首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Y Ando  M Inoue  T Utsumi  Y Morino  S Araki 《FEBS letters》1988,240(1-2):216-220
Involvement of oxygen radicals in the pathogenesis of various inflammatory diseases has been the focus of recent attention. Since lipid peroxidation of cell membranes is postulated to be one of the major reasons for radical-induced tissue injury, inhibition of oxygen toxicity at or near plasma membranes is important. To metabolize extracellular superoxide radicals effectively at or near cell membranes, we synthesized amphipathic superoxide dismutase (SOD) derivatives (AC-SOD) by covalently linking hydrophobic fatty acids with different chain lengths, such as caprylic acid, capric acid, lauric acid and myristic acid, to the lysyl amino groups of the enzyme. When incubated with erythrocytes or polymorphonuclear leukocytes (PMNs), AC-SOD, but not SOD, bound to plasma membranes of these cells. When topically instilled to the eye, AC-SOD also bound to corneal epithelial cell surface. Upon activation by phorbolmyristyl acetate, extracellular cytochrome c was rapidly reduced by PMNs which were pretreated with SOD. In contrast, PMNs preincubated with AC-SOD failed to catalyze the reduction of cytochrome c under the same experimental conditions. These results suggested that AC-SOD bound to cell membranes and effectively dismutated superoxide radicals at or on the outer surface of plasma membranes.  相似文献   

2.
M Inoue  I Ebashi  N Watanabe  Y Morino 《Biochemistry》1989,28(16):6619-6624
Protection of tissues from oxidative stress is one of the major prerequisites for aerobic life. Since intravenously injected Cu2+/Zn2+-type superoxide dismutase (SOD) disappears from the circulation with a short half-life of 5 min, its clinical use as a scavenger for superoxide radical is limited. We synthesized a human erythrocyte type SOD derivative (SM-SOD) by linking 2 mol of hydrophobic organic anion, alpha-4-[( 6-(N-maleimido)hexanoyloxymethyl]cumyl]half-butyl-esterified poly(styrene-co-maleic acid) (SM), to the cysteinyl residues of the dimeric enzyme without decreasing enzymic activity. SM-SOD, but not SOD, bound to an albumin-Sepharose column; the bound SM-SOD was eluted by a buffer solution containing 0.5% sodium dodecyl sulfate or 10 mM warfarin, suggesting that SM-SOD reversibly binds to the warfarin site on albumin. Due to the amphipathic nature of the SMI moiety, SM-SOD bound also to cell membranes particularly when the pH was decreased. In vivo analysis in the rat revealed that intravenously injected SM-SOD circulated bound to albumin with a half-life of 6 h. Postischemic reperfusion arrhythmias were almost completely prevented by a single dose of SM-SOD, but not SOD. Thus, the prolonged half-life of SM-SOD in the circulation and its preferential accumulation in an injured site with decreased pH appeared to be responsible for preventing myocardial injury. These results suggest that superoxide radical and/or its metabolite(s) would play an important role in the pathogenesis of postischemic reperfusion arrhythmias and that SM-SOD may be useful for decreasing tissue injury in ischemic heart disease.  相似文献   

3.
Since plasma levels of enzymes, such as superoxide dismutase (SOD), that scavenge reactive oxygen species are low, surface membranes of endothelial and parenchymal cells of various tissues are often exposed to oxidative stress. To dismutase superoxide radicals efficiently in and around vascular endothelial cells, we constructed a fusion gene encoding a hybrid SOD (HB-SOD) consisting of human Cu/Zn-SOD and a C-terminal basic peptide that binds to heparin-like proteoglycans. The fusion gene was expressed in yeast, and the resulting HB-SOD was highly purified. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, HB-SOD revealed a protein band with an apparent molecular weight of 20,000. HB-SOD bound to endothelial cells of aortic segments by a mechanism which was inhibited by heparin but not by antithrombin III. When injected intravenously to rats, 125I-labeled HB-SOD rapidly disappeared from the circulation; the rate of disappearance was decreased by heparin. Less than 1% of the injected HB-SOD was found in the urine 20 min after administration at which time more than 70% of SOD was excreted in its intact form. Immunohistochemical studies revealed that HB-SOD predominantly bound to heparin-like proteoglycans on endothelial cells of the artery and other tissues. HB-SOD might permit studies on pathophysiological roles of superoxide radicals in and around vascular endothelial cells in vivo.  相似文献   

4.
Although the possible involvement of superoxide radical and its metabolite(s) in the pathogenesis of various types of edema have been suggested, direct evidence supporting this concept is lacking. Since intravenously administered Cu2+Zn2(+)-type superoxide dismutase (SOD) rapidly disappeared from the circulation with a half-life of 4 min, the enzyme could not be used to test whether superoxide radicals played a critical role in the modulation of vascular permeability. We previously synthesized a SOD derivative (SM-SOD) by linking poly(styrene co-maleic acid butyl ester) (SM) to the enzyme (Ogino, T., Inoue, M., Ando, Y., Awai, M., Maeda, H. and Morino Y. (1988) Int. J. Pept. Protein Res. 32, 1583-1588); SM-SOD circulates bound to albumin with a half-life of 6 h. To test whether superoxide radicals play an important role in the regulation of vascular permeability, the effect of SM-SOD on experimental paw edema was studied in the rat. Subcutaneous injections of carrageenin to the paw rapidly induced local edema by increasing vascular permeability. Intravenous administration of SM-SOD markedly inhibited the carrageenin-induced increase in vascular permeability and suppressed the development of paw edema. In contrast, the same dose of SOD showed no such inhibitory effect. These results suggest that superoxide radical and/or its metabolite(s) might play a critical role in the pathogenesis of carrageenin-induced vasogenic edema.  相似文献   

5.
Ischemia followed by reflow often results in tissue injury. Although reactive oxygens seem to play an important role in the pathogenesis of postischemic reflow-induced tissue injury, the mechanism and an efficient way to inhibit oxidative injury are not known. We studied the mechanism by which hepatic transport function was inhibited by a transient occlusion followed by reflow of the portal vein and hepatic artery by using a superoxide dismutase (SOD) derivative (SM-SOD) which circulates bound to albumin with a half-life of 6 h. Occlusion of the hepatic vessels for 20 min followed by reflow for 60 min significantly inhibited transhepatic transport of cholephilic ligands, such as bromosulfophthalein (BSP) and taurocholic acid. Intravenous administration of SM-SOD markedly inhibited the reflow-induced decrease in transhepatic transport of these ligands. Thiobarbituric acid - reactive metabolites (TBAR) in the liver and plasma remained unchanged during occlusion and reflow, while TBAR in the bile increased significantly. Intravenous injection of SM-SOD inhibited the reflow-induced increase in biliary TBAR. Xanthine oxidase activity in plasma also increased during occlusion and reflow by an SM-SOD-inhibitable mechanism. Polymorphonuclear leukocyte-dependent chemiluminescence of the peripheral blood remained unchanged during occlusion, but increased markedly with time after reflow. SM-SOD also inhibited the increase in chemiluminescence almost completely. These and other results suggested that the superoxide radical and/or its metabolite(s) might play an important role in the pathogenesis of the reflow-induced liver injury and that SM-SOD might be useful for studying the mechanism for tissue injury caused by oxygen toxicity.  相似文献   

6.
Since cytochrome c and acetylated cytochrome c disappear from the circulation with a half-life of 4 min, these proteins cannot be used for in vivo detection of superoxide radicals and related metabolites. To determine superoxide and other radicals in vivo, a cytochrome c derivative (SMAC) was synthesized by linking 1 mol of poly(styrene-co-maleic acid) butyl ester (SM) to cytochrome c, followed by acetylation of its lysyl amino groups. SMAC retained 8 and 80% of cytochrome c activity to react with ascorbyl and superoxide radicals, respectively. However, SMAC did not serve as a substrate for cytochrome c reductase and cytochrome c oxidase. When injected intravenously to the rat, SMAC circulated bound to albumin with a half-life of 130 min. SMAC was rapidly reduced in the circulation of intact animals. Treatment of animals with paraquat markedly enhanced the reduction of the circulating SMAC. We have synthesized an SM-conjugated superoxide dismutase (SOD) derivative (SM-SOD) that circulates bound to albumin with a half-life of 6 h. Kinetic analysis revealed that SM-SOD effectively inhibited the superoxide-dependent reduction of SMAC either in the presence or absence of 0.5 mM albumin. However, the reduction of the circulating SMAC was not inhibited by SM-SOD both in normal and paraquat-treated animals. Plasma samples from both animal groups also reduced cytochrome c and SMAC by an SOD-insensitive mechanism. However, after treatment with ascorbate oxidase, both plasma samples lost their activity to reduce cytochrome c and SMAC. These and other results suggest that ascorbyl radical might principally be responsible for the reduction of circulating SMAC and that plasma levels of ascorbyl radical might increase in paraquat-treated animals.  相似文献   

7.
Reactive oxygen species (ROS) contribute to the development of various human diseases. Cu,Zn-superoxide dismutase (SOD) is one of the major means by which cells counteract the deleterious effects of ROS. SOD activity is dependent upon bound copper ions supplied by its partner metallochaperone protein, copper chaperone for SOD (CCS). In the present study, we investigated the protective effects of PEP-1-CCS against neuronal cell death and ischemic insults. When PEP-1-CCS was added to the culture medium of neuronal cells, it rapidly entered the cells and protected them against paraquat-induced cell death. Moreover, transduced PEP-1-CCS markedly increased endogenous SOD activity in the cells. Immunohistochemical analysis revealed that it prevented neuronal cell death in the hippocampus in response to transient forebrain ischemia. These results suggest that CCS is essential to activate SOD, and that transduction of PEP-1-CCS provides a potential strategy for therapeutic delivery in various human diseases including stroke related to SOD or ROS.  相似文献   

8.
Bromobenzene causes hepatic and extrahepatic toxicity in rats. Toxicity is related to the presence of covalently bound material in these tissues. A major bromobenzene metabolite, p-bromophenol, has been shown to give rise to covalently bound material in liver, lung and kidney in vivo, but is not toxic. p-Bromophenol is formed from bromobenzene in liver, lung and kidney microsomes and is subsequently metabolized to 4-bromocatechol and covalently bound material. Bromobenzene-3, 4-oxide generated in situ by liver microsomes, is detoxified by kidney, liver and lung cytosol. The results suggest that the kidney toxicity caused by bromobenzene is probably not mediated by either bromobenzene-3, 4-oxide or the reactive metabolites of p-bromophenol. In contrast, bromobenzene-3, 4-oxide may play a role in the lung toxicity observed after bromobenzene administration. However, the covalently bound material found in extrahepatic tissues may be derived from both bromobenzene-3, 4-oxide or the reactive metabolites of p-bromophenol, which may be formed directly by these tissues or transported there from the liver.  相似文献   

9.
Although oxygen-free radicals have been postulated to play an important role in the pathogenesis of gastric mucosal injury induced by posthemorrhagic blood transfusion, direct evidence supporting this hypothesis is lacking. Superoxide dismutase (SOD) has been shown to inhibit oxygen toxicity in vitro in various types of cell injury. However, in some cases, oxidative tissue injury cannot be decreased efficiency predominantly due to its rapid elimination by renal glomerular filtration. To overcome such frustrating situations, we have synthesized a SOD derivative that circulates bound to albumin with a half-life of 6 hr. When blood was withdrawn from the rat (22 ml/kg) for 30 min followed by transfusion of the extracted blood, marked gastric mucosal lesions occurred within 30 min after transfusion. Intravenously injected SOD derivative markedly decreased gastric mucosal injury. Kinetic analysis using 125I-labeled albumin revealed that the vascular permeability of the stomach increased significantly after transfusion by a SOD derivative inhibitable mechanism. Thus, superoxide radical and/or its metabolite(s) play a critical role in the pathogenesis of posthemorrhagic transfusion-induced gastric injury.  相似文献   

10.
The toxicity and binding of aluminium to Escherichia coli has been studied. Inhibition of growth by aluminium nitrate was markedly dependent on pH; growth in medium buffered to pH 5.4 was more sensitive to 0.9 mM or 2.25 mM aluminium than was growth at pH 6.6–6.8. In medium buffered with 2-(N-morpholino)ethanesulphonic acid (MES), aluminium toxicity was enhanced by omission of iron from the medium or by use of exponential phase starter cultures. Analysis of bound aluminium by atomic absorption spectroscopy showed that aluminium was bound intracellularly at one type of site with a K m of 0.4 mM and a capacity of 0.13 mol (g dry wt)-1. In contrast, binding of aluminium at the cell surface occurred at two or more sites with evidence of cooperativity. Addition of aluminium nitrate to a weakly buffered cell suspension caused acidification of the medium attributable to displacement of protons from cell surfaces by metal cations. It is concluded that aluminium toxicity is related to pH-dependent speciation [with Al(H2O) 6 3+ probably being the active species] and chelation of aluminium in the medium. Aluminium transport to intracellular binding sites may involve Fe(III) transport pathways.  相似文献   

11.
Vanadium compounds are characterised by a broad spectrum of action in vivo and in vitro. Their insulin-mimetic activity is manifested in their ability to normalize changes observed in both clinical and experimental diabetes (i.e. hyperglycaemia, hyperlipidaemia, lowered cell sensitivity to insulin) through the regulation of carbohydrate and lipid metabolism and the removal of secondary symptoms of this disease (as e.g. retinopathy, cardiomyopathy, nephropathy). Nevertheless, vanadium is considered to be a toxic element in both cationic and anionic form, although the latter type has more serious side effects. This is accounted for by the faster absorption of anionic forms, although the chemical structure, geometry, and the manner of synthesis of its derivatives also contributes to this elevated toxicity. Besides their antidiabetic properties, vanadium derivatives have also been observed to influence processes related to mitogenic cell responses (apoptosis, proliferation, neoplastic transformation). However, both anti-and pro-neoplastic properties of vanadium are reported.  相似文献   

12.
Alkaline treatment of Pseudomonas aeruginosa type 5 lipopolysaccharide (LPS) resulted in reduced toxicity as measured by both the Limulus amoebocyte assay and the rabbit pyrogenicity test. Chemical analysis of the deacylated LPS (D-LPS) revealed that ester-linked fatty acids were removed while the amide-linked fatty acids remained intact. The neutral and amino sugar compositions for native LPS and D-LPS were identical within experimental error. Antigenic determinants for complement-dependent human opsonic antibody were retained under these deacylation conditions. To enhance its immunogenicity, D-LPS was covalently coupled to Pseudomonas pili and the 1,4-diaminobutyl derivatives of Pseudomonas exotoxin A and tetanus toxoid. Quantitative amino sugar analyses revealed that 2.6 and 3.2 mol of D-LPS were covalently bound to aminobutyl Pseudomonas exotoxin A and aminobutyl tetanus toxoid, respectively. Gel electrophoresis data indicated at least 1 mol of D-LPS covalently bound per pilus subunit protein. Initial immunologic data indicated that antibody against D-LPS could be induced when the D-LPS is covalently attached to protein carriers.  相似文献   

13.
The polyamines and their derivatives are essential for life in eukaryotic and most prokaryotic cells, but their exact role in preserving cell function is not clear. These polyamines provide endogenous cations and thus participate in regulation of the intracellular pH; in addition, polyamine derivatives modulate cell growth and differentiation. The naturally occurring monoacetyl derivatives can induce increased activity of ornithine decarboxylase, the first enzyme in polyamine synthesis, and thus produce positive feedback to their production. The diacetyl derivatives of putrescine and of the synthetic analogue, 1,6-diaminohexane, induce differentiation and inhibit growth in many types of cells in vitro. In addition, they inhibit the proliferative and secretory response of normal B lymphocytes to B-cell mitogens and reduce production of antibodies in vitro. They also inhibit the proliferation of chronic lymphocytic leukemia cells (a B-lymphocyte leukemia). The parent polyamines are post-translational modifiers of proteins, and hypusine, a derivative of spermidine, is a covalently bound constituent of the eukaryotic protein synthetic initiation factor, eIF-4D. Although these various actions do not at present fall into a coherent pattern, they clearly indicate that polyamines and their derivatives play an important part in modulating cell proliferation and differentiation.  相似文献   

14.
In vitro studies of the transport of colloidal particles by the cornea were carried out on intact corneas of adult rabbits in a chamber described by Donn, Maurice, and Mills (2) in which the epithelial or the endothelial surface of the cornea was exposed to thorium dioxide or saccharated iron oxide under various conditions. These studies confirmed the results of previous work in vivo and allowed modification of the experimental conditions. Particles are pinocytosed at the apical surface of the corneal endothelium and carried around the terminal bar in membrane-bounded vesicles. Basal to the terminal bar these vesicles fuse with the lateral cell margin and their contents are released into the intercellular space, in which they appear to be carried by a one-way flow down to Descemet's membrane and the corneal stroma. Indications that the endothelial transport is an active process are presented by the different pathways of transport into or out of the corneal stroma, as well as by the approximately 70 per cent reduction in transport activity at low temperatures.  相似文献   

15.
The reaction of whey proteins (WP) with quercetin and rutin (quercetin-3-O-rhamnosylglucoside) is influenced by the glycosidic bound sugar moiety. The protein derivatives formed showed a blocking of tryptophan (max. 49%), free amino (max. 32%) and thiol groups (max. 24%). The amount of quercetin and rutin bound covalently (up to 94 and 31 nmol mg−1, respectively) was estimated by their characteristic absorbance between 300 and 340 nm. At least one molecule of the phenolic reactant was covalently bound to a β-lactoglobulin molecule (β-Lg). High molecular protein fractions were detected by SDS-PAGE (cross-linking with quercetin). All results confirm that quercetin is more reactive than rutin. The pH-dependent solubility of the derivatives decreased, although their hydrophilic character increased. The structural changes (circular dichroism (CD)) showed that especially rutin causes perturbation of the secondary (decrease of -helix elements accompanied by an increase in random coil) and tertiary structure. The in vitro proteolytic digestibility, especially of the rutin derivatives was elevated, due to an increase in denaturation of the derivatives.  相似文献   

16.
《Free radical research》2013,47(6):373-377
The in vitro and in vivo effects of the naturally occuring Ravolignan hepatoprotective agent silibinin? on the expression and activity of superoxide dismutase (SOD) enzyme were studied in lymphocytes from patients with chronic alcoholic liver disease. In vitro incubation with silibinin in a concentration corresponding to the usual therapeutic dosage markedly increased the SOD — expression of lymphocytes as measured by Row-cytofluorimetry following staining with monoclonal anti-Cu, Zn-SOD — antibody and FITC-conjugated anti-mouse Ig. In vivo treatment with the drug restored the originally low SOD activity of the patients' lymphocytes. These data indirectly suggest that antioxidant activity might be one of the important factors in the hepatoprotective action of silibinin.  相似文献   

17.
Uptake and binding of dodine acetate by fungal spores   总被引:1,自引:0,他引:1  
Uptake of the dodine cation from acetate solutions by conidia of Alternaria tenuis and Neurospora crassa was characterized by a rapid rate of sorption, a ‘Langmuir type’ adsorption isotherm, and independence of temperature: all of which suggests an ionic bonding mechanism. Metal cations competed with dodine for the anionic binding sites of the cell—regarded as carboxyl and phosphate groups—and dodine uptake also decreased as ionization of the carboxyl group was suppressed. Cell walls of A. tenuis had a greater capacity to bind dodine than did those of N. crassa. Binding at the cell wall may detoxify some of the large amount of dodine that must be accumulated by the spores to achieve toxicity. The dodine retained by N. crassa cell walls could not be exchanged or desorbed by washing and is probably bound covalently rather than by weaker ionic bonds. At sub-lethal concentrations there was no evidence that dodine disorganized cell wall structure. Disruption of spores which had been incubated with 14C-labelled dodine showed the fungicide to be associated with intra-cytoplasmic organelles. It is suggested that dodine reacts with the protoplast membrane so as to alter its permeability and allow more dodine to penetrate into the cytoplasm where it may destroy intracellular membrane structure.  相似文献   

18.
Choi I  Song HD  Lee S  Yang YI  Nam JH  Kim SJ  Sung JJ  Kang T  Yi J 《PloS one》2011,6(12):e28982
Interactions between protein aggregates and a cellular membrane have been strongly implicated in many protein conformational diseases. However, such interactions for the case of Cu/Zn superoxide dismutase (SOD1) protein, which is related to fatal neurodegenerative disorder amyotrophic lateral sclerosis (ALS), have not been explored yet. For the first time, we report the direct observation of defect formation and increased ion permeability of a membrane induced by SOD1 aggregates using a supported lipid bilayer and membrane patches of human embryonic kidney cells as model membranes. We observed that aggregated SOD1 significantly induced the formation of defects within lipid membranes and caused the perturbation of membrane permeability, based on surface plasmon resonance spectroscopy, atomic force microscopy and electrophysiology. In the case of apo SOD1 with an unfolded structure, we found that it bound to the lipid membrane surface and slightly perturbed membrane permeability, compared to other folded proteins (holo SOD1 and bovine serum albumin). The changes in membrane integrity and permeability were found to be strongly dependent on the type of proteins and the amount of aggregates present. We expect that the findings presented herein will advance our understanding of the pathway by which structurally disordered SOD1 aggregates exert toxicity in vivo.  相似文献   

19.
Maintenance of corneal transparency is crucial for vision and depends mainly on the endothelium, a non-proliferative monolayer of cells covering the inner part of the cornea. When endothelial cell density falls below a critical threshold, the barrier and “pump” functions of the endothelium are compromised which results in corneal oedema and loss of visual acuity. The conventional treatment for such severe disorder is corneal graft. Unfortunately, there is a worldwide shortage of donor corneas, necessitating amelioration of tissue survival and storage after harvesting. Recently it was reported that the ROCK inhibitor Y-27632 promotes adhesion, inhibits apoptosis, increases the number of proliferating monkey corneal endothelial cells in vitro and enhance corneal endothelial wound healing both in vitro and in vivo in animal models. Using organ culture human cornea (N = 34), the effect of ROCK inhibitor was evaluated in vitro and ex vivo. Toxicity, corneal endothelial cell density, cell proliferation, apoptosis, cell morphometry, adhesion and wound healing process were evaluated by live/dead assay standard cell counting method, EdU labelling, Ki67, Caspase3, Zo-1 and Actin immunostaining. We demonstrated for the first time in human corneal endothelial cells ex vivo and in vitro, that ROCK inhibitor did not induce any toxicity effect and did not alter cell viability. ROCK inhibitor treatment did not induce human corneal endothelial cells proliferation. However, ROCK inhibitor significantly enhanced adhesion and wound healing. The present study shows that the selective ROCK inhibitor Y-27632 has no effect on human corneal endothelial cells proliferative capacities, but alters cellular behaviours. It induces changes in cell shape, increases cell adhesion and enhances wound healing ex vivo and in vitro. Its absence of toxicity, as demonstrated herein, is relevant for its use in human therapy.  相似文献   

20.
Members of the Pax gene family are expressed in various tissues during ontogenesis. Evidence for their crucial role in morphogenesis, organogenesis, cell differentiation and oncogenesis is provided by rodent mutants and human diseases. Additionally, recent experimental in vivo and in vitro approaches have led to the identification of molecules that interact with Pax proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号