin. We have evaluated the evolution of functional and structural injury to the vasculature after ischemic injury in superoxide dismutase-treated and control skin flaps. Ischemia was induced by creating abdominal skin flaps and occluding either the venous or both the venous and arterial blood supplies. Superoxide dismutase was administered immediately after the occlusion was released. At 1 hour of reflow, erythrocyte stasis, platelet deposition, neutrophil adherence, and injury to the endothelium of the large vessels and of the microvasculature were evident. The blood flow in the ischemic skin was only 3 percent of normal. Superoxide dismutase caused no change in the ultrastructure of the vasculature and a marginal decrease in vascular permeability in the ischemic skin at 1 hour of reflow. Increased fluorescent staining of the skin was evident after 24 hours of reflow in the superoxide dismutase-treated flaps. These findings indicate that injury to vascular endothelium by ischemia and reperfusion plays a role in the evolution of skin necrosis.  相似文献   

11.
Autooxidation of hydroquinone (HQ) or 1,2,4-benzenetriol (BT), catalysed by hemin in the presence of dithiothreitol was studied in phosphate buffered saline. Inclusion of glutamate in the above reaction mixture resulted in the formation of thiobarbituric acid reactive products (TBAR) only in an aerobic atmosphere and was linear up to 2 h. Oxygen consumption was noticed during the reaction process. The formation of TBAR was linear with the increase in concentration of heme (1 – 4 μM), dithiothreitol (0.2 – 2 mM) or BT (0.17 – 0.85 mM). Linearity of TBAR formation from glutamate for up to 2 h was observed during the autooxidation of BT in the presence of heme. Besides glutamate, heme concentration dependent formation of TBAR from deoxyuridine or DNA was also observed. Almost complete inhibition of TBAR formation from glutamate, deoxyuridine or DNA was observed in the presence of catalase or superoxide dismutase (SOD). The presence of thiourea or mannitol in the reaction mixture caused substantial diminution of TBAR formation. Albumin or dimethyl sulfoxide also caused partial inhibition. Complete to partial inhibition observed in the presence of oxyradical scavengers in this study indicates that hemin catalysed autooxidation of BT results in the formation of reactive oxygen radicals.  相似文献   

12.
This paper presents the study on TLR-mediated production of reactive oxygen species and tumor necrosis factor alpha by peripheral blood neutrophils in healthy donors stimulated with zymosan (TLR2/6 ligand), peptidoglycan (TLR2/1 ligand), and lipopolysaccharide (TLR4 ligand). Luminol- and lucigen-independent chemiluminescence was used to detect the production of reactive oxygen species. The concentration of tumor necrosis factor alpha was measured by enzyme immunoassay. The plots of dependence of the light sums of luminol- and lucigenin-dependent chemiluminescence on the concentration of each ligand were shaped as saturation curves. The comparison of the light sums of lucigenin-dependent chemiluminescence (the production of superoxide anion radical) and luminol-dependent chemiluminescence (the total production of reactive oxygen species) showed that the contribution of NADPH oxidase to the total TLR-mediated production of oxidants can reach 40–50%. Stimulation indices were calculated to compare the ability of TLR ligands to stimulate the production of reactive oxygen species and tumor necrosis factor alpha by neutrophils. It has been established that the activation of neutrophils with zymosan leads to higher (more than 8-fold) production of reactive oxygen species rather than production of tumor necrosis factor alpha. Unlike zymosan, lipopolysaccharide stimulated the production of tumor necrosis factor alpha to a greater extent (by more than 2 times) than the production of reactive oxygen species. Peptidoglycan takes an intermediate position between these ligands. Thus, the production of effector molecules (reactive oxygen species and tumor necrosis factor alpha) by human peripheral blood neutrophils depends on the nature of the TRL ligand.  相似文献   

13.
The mechanism of tissue injury at the cellular level by following the chemiluminescence response of various phagocytes in E. coli induced experimental pyelonephritis in mice was investigated. There was a marked increase in the capacity of various phagocytic cells viz; renal neutrophils and macrophages peritoneal macrophages, blood monocytes and neutrophils to produce reactive oxygens species through the respiratory burst activity as monitored by the chemiluminescence response. The chemiluminescence response was observed to be increased significantly (p less than 0.001) with increasing days post infection in all phagocytic cells. However, the quantity of total reactive oxygen species produced per million cells was much more in the renal and peritoneal macrophages as compared to blood monocytes and neutrophils. The peak chemiluminescence response time was observed to be decreased from 4 to 2 minutes with the progression of the diseases. The implications of these findings have been discussed.  相似文献   

14.
Evidence in alcoholics as well as in experimental models support the role of hepatic lipid peroxidation in the pathogenesis of alcohol-induced liver injury, but the mechanism of this injury is not fully delineated. Previous studies of the metabolism of ethanol by alcohol dehydrogenase revealed iron mobilization from ferritin that was markedly stimulated by superoxide radical generation by xanthine oxidase. Peroxidation of hepatic lipid membranes (assessed as malondialdehyde production) was studied during in vitro alcohol metabolism by alcohol dehydrogenase. Peroxidation was initiated by acetaldehyde-xanthine oxidase, stimulated by ferritin, and inhibited by superoxide dismutase or chelation or iron with desferrioxamine. In conclusion, lipid peroxidation may be initiated during the metabolism of ethanol by alcohol dehydrogenase by an iron-dependent acetaldehyde-xanthine oxidase mechanism.  相似文献   

15.
Lucigenin-enhanced chemiluminescence (LcCL) allows one to investigate the reactions of superoxide anion radical (*O2-) generated by mitochondria and is applied to study the superoxide production in enzymatic and membrane systems by isolated mitochondria and cells, and in whole organs. The application of lucigenin-enhanced chemiluminescence to estimate the respiration of human tissues involves the use of small tissue pieces, which can be obtained, for instance, by biopsia; however, no systematic investigations have been performed on these objects. In the present paper, a comparative study of lucigenin-enhanced chemiluminescence of tissues isolated from different organs of the rat was carried out to elucidate its dependence on the extent of tissue defragmentation, storage time, and access for oxygen. It was shown that the addition of lucigenin to a piece of tissue, a suspension of fine tissue fragments, and homogenates greatly enhanced chemiluminescence, and a whole piece of tissue possessed a much lesser (by 1-1.5 order of magnitude) intensity of chemiluminescence than homogenate or gruel. In the absence of stirring of the surrounding solution, the lucigenin-enhanced chemiluminescence of tissue quickly decreased, apparently due to a decrease in the level of oxygen in the tissue, as the result of its consumption. The chemiluminescence consisted of two components: a lucigenin-dependent and lucigenin-independent one (intrinsic chemiluminescence). Thus, the tissue was a source of lucigenin-enhanced chemiluminescence, and this luminescence was observed only at a sufficient access for oxygen. The lucigenin-independent component did not practically depend on oxygen and was determined by the components coming out of the tissue into the surrounding solution. Nitric oxide (NO) inhibited chemiluminescence as its concentration increased and did not affect considerably the rate of oxygen consumption by the tissue. The results obtained allow one to conclude that lucigenin can be used as a rather effective chemiluminescent probe for the production of superoxide radicals by tissue pieces.  相似文献   

16.
Sphingomyelin liposomes and brain microsomes were oxidized by exposure to hydrogen peroxide and ferrous ion. Lipid peroxidation were measured by the formation of thiobarbituric acid- reactive substances (TBAR). Hydroxyl radical was detected using the spin- trapping technique. Incubation of sphingomyelin liposomes with H2O2-Fe2+ resulted in an increase in the formation of TBAR. Na(+)-K(+)-ATPase activity was markedly inhibited and the SH group content decreased during incubation of microsomes in the presence of H2O2-Fe2+. Sodium ferulate effectively inhibited TBAR formation, protected Na(+)-K(+)-ATPase activity and prevented the oxidative modification of SH groups. Spin-trapping experiments showed that sodium ferulate effectively scavenged the hydroxyl radicals.  相似文献   

17.
Oxidative stress, an imbalance between endogenous levels of oxygen radicals and antioxidative defense, increases with aging. However, it is not clear which of these two factors is the more critical. To clarify the production of oxygen radicals increases with age, we examined oxygen radical-dependent chemiluminescent signals in ex vivo brain slices using a novel photonic imaging method. The chemiluminescent intensity was significantly decreased by the membrane permeable superoxide dismutase (SOD)/catalase mimic, but not by Cu,Zn-SOD. Inhibitors for complex I, III, and IV of the mitochondrial electron transport chain transiently enhanced the chemiluminescent signal. The superoxide-dependent chemiluminescent intensity in senescence accelerated mouse (SAM) brain tissues increases with age. Moreover, the slope of the age-dependent increase was steeper in SAMP10, a strain characterized by a short lifespan and atrophy in the frontal cerebral cortex, than the senescence-resistant strain SAMR1, which has a longer lifespan. An increase in chemiluminescence with age was also observed in C57/BL6 mice, Wistar rats, and pigeons, although levels of chemiluminescence were lower in the pigeons than murines. The rate of age-related increases of superoxide-dependent chemiluminescence was inversely related to the maximum lifespan of the animals. The activity of superoxide dismutase was unchanged during the aging process in the brain. This suggested that superoxide production itself may increase with age. We speculated that reactive oxygen may be a signal to determine the aging process.  相似文献   

18.
Chemiluminescence by Listeria monocytogenes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Listeria monocytogenes cells suspended in brain heart infusion broth or in carbonated saline solution emitted light (chemiluminescence) that could be detected by a liquid scintillation spectrometer. This chemiluminescence was inhibited by superoxide dismutase and catalase but not by the hydroxyl radical scavengers mannitol and benzoate; it was also dependent upon and proportional to the carbonate ion concentration in the medium. Organisms suspended in carbonated saline solution which had ceased to chemiluminesce immediately began to chemiluminesce again when acetaldehyde was added but not when glucose, sucrose, or xanthine was added. Acetaldehyde-induced chemiluminescence was inhibited by suproxide dismutase and catalase but not by allopurinol. Our data indicate that the superoxide anion, hydrogen peroxide, and the carbonate ion are involved in chemiluminescence by L. monocytogenes. Chemiluminescence is apparently initiated by the extracellular generation of superoxide anon by this organism. The mechanism for the production of the superoxide anion is not known, but xanthine oxidase does not appear to be involved.  相似文献   

19.
Neutrophils may be involved in the pathophysiology of reperfusion injury following cerebral ischemia. One potential mechanism of reperfusion injury by neutrophils is through production of the superoxide anion. We hypothesized that, due to progressive endothelial damage during ischemia, neutrophil activation would be more prominent after longer periods of ischemia prior to reperfusion. Thus, neutrophils would contribute more to pathological processes such as superoxide anion formation after longer than after shorter periods of ischemia. A reversible middle cerebral artery occlusion model in rats was employed and superoxide anion concentration was measured with a cytochrome c coated electrode placed on the cortical penumbral region. Occlusion times were varied from 60 min to 2 h, and neutrophils were inhibited with an antiCD18 antibody administered prior to occlusion. Neutrophil accumulation and reduction with antibody treatment was confirmed immunohistochemically. Superoxide anion (O2•−) concentration was detected during the hours following 60 min of occlusion, and increased further with 2 h of occlusion. Treatment with the antiCD18 antibody had no effect on O2•− concentration during reperfusion in the 60–90 min occlusion groups, but O2•− concentration was significantly lower in the antiCD18 antibody treated group than in the control group during reperfusion after 120 min of ischemia. The antibody also reduced cortical neutrophil accumulation in the 120 min ischemia group. These results indicate for the first time that superoxide production by neutrophils becomes more important with longer periods of ischemia, and other quantitatively less important sources of superoxide predominate with shorter periods of ischemia. This phenomenon may explain some of the variation seen between different models of ischemia with different durations of ischemia when targeting reactive oxygen species, and supports an approach to combination therapy to extend the therapeutic window and reduce the deleterious effects of reperfusion.  相似文献   

20.
The oxidation of free coelenterazine by superoxide anion was analyzed and compared to the oxidation by the semisynthetic photoprotein obelin, prepared by incorporation of synthetic coelenterazine into apoobelin. The oxidation of bound coelenterazine was triggered upon binding of calcium to the reconstituted photoprotein. The oxidation of free synthetic coelenterazine, in the absence of the apoprotein, was triggered by superoxide anion. The production of reactive oxygen metabolites by fMet-Leu-Phe- and 4b-phorbol 12b-myristate 13a-acetate-stimulated neutrophils was studied by means of the luminescence of synthetic coelenterazine. The features of this chemiluminescent probe were compared with those of luminol and are summarized as follows: (a) coelenterazine-dependent chemiluminescence was inhibited by superoxide dismutase; (b) coelenterazine was as sensitive as luminol in detecting the oxidative burst of neutrophils; (c) azide failed to inhibit coelenterazine chemiluminescence; (d) in contrast with luminol, which requires the catalytic removal of hydrogen peroxide, coelenterazine chemiluminescence did not depend on the activity of cell-derived myeloperoxidase. These results indicate the usefulness of coelenterazine as a very sensitive and specific chemiluminescence probe of superoxide anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号