首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Dendrochronologia》2014,32(1):21-31
We used dendrochronological methods to study disturbance history of a mixed Korean pine (Pinus koraiensis Siebold et Zuccarini) dominated forest on the northern slope of Changbai Mountain, North Eastern China, over 1770–2000. Frequent small-scale canopy gaps and infrequent medium-scale canopy disturbances dominated natural disturbance regime in the forest, which did not experience stand-replacing disturbances over the studied period. Percentages of growth releases in subcanopy trees were below 6% in most decades, suggesting that disturbances initiating these releases were of low intensity. Strong winds were likely cause of moderate disturbance events. Two episodes with increased disturbance rates (19% and 13%) were dated to the 1920s and 1980s, timing of the 1980s event was consistent with a hurricane occurred in 1986 on the western slope of the Changbai Mountain. Age structure and growth release analyses revealed species-specific regeneration strategies of canopy dominants. Shade-intolerant Olga bay larch (Larix olgensis Henry) recruited mainly before the 1860s. Recruitment of moderately shade-tolerant P. koraiensis occurred as several regeneration waves (1820s, 1850s, 1870–1880s, 1930s, and 1990–2000s) of moderate intensity. Shade-tolerant Jezo spruce (Picea jezoensis Carr. var. komarovii (V. Vassil.) Cheng et L.K.Fu) and Manchurian fir (Abies nephrolepis (Trautv.) Maxim.) regenerated continuously over the last 220 and 130 years, respectively. Enhanced recruitment of P. koraiensis, P. jezoensis, and A. nephrolepis was observed during the 1930s and 1990s, coinciding with increased growth release frequency in the 1920s and 1980s, and suggesting disturbance events of moderate intensity. Our results indicate that the current disturbance regime of the mixed Korean pine dominated forest maintains coexistence of light-demanding and shade-tolerant species and that change in wind climate may be particularly important for future forest composition.  相似文献   

2.
台风对森林的影响   总被引:5,自引:0,他引:5  
刘斌  潘澜  薛立 《生态学报》2012,32(5):1596-1605
台风通过树枝折断、吹落叶果、产生倒木和折干等许多途径影响林分结构和动态。森林受害程度随树种、林龄、森林类型、树高和地形而异。高密度的森林通常具有较差的根系和较大的树高/胸径比值,在台风袭击下,往往具有较高的受损和死亡的风险。台风疏开郁闭的林冠层,促进了先锋树种的大量增加、生长和成熟,形成的林隙也为个体更新提供了机会。强风造成了土壤基质的多样化,从而促进了实生苗和幼树的更新和生物多样性的增加。台风也通过改变粗木质残体,枯枝落叶层,地洞和土墩,以及繁殖可用性来影响生物多样性。台风产生的粗死木和枯枝落叶使森林的碳储量迅速归还土壤,并影响土壤的养分分布。台风减少了动物的食物供应和恶化栖息地的环境,减少鸟的数量,促进昆虫扩散。受害森林给害虫滋生提供了场所。今后的研究热点是受台风干扰森林的长期监测,不同森林土壤的有机碳贮藏,土壤和养分流失规律,台风和其他自然灾害的交叉影响,改进数学模型以准确预测台风损害。  相似文献   

3.
台风是重要的森林干扰因子之一,会对森林生态系统的结构和功能产生较大的影响。2012年的台风"布拉万"对我国东北地区局部森林造成了严重的破坏。以受灾最重的吉林省汪清林业局的近天然落叶松云冷杉林为对象,采用方差分析和相关分析方法,研究林分结构和地形条件对林木株数损伤率的影响。结果表明:(1)林木损伤类型可分为折断、连根拔起、搭挂、压弯4种,其中连根拔起为最主要的损伤类型,占总损伤株数的52%,台风灾害造成的林木株数损伤率平均为14.09%。(2)径级大小对林木株数损伤率的影响显著。损伤主要发生于径级较小林分处,径级越大,其株数损伤率越小。(3)林木株数损伤率随林分密度的增加有减小的趋势,但在统计学上它们的关系不显著。(4)不同树种间的林木株数损伤率差异显著,落叶松、冷杉等针叶树种损伤株数最多。(5)林分的树种多样性指数与林木株数损伤率无显著的相关性。(6)海拔、坡度和坡位对林木株数损伤率的影响不显著,但坡向的影响显著,东北坡向林分的林木株数损伤率最大。研究结果可以为灾后森林恢复和减少风灾影响的森林培育措施提供依据。  相似文献   

4.
飓风和台风对沿海地区森林生态系统的影响   总被引:4,自引:0,他引:4  
仝川  杨玉盛 《生态学报》2007,27(12):5337-5344
飓风和台风是影响热带和温带沿海区域的主要灾害性气候之一,飓风和台风对于森林生态系统的影响是生态学关注的课题。综述了飓风和台风登陆对于森林生态系统树木和林分的危害影响形式及主要影响因素,着重举例阐述了树种和森林类型是影响台风危害程度的一个重要因素。分析了目前国际上开展的关于飓风和台风登陆对于森林生态系统碳、氮循环的影响,结果表明飓风、台风干扰导致的森林凋落物输入量、凋落物分解速率以及森林碳储存量动态变化较为复杂,与森林类型、林分空间位置以及台风过后的时间段密切相关。飓风引起的森林受损的恢复途径和机理与树冠受损严重程度直接相关,并受到光和水分条件的影响,及时的开花、结果以及充足的土壤种子库对森林植被恢复具有促进作用。在景观和区域尺度量化飓风和台风对沿海地区森林生态系统的影响也日益引起关注,在这方面,整合气象数据、遥感数据和地面调查的模型模拟方法起到重要的作用。今后应加强对于我国东南沿海地区森林生态系统遭受台风影响损失的生态监测和长期定位研究,加强关于台风对于不同森林生态系统类型和不同树种的危害形式和危害程度的研究,以及台风对于森林生态系统碳、氮循环影响的研究,弥补我国在以上领域的空白。  相似文献   

5.
Damage due to wind‐storms and droughts is increasing in many temperate forests, yet little is known about the long‐term roles of these key climatic factors in forest dynamics and in the carbon budget. The objective of this study was to estimate individual and coupled effects of droughts and wind‐storms on adult tree mortality across a 31‐year period in 115 managed, mixed coniferous forest stands from the Western Alps and the Jura mountains. For each stand, yearly mortality was inferred from management records, yearly drought from interpolated fields of monthly temperature, precipitation and soil water holding capacity, and wind‐storms from interpolated fields of daily maximum wind speed. We performed a thorough model selection based on a leave‐one‐out cross‐validation of the time series. We compared different critical wind speeds (CWSs) for damage, wind‐storm, and stand variables and statistical models. We found that a model including stand characteristics, drought, and storm strength using a CWS of 25 ms?1 performed the best across most stands. Using this best model, we found that drought increased damage risk only in the most southerly forests, and its effect is generally maintained for up to 2 years. Storm strength increased damage risk in all forests in a relatively uniform way. In some stands, we found positive interaction between drought and storm strength most likely because drought weakens trees, and they became more prone to stem breakage under wind‐loading. In other stands, we found negative interaction between drought and storm strength, where excessive rain likely leads to soil water saturation making trees more susceptible to overturning in a wind‐storm. Our results stress that temporal data are essential to make valid inferences about ecological impacts of disturbance events, and that making inferences about disturbance agents separately can be of limited validity. Under projected future climatic conditions, the direction and strength of these ecological interactions could also change.  相似文献   

6.
Closed‐canopy forests are being rapidly fragmented across much of the tropical world. Determining the impacts of fragmentation on ecological processes enables better forest management and improves species‐conservation outcomes. Lianas are an integral part of tropical forests but can have detrimental and potentially complex interactions with their host trees. These effects can include reduced tree growth and fecundity, elevated tree mortality, alterations in tree‐species composition, degradation of forest succession, and a substantial decline in forest carbon storage. We examined the individual impacts of fragmentation and edge effects (0–100‐m transect from edge to forest interior) on the liana community and liana–host tree interactions in rainforests of the Atherton Tableland in north Queensland, Australia. We compared the liana and tree community, the traits of liana‐infested trees, and determinants of the rates of tree infestation within five forest fragments (23–58 ha in area) and five nearby intact‐forest sites. Fragmented forests experienced considerable disturbance‐induced degradation at their edges, resulting in a significant increase in liana abundance. This effect penetrated to significantly greater depths in forest fragments than in intact forests. The composition of the liana community in terms of climbing guilds was significantly different between fragmented and intact forests, likely because forest edges had more small‐sized trees favoring particular liana guilds which preferentially use these for climbing trellises. Sites that had higher liana abundances also exhibited higher infestation rates of trees, as did sites with the largest lianas. However, large lianas were associated with low‐disturbance forest sites. Our study shows that edge disturbance of forest fragments significantly altered the abundance and community composition of lianas and their ecological relationships with trees, with liana impacts on trees being elevated in fragments relative to intact forests. Consequently, effective control of lianas in forest fragments requires management practices which directly focus on minimizing forest edge disturbance.  相似文献   

7.
Chinese fir (Cunninghamia lanceolata) is the most important forest plantation species in subtropical Asia and is rapidly replacing natural forests. Such land‐use change may affect ecosystem nutrient cycling through changes in litterfall nutrient flux. Tropical cyclones often cause pulses of litterfall. Previous studies, however, have mostly focused on the effects of a single cyclone with little effort examining the effects of repeated cyclones. We examined litterfall in a natural hardwood forest and a Chinese‐fir plantation in central Taiwan experiencing an average of one typhoon per year. The natural hardwood forest had 54 percent higher annual litterfall (11,400 kg/ha/yr) than the Chinese‐fir plantation (7400 kg/ha/yr). Four typhoon‐affected months (typhoon period) contributed to approximately 60 percent of the litterfall and litterfall element flux in the natural hardwood forest and 80 percent in the Chinese‐fir plantation, with contributions from individual typhoons varied by more than twofold. Litterfall N and P concentrations were significantly higher in typhoon period than in non‐typhoon period, likely the result of limited retranslocation. Precipitation was a better predictor of quantity of typhoon‐associated litterfall than wind velocity. Both types of forests in southeastern China beyond the reach of typhoons have litterfall peaks in the dry season. In contrast, we measured higher litterfall during the typhoon period than during the dry season, suggesting that in regions with frequent cyclones, cyclones drive temporal variation of litterfall. Global climate change is affecting the frequency and intensity of cyclones; therefore, knowledge of typhoon‐litterfall dynamics is indispensable for understanding the effects of climate change on ecosystem nutrient cycling.  相似文献   

8.
Abstract Spatial heterogeneity in the intensity of past disturbances has directly influenced the structure and composition of present‐day forests around the world. In south‐eastern Australia infrequent, high‐intensity wildfires are a major part of the historical disturbance regime. While these fires are often assumed to produce even‐aged stands, spatial heterogeneity in fire intensity due to highly variable topography may lead to more complex forest age structures. Our study describes the influence of disturbance on the age structure and dynamics of a mosaic of tall, open eucalypt forest, cool temperate rainforest and mixed species forest surrounding Bellel Creek in the Central Highlands of Victoria using dendrochronological techniques. We were particularly interested in the impacts of the 1939 Black Friday fire and its effects on forest age structure and subsequent stand development patterns. Within our study site tall open forest displayed two distinct age cohorts: (i) trees that established immediately after the 1939 fire and accounted for the majority of individuals in the forest, and (ii) scattered groups of older trees estimated to be approximately 200–250 years old. Cool temperate rainforest and mixed forest were also dominated by the post‐1939 fire age cohort. However, a greater proportion of trees in these forest types survived the 1939 fire relative to the tall open forest. The impact of the 1939 fire on the growth of surviving trees was highly variable but generally short‐lived. In most cases growth decreased after the 1939 fire, but generally returned to prefire levels within 1–3 years. Non‐fire disturbances were limited to small‐scale branch‐ and tree‐fall events, although the extreme snowstorm of 1977 appears to have caused extensive damage to rainforest communities. Our study demonstrates the opportunities for dendroecological studies to reconstruct historical dynamics and disturbance patterns in Australian forests and provides important insights into variation in landscape‐scale fire impacts and their effect on subsequent forest development patterns.  相似文献   

9.
Question: Have past windstorm events influenced the structure and composition of mountain forests in the Tatra Mountains? Can severe and infrequent wind disturbances lead to dynamic coexistence of two tree species with different ecological requirements? Location: Subalpine mixed spruce‐larch forest at 1200‐1300 m a.s.l. in the Slovakian Tatra Mountains. A forested site affected by catastrophic large‐scale windthrow on 19 November 2004. Methods: Sixty‐seven spruce and 30 larch cross‐sections from the oldest cohorts were collected in a regular pattern in a 100‐ha plot. Tree‐ring series were analysed to reconstruct growth releases associated with past windthrows. A boundary‐line release criterion was applied to detect disturbance year. Spatial patterns of release signals were statistically detected with Mantel's test. We compared reconstructed years of disturbance events with historical records. Results: Releases in both species showed three main pulses. More than 85% showed major or moderate releases in 1865‐1879, 48% in 1915‐1924, and 25% in 1940‐1949. All of these disturbance events affected the whole 100‐ha area. Releases were spatially patterned in the first disturbances, but distributed randomly in the last. Releases co‐occurred in time with enhanced production of compression wood, suggesting disturbances were of wind origin. Reconstructed dates of windthrows were confirmed using historical data on storms. Conclusions: At least three windthrows of major and moderate severity took place in the last 150 years on southern slopes of the Tatra Mountains. This disturbance regime may contribute to coexistence of spruce and larch through differences in vulnerability and response to heavy windstorms.  相似文献   

10.
Strong tropical storms are known to affect forest structure, composition, and nutrient cycles in both tropical and temperate regions, although our understanding of these effects disproportionally comes from regions experiencing much lower cyclone frequency than many forests in the Northwest Pacific. We summarized the effects of typhoons on forest dynamics at Fushan Experimental Forest (FEF) in northeastern Taiwan, which averages 0.49 major typhoons annually, and compared their resistance and resilience to those of forests in other regions. Typhoons cause remarkably few tree falls at FEF; multiple typhoons in 1994 felled only 1.4% of canopy trees, demonstrating high structural resistance. The most important effect of typhoons in this ecosystem is defoliation, which maintains high understory light levels and enhances heterogeneity, sustaining diversity without large canopy gaps. The vulnerability of taller trees to being blown down has resulted in the short-stature FEF (mean canopy height is 10.2 m). As the FEF is P-limited and a large fraction of total annual P export occurs during typhoons, these storms may have the effect of reducing productivity over time. DIN and K+ export only remain elevated for days at FEF, in contrast to the several years observed in Puerto Rico. High resilience is also evident in the rapid recovery of leaf area following typhoons. Heavy defoliation and slow decomposition are among the processes responsible for the high resistance and resilience of FEF to typhoon disturbance. These key structural features may emerge in other forest ecosystems if the frequency of major storms increases with climate change.  相似文献   

11.
该文依托于小兴安岭典型阔叶红松(Pinus koraiensis)林9 hm2森林动态监测样地,对样地内林窗边缘主要树种红松和臭冷杉(Abies nephrolepis)进行生长释放判定分析,重建了冠层树木的干扰历史。结果表明:整体上林窗木与非林窗木的生长变化百分率变化规律基本一致,而不同林窗间生长变化百分率存在明显的差异,林窗干扰及其产生的影响存在较大的变异性。在1733–1738、1748–1752、1769–1771、1798–1801、1827–1833、1841–1844、1935–1939及1968–1973年间红松生长释放较强,其中1752、1770、1800、1830、1842、1937及1970年出现了明显的干扰峰;在1889–1904、1932–1938、1947–1973和1986–2005年间臭冷杉生长释放较强,其中1894、1934、1951、1968和1990年出现了明显的干扰峰。红松干扰存在2.0 a、3.5 a、3.8 a、7.3–7.9 a和9.1–18.2 a的显著周期,臭冷杉干扰存在3.5–3.6 a、7.5–48.8 a和65–85 a的显著周期。风干扰是典型阔叶红松林干扰释放的主要因子,异常温度也影响该地区树木生长释放事件。太阳活动通过影响局地风速、温度、降水等气候因子以及其他大尺度气候模态影响林窗动态,可能是小兴安岭典型阔叶红松林的干扰机制之一。  相似文献   

12.
《新西兰生态学杂志》2011,30(3):295-310
The literature on wind damage in New Zealand forests is reviewed to investigate how abiotic and biotic factors influence damage severity, damage type, and forest recovery. Winds that damage forests tend to result from extra-tropical depressions or from topographically enhanced westerly air flows. Severe wind damage can occur when wind speeds exceed c. 0 km/hr, although investigating the relationship between damage and wind speeds is difficult, as gusts, for which speed is usually unrecorded, are important. Damage is often quantified by estimates of area affected, with some authors detailing the size and species of damaged trees within a given area. Key abiotic factors that influence damage patterns are topographical position, edaphic conditions, and disturbance history. Important biotic factors are tree height, tree health, position of the tree within the stand, and species. Damage type (uprooting or breakage) is primarily controlled by canopy position and rooting depth. Forest responses to wind damage include sprouting, recruitment, release, and suppression, with the dominant mode of forest recovery being strongly influenced by the severity of damage, and the species composition of the stand. As noted in international literature on wind damage, a lack of consistent methods, combined with poor species and spatial coverage, makes identifying general trends difficult. Investigating the role of wind damage in New Zealand forests has focused to date on Nothofagus forests and plantations of exotic trees and few studies have investigated long term dynamics following wind disturbance events.  相似文献   

13.
We examined the typhoon wind disturbance regime of the Fu-Shan Experimental Forest in northeastern Taiwan. Mean number of typhoons passing within 200 kilometers of Taipei (40 kilometers from the site) was 1.4 per year. Category 4 and 5 typhoons, which are intense enough to uproot large numbers of trees, occurred every 8.3 and 12.5 years respectively, although it is likely that some category 4 and 5 typhoons did not produce extensive blowdowns at Fu-Shan because the area of maximum winds missed the study site. Uprooting was more common than snapped boles; the most common damage to trees, however, was probably defoliation, although this damage was not quantified in the current study. Thirty-five percent of wind-damaged trees were associated with a gap. Six percent of the land area was in gaps. Canopy turnover time was calculated at 175 years when all gaps ≤ 9 years old were included in the calculation, but the time decreased when older gaps were excluded from the calculation. Turnover time was somewhat higher than calculated for other tropical forests. Because turnover time increases as the percent of land in gaps decreases, the short life span of gaps at Fu-Shan probably contributed to our higher calculated time. Probability of being damaged was not related to tree species identity, and only a few species of trees were found regenerating in gaps. Principal Components Analysis indicated that damaged trees varied largely in treefall orientation and aspect; gaps varied primarily in aspect and in gap size.  相似文献   

14.
Forest litterfall is pivotal for biogeochemical cycles and for assessing the impacts of perturbations on ecosystems. Typhoon occurrence is the primary mechanism for producing litterfall; Taiwan is situated in one of the most frequently disturbed regions. However, no typhoons were recorded in 2018, only occurring three times since 1911. This rare occasion, along with the regular (2017) and extreme typhoon (2016) years, provides an opportunity to investigate the responses of typhoon-prone forest ecosystems to a future climate scenario: Elevated temperatures amplify the intensity but reduce the frequency of typhoons. We compared three years (2016–2018) of summer typhoon season (July–October) mean monthly litterfall (MML) in the subtropical montane cloud forests of northeastern Taiwan, and investigated the relationships between MML/typhoon-induced MML (ΔMML) and 17 biophysical, bioclimatic and topographic attributes. More MML was produced in 2016, caused by strong winds and heavy rainfall. However, there was no statistical difference between 2017 and 2018 since forests may also produce substantial amounts of litterfall in summer without typhoons. The relationship between ΔMML and 17 variables was relatively insensitive to typhoon severity. Variables associated with succession and forest management were crucial for modeling MML in the presence of typhoons, but none of them were pivotal for MML without typhoons. The mean air temperature and elevation (related to forest productivity) were crucial for MML without typhoons; surface curvature may form shelters to prevent extreme typhoon with reduced MML. These outcomes may shed light on future ecosystem dynamics in typhoon-prone forests under a changing climate. Abstract in Mandarin is available with online material.  相似文献   

15.
Many properties of forest ecosystems, such as species composition and forest structure, naturally vary with forest age. However, in regions prone to cyclone disturbances, both forest age and cyclone severities can play a role shaping these properties. To evaluate potential effects of an altered cyclone regime on forest ecosystems, it is necessary to disentangle the roles of cyclones and forest age on different forest characteristics. In this study, we compared species composition and forest structure at plot level across sites with similar climate and topographic backgrounds, yet differing in age and typhoon severities in northeastern Taiwan. We found shorter tree stature, higher wood density, higher tree species diversity, and lower typhoon-induced tree mortality in the sites with more severe typhoon disturbances. On the other hand, regardless of typhoon severity, the sites of younger ages had a considerably smaller amount of woody debris, suggesting that it takes time for the accumulation of woody debris. More typhoon-induced canopy gaps at sites with more severe typhoon influences highlights a role of typhoons in canopy dynamics. However, the lack of gaps prior to typhoon disturbances in the less severely affected forest is likely related to the low background mortality associated with the relative young age of the forest. Our results indicate that frequent or severe typhoon disturbances can homogenize some of the structural differences among forests of different ages. If the frequency or severity of cyclones increase in the future, many forests, including old-growth forests, may gradually lose large trees.  相似文献   

16.
Question: How does typhoon‐related disturbance (more specifically, disturbance in the understorey due to tree‐fall and branch‐fall) affect different species mortality rates in a vertically well‐structured forest community? Location: Cool‐temperate, old‐growth forest in the Daisen Forest Reserve, Japan. Methods: We investigated the canopy dynamics and mortality rate trends of trees ≥5 cm diameter at breast height in a 4‐ha study plot, and analysed the effects of tree diameter and spatial structure on the mortality risks for major tree species in the understorey. Results: Significant differences were found in the mortality rates and proportions of injured dead stems between census periods, which were more pronounced in the understorey than in the canopy. Acer micranthum, which showed increased mortality during typhoon disturbance periods, had a clumped distribution. In contrast, Acer japonicum and Viburnum furcatum, which showed similar mortality rates between census periods, had a loosely clumped spatial distribution and a negative association with canopy trees, respectively. In the understorey stems of Acanthopanax sciadophylloides and Fagus crenata, whose spatial distribution patterns depended on canopy gaps, significant increases in mortality rates were observed only during severe typhoon‐related disturbance periods. Conclusions: The sensitivity of trees to typhoon‐related canopy disturbance is more pronounced in the lower layers of vertically structured forest communities. Differences in mortality patterns generated through the combined effects of spatial variation in disturbance regime and species‐specific spatial distribution patterns (spatial aggregation, association with canopy trees, and canopy gap dependency) contribute to the co‐existence of understorey species in forest communities that are subject to typhoon‐related disturbance.  相似文献   

17.
Question: Can the direct regeneration hypothesis (DRH) be used to predict post‐disturbance regeneration after fire, wind disturbance, and clearcutting in northern forests? Do life‐history traits such as regeneration strategy and shade tolerance influence post‐disturbance regeneration success of tree species? Location: Northern forests in North America. Methods: A meta‐analysis was conducted by collecting published data on pre‐ and post‐disturbance stand compositional characteristics in the northern forests. For each tree species, compositional difference (CD) was calculated as the difference between basal area proportions of the post‐ and pre‐disturbance stands, but for post‐disturbance stands <25 years of age, post‐disturbance proportions were calculated based on relative stem density. Results: Species response to disturbances was best explained by regeneration strategy, while disturbance type had no effect on CD. The proportion of broadleaf trees with either strong or weak vegetative reproduction ability increased after all disturbances. Serotinous species had CD values not significantly different from zero after fire, while CD for semi‐serotinous species was negative. The post‐disturbance proportions of non‐serotinous conifers decreased after all forms of disturbance. Conclusions: All disturbances promote broadleaf trees, regardless of regeneration strategy (suckering, sprouting, or seeding). The DRH is supported for conifers with serotinous cones after fire. Fire causes local extinction of non‐serotinous conifers, while wind and clearcutting only decrease the proportion of non‐serotinous conifers because of partial survival of seed sources and advanced regeneration. This study suggests that increasing stand‐replacing disturbances associated with global climate change will promote broadleaf trees in northern forests.  相似文献   

18.
Wet‐sclerophyll forests are unique ecosystems that can transition to dry‐sclerophyll forests or to rainforests. Understanding of the dynamics of these forests for conservation is limited. We evaluated the long‐term succession of wet‐sclerophyll forest on World Heritage listed K'gari (Fraser Island)—the world's largest sand island. We recorded the presence and growth of tree species in three 0.4 hectare plots that had been subjected to selective logging, fire, and cyclone disturbance over 65 years, from 1952 to 2017. Irrespective of disturbance regimes, which varied between plots, rainforest trees recruited at much faster rates than the dominant wet‐sclerophyll forest trees, narrowly endemic species Syncarpia hillii and more common Lophostemon confertus. Syncarpia hillii did not recruit at the plot with the least disturbance and recruited only in low numbers at plots with more prominent disturbance regimes in the ≥10 cm at breast height size. Lophostemon confertus recruited at all plots but in much lower numbers than rainforest trees. Only five L. confertus were detected in the smallest size class (<10 cm diameter) in the 2017 survey. Overall, we find evidence that more pronounced disturbance regimes than those that have occurred over the past 65 years may be required to conserve this wet‐sclerophyll forest, as without intervention, transition to rainforest is a likely trajectory. Fire and other management tools should therefore be explored, in collaboration with Indigenous landowners, to ensure conservation of this wet‐sclerophyll forest.  相似文献   

19.
Extreme climatic and weather events are increasing in frequency and intensity across the world causing episodes of widespread tree mortality in many forested ecosystems. However, we have a limited understanding about which local factors influence tree mortality patterns, restricting our ability to predict tree mortality, especially within topographically complex tropical landscapes with a matrix of mature and secondary forests. We investigated the effects of two major local factors, topography and forest successional type, on climate‐induced tropical tree mortality patterns using an observational and modeling approach. The northernmost Neotropical dry forest endured an unprecedented episode of frost‐induced tree mortality after the historic February 2011 cold wave hit northwestern Mexico. In a moderately hilly landscape covering mature and secondary tropical dry forests, we surveyed 454 sites for the presence or absence of frost‐induced tree mortality. In addition, across forty‐eight 1 ha plots equally split into the two forest types, we examined 6,981 woody plants to estimate a frost‐disturbance severity metric using the density of frost‐killed trees. Elevation is the main factor modulating frost effects regardless of forest type. Higher occurrence probabilities of frost‐induced tree mortality at lowland forests can be explained by the strong influence of elevation on temperature distribution since heavier cold air masses move downhill during advective frosts. Holding elevation constant, the probability of frost‐induced tree mortality in mature forests was twice that of secondary forests but severity showed the opposite pattern, suggesting a cautious use of occurrence probabilities of tree mortality to infer severity of climate‐driven disturbances. Extreme frost events, in addition to altering forest successional pathways and ecosystem services, likely maintain and could ultimately shift latitudinal and altitudinal range margins of Neotropical dry forests.  相似文献   

20.
张启  闫明  梁寒雪 《生态学报》2017,37(9):3115-3123
森林生长与气候变化有着紧密的关系,在全球变暖情形下了解树木的干扰历史对准确预测森林生长的变化具有促进作用。本文选择山西黄土高原东南部长治地区保存较好的一个油松(Pinus tabuliformis)和两个白皮松(Pinus bungeana)森林为研究对象,利用树木年轮学方法分析了其干扰历史。结果表明:黎城县、平顺县和屯留县研究地点中年龄最老的树木分别有227、185、102a;通过计算树木径向生长的变化幅度,发现该地区在过去150年中发生了3次大的生长抑制事件(分别发生在1873—1877、1925—1930和1994—1997年期间)和5次大的生长释放事件(分别发生在1867—1871、1878—1884、1930—1935、1980—1985和1999—2004年期间)。树木径向生长与气象观测资料的相关分析显示,该地区森林生长在年际尺度上主要与6月份温度呈负相关而与4—5月份水分条件呈正相关,揭示了由降水减少或高温下水分蒸散所带来的极端干旱事件是导致森林抑制现象的主要原因。这些森林历史研究结果对区域林业管理具有实践意义,营林建设更宜选择在森林生长释放时期;经历多次干扰而存留下来的老龄树具有较强的抗干扰能力和丰富的历史信息,加强对老龄树的鉴定与针对性保护可有效维护区域森林生态服务功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号