首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Tropical forest responses to climate and atmospheric change are critical to the future of the global carbon budget. Recent studies have reported increases in estimated above‐ground biomass (EAGB) stocks, productivity, and mortality in old‐growth tropical forests. These increases could reflect a shift in forest functioning due to global change and/or long‐lasting recovery from past disturbance. We introduce a novel approach to disentangle the relative contributions of these mechanisms by decomposing changes in whole‐plot biomass fluxes into contributions from changes in the distribution of gap‐successional stages and changes in fluxes for a given stage. Using 30 years of forest dynamic data at Barro Colorado Island, Panama, we investigated temporal variation in EAGB fluxes as a function of initial EAGB (EAGBi) in 10 × 10 m quadrats. Productivity and mortality fluxes both increased strongly with initial quadrat EAGB. The distribution of EAGB (and thus EAGBi) across quadrats hardly varied over 30 years (and seven censuses). EAGB fluxes as a function of EAGBi varied largely and significantly among census intervals, with notably higher productivity in 1985–1990 associated with recovery from the 1982–1983 El Niño event. Variation in whole‐plot fluxes among census intervals was explained overwhelmingly by variation in fluxes as a function of EAGBi, with essentially no contribution from changes in EAGBi distributions. The high observed temporal variation in productivity and mortality suggests that this forest is very sensitive to climate variability. There was no consistent long‐term trend in productivity, mortality, or biomass in this forest over 30 years, although the temporal variability in productivity and mortality was so strong that it could well mask a substantial trend. Accurate prediction of future tropical forest carbon budgets will require accounting for disturbance‐recovery dynamics and understanding temporal variability in productivity and mortality.  相似文献   

2.
Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters ≥13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA. We simulated 10,000 one-hectare plots using random diameters generated from parameters of diameter distributions limited to diameters ≥13 cm and random densities generated from density estimates. Area-weighted mean biomass density (Mg/ha) for historical forests averaged 116 Mg/ha, ranging from 54 Mg/ha to 357 Mg/ha by small scale ecological subsections within Missouri landscapes. Area-weighted mean biomass density for current forests averaged 82 Mg/ha, ranging from 66 Mg/ha to 144 Mg/ha by ecological subsection for currently forested land. Biomass density of current forest was greater than historical biomass density for only 2 of 23 ecological subsections. Current carbon sequestration of 292 TgC on 7 million ha of forested land is less than half of the estimated historical total carbon sequestration of 693 TgC on 12 million ha. Cumulative tree cutting disturbances over time have produced forests that have less aboveground tree biomass and are uniform in biomass compared to estimates of historical biomass, which varied across Missouri landscapes. With continued relatively low rates of forest disturbance, current biomass per ha will likely increase to historical levels as the most competitive trees become larger in size and mean number of trees per ha decreases due to competition and self-thinning. Restoration of large diameter structure and forested extent of upland woodlands and floodplain forests could fulfill multiple conservation objectives, including carbon sequestration.  相似文献   

3.
Question: What were the temporal patterns and rates of tree mortality in a recent episodic tree mortality event? Have similar events occurred in the past, and does climatic variability play a role in the disturbance regime? Location: Intact Picea abies‐dominated taiga in the Arkhangelsk region, northwestern Russia. Methods: We reconstructed the past tree mortality and disturbance history by applying dendroecological methods in five forest stands and related these to climatic data. The role of other potential causes of tree mortality was assessed in a field inventory. Results: The recent episode lasted from 1999 to 2004, influenced all stands studied, and killed on average 21% of trees with a diameter of over 10 cm at 1.3‐m height. The annual tree mortality rate in the decades preceding this episode was 0.49%. During the past 200 years, the stands have experienced chronic small‐scale disturbances, with several irregular disturbances of moderate severity. The recent episode was associated with abundant signs of the bark beetle Ips typographus. Furthermore, the timing of both the recent tree mortality episode and the past disturbance events was associated with dry summers. Conclusion: The results indicate a connection between climatic variability and forest dynamics, the likely driving factors being droughts and bark beetles. In the context of the past 200 years, the recent episode was potentially at the higher end of the range of disturbance variability in terms of severity and spatial extent. This has ecological implications in a changing climate, potentially influencing ecosystem structure and long‐term dynamics.  相似文献   

4.
Question: Abrupt increments in tree radial growth chronology are associated with gap formations derived from disturbances. If a forest has been primarily controlled by fine‐scale disturbances such as single tree‐fall, do these release events spatio‐temporally synchronize at a fine scale such as 10 m and 5 years? Is it possible to quantify spatio‐temporal patterns of synchronicity from tree rings and long‐term inventories, and associate them with spatial forest patch dynamics? How and to what extent can we reconstruct the fine‐scale synchronized growth and spatio‐temporal forest patch dynamics from currently available information? Location: Cores were taken from Abies sachalinensis trees in a coniferous/deciduous mixed forest in the Shiretoko Peninsula, Hokkaido, northern Japan. Methods: We first eliminated short‐term fluctuations and highlighted growth trends over the mid‐term using a time‐series smoothing technique. This helped identify release events, we then conducted fine‐scale spatial analyses on released A. sachalinensis primarily with cluster analysis. Results: We specified the unit scale of synchronicity at 10 m, and classified released A. sachalinensis trees into spatially separated regions. Only once during the recent 50 years was extensive synchronicity over 40 m found. Most of the released A. sachalinensis were isolated, with non‐released A. sachalinensis present in nearby, implying imperfect synchronization. The ambiguous 20–30 m A. sachalinensis patches present in the current forest were the result of connected and overlapping patches smaller than 10 m associated with different disturbances and different responses of understorey trees. Conclusion: Tree‐ring series, long‐term census and fine‐scale spatio‐temporal analyses revealed that this forest community has been controlled by two types of disturbance: frequent small disturbances such as single tree‐fall and less frequent multiple tree‐falls.  相似文献   

5.
Lightning is a major agent of disturbance, but its ecological effects in the tropics are unquantified. Here we used ground and satellite sensors to quantify the geography of lightning strikes in terrestrial tropical ecosystems, and to evaluate whether spatial variation in lightning frequency is associated with variation in tropical forest structure and dynamics. Between 2013 and 2018, tropical terrestrial ecosystems received an average of 100.4 million lightning strikes per year, and the frequency of strikes was spatially autocorrelated at local‐to‐continental scales. Lightning strikes were more frequent in forests, savannas, and urban areas than in grasslands, shrublands, and croplands. Higher lightning frequency was positively associated with woody biomass turnover and negatively associated with aboveground biomass and the density of large trees (trees/ha) in forests across Africa, Asia, and the Americas. Extrapolating from the only tropical forest study that comprehensively assessed tree damage and mortality from lightning strikes, we estimate that lightning directly damages c. 832 million trees in tropical forests annually, of which c. 194 million die. The similarly high lightning frequency in tropical savannas suggests that lightning also influences savanna tree mortality rates and ecosystem processes. These patterns indicate that lightning‐caused disturbance plays a major and largely unappreciated role in pantropical ecosystem dynamics and global carbon cycling.  相似文献   

6.
Although it is widely predicted that the geographic distributions of tree species and forest types will undergo substantial shifts in future, modelling approaches used to date are largely unable to project the pace at which forest distributions will respond to environmental change. The expansion and contraction of forest distributions act against considerable demographic inertia in the present composition and size‐structure of forest stands as climate‐induced changes in growth, mortality, and recruitment alter population dynamics through time. We aimed to better understand how shifts in forest distributions reflect long‐term changes in tree demographic rates and population dynamics, and how such shifts are influenced by 1) disturbance from forest harvesting and 2) local environmental heterogeneity. Using a simple, data‐constrained gap model, we simulated regional forest dynamics in the eastern United States over the next 500 yr. We then compared the geographic distributions of five different forest types through time under present and altered climatic conditions, in scenarios that variously included and excluded forest harvesting and environmental heterogeneity. Although we held climate fixed after 100 yr, it took another 160 yr after this for these forest types to collectively experience 90% of their eventual climate‐related distribution gains and losses. Competition strongly affected the nature of responses to climate change. Harvesting accelerated and amplified gains by an early‐successional forest type at the expense of a late‐successional one, but these gains did not occur faster than those for other forest types. Environmental heterogeneity had little effect on distribution gains or losses through time. These findings indicate that forest distributions should respond quite slowly to climate change, with the leading and trailing edges of different forest types shifting over a span of centuries. Disturbances can expedite some transitions, but are unlikely to lead to wholesale changes in forest types in the coming decades.  相似文献   

7.
Currently, forests in the northeastern United States are net sinks of atmospheric carbon. Under future climate change scenarios, the combined effects of climate change and nitrogen deposition on soil decomposition, aboveground processes, and the forest carbon balance remain unclear. We applied carbon stock, flux, and isotope data from field studies at the Harvard forest, Massachusetts, to the ForCent model, which integrates above‐ and belowground processes. The model was able to represent decadal‐scale measurements in soil C stocks, mean residence times, fluxes, and responses to a warming and N addition experiment. The calibrated model then simulated the longer term impacts of warming and N deposition on the distribution of forest carbon stocks. For simulation to 2030, soil warming resulted in a loss of soil organic matter (SOM), decreased allocation to belowground biomass, and gain of aboveground carbon, primarily in large wood, with an overall small gain in total system carbon. Simulated nitrogen addition resulted in a small increase in belowground carbon pools, but a large increase in aboveground large wood pools, resulting in a substantial increase in total system carbon. Combined warming and nitrogen addition simulations showed a net gain in total system carbon, predominately in the aboveground carbon pools, but offset somewhat by losses in SOM. Hence, the impact of continuation of anthropogenic N deposition on the hardwood forests of the northeastern United States may exceed the impact of warming in terms of total ecosystem carbon stocks. However, it should be cautioned that these simulations do not include some climate‐related processes, different responses from changing tree species composition. Despite uncertainties, this effort is among the first to use decadal‐scale observations of soil carbon dynamics and results of multifactor manipulations to calibrate a model that can project integrated aboveground and belowground responses to nitrogen and climate changes for subsequent decades.  相似文献   

8.
Ice storms cause periodic disturbance to temperate forests of eastern North America. They are the primary agents of disturbance in some eastern forests. In this paper, a forest gap model is employed to explore consequences of ice storms for the long‐term dynamics of Tsuga canadensis‐northem hardwoods forests. The gap model LINKAGES was modified to simulate periodic ice storm disturbance in the Adirondack Mountains of New York. To adapt the gap model for this purpose, field data on ice storm disturbance are used to develop a polytomous logistic regression model of tree damage. The logistic regression model was then incorporated into the modified forest gap model, LINK ADIR, to determine the type of damage sustained by each simulated tree. The logistic regression model predicts high probabilities of bent boles or severe bole damage (leaning, snapping, or uprooting) in small‐diameter trees, and increasing probability of canopy damage as tree size increases. Canopy damage is most likely on gentle slopes; the probability of severe bole damage increases with increasing slope angle. In the LINKADIR simulations, tree damage type determines the probability of mortality; trees with severe bole damage are assigned the highest mortality rate. LINKADIR predicts Tsuga canadensis dominance in mesophytic old‐growth forests not disturbed by ice storms. When ice storms are simulated, the model predicts Acer saccharum‐dominated forests with higher species richness. These results suggest that ice storms may function as intermediate disturbances that enhance species richness in forested Adirondack landscapes.  相似文献   

9.
Lines ER  Coomes DA  Purves DW 《PloS one》2010,5(10):e13212
Few studies have quantified regional variation in tree mortality, or explored whether species compositional changes or within-species variation are responsible for regional patterns, despite the fact that mortality has direct effects on the dynamics of woody biomass, species composition, stand structure, wood production and forest response to climate change. Using bayesian analysis of over 430,000 tree records from a large eastern US forest database we characterised tree mortality as a function of climate, soils, species and size (stem diameter). We found (1) mortality is U-shaped vs. stem diameter for all 21 species examined; (2) mortality is hump-shaped vs. plot basal area for most species; (3) geographical variation in mortality is substantial, and correlated with several environmental factors; and (4) individual species vary substantially from the combined average in the nature and magnitude of their mortality responses to environmental variation. Regional variation in mortality is therefore the product of variation in species composition combined with highly varied mortality-environment correlations within species. The results imply that variation in mortality is a crucial part of variation in the forest carbon cycle, such that including this variation in models of the global carbon cycle could significantly narrow uncertainty in climate change predictions.  相似文献   

10.
Drought, fire, and windstorms can interact to degrade tropical forests and the ecosystem services they provide, but how these forests recover after catastrophic disturbance events remains relatively unknown. Here, we analyze multi‐year measurements of vegetation dynamics and function (fluxes of CO2 and H2O) in forests recovering from 7 years of controlled burns, followed by wind disturbance. Located in southeast Amazonia, the experimental forest consists of three 50‐ha plots burned annually, triennially, or not at all from 2004 to 2010. During the subsequent 6‐year recovery period, postfire tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70%–94% along forest edges (0–200 m into the forest) and 36%–40% in the forest interior. Vegetation regrowth in the forest understory triggered partial canopy closure (70%–80%) from 2010 to 2015. The composition and spatial distribution of grasses invading degraded forest evolved rapidly, likely because of the delayed mortality. Four years after the experimental fires ended (2014), the burned plots assimilated 36% less carbon than the Control, but net CO2 exchange and evapotranspiration (ET) had fully recovered 7 years after the experimental fires ended (2017). Carbon uptake recovery occurred largely in response to increased light‐use efficiency and reduced postfire respiration, whereas increased water use associated with postfire growth of new recruits and remaining trees explained the recovery in ET. Although the effects of interacting disturbances (e.g., fires, forest fragmentation, and blowdown events) on mortality and biomass persist over many years, the rapid recovery of carbon and water fluxes can help stabilize local climate.  相似文献   

11.
Disturbances play an important role in forest dynamics across the globe. Researchers have mainly focused on the temporal context of disturbances, but have largely ignored the spatial patterns of tree recruitment they create. Geostatistical tools enable the analysis of spatial patterns and variability in tropical forest disturbance histories. Here, we examine the potential of combining dendroecological analysis and spatial statistics to reconstruct the disturbance history of a seasonal dry evergreen tropical forest plot at the Huai Kha Khaeng Wildlife Sanctuary (HKK), western Thailand. We used tree‐ring‐derived age estimates for 70 individuals of the shade‐intolerant pioneer species Melia azederach (Meliaceae) and tree locations across a 316‐ha study plot to identify the timing and spatial extent of past disturbances. Although the age distribution for Melia suggested that regeneration had been continuous over the past 60 yr, spatial analyses (mark correlation function and kriging) demonstrated the presence of three spatially discrete age cohorts. Two of these cohorts suggested a severe disturbance ~20 yr before present. A third cohort appears to have established ~50 years ago. Using historical records, we conclude that fire disturbance is the most likely disturbance factor affecting HKK. Nevertheless, we do not rule out other disturbance factors. The combined application of tree‐ring analysis and spatial statistics as applied in this study could be readily applied to reconstruct disturbance histories in other tropical regions where tree species with annual growth rings are present.  相似文献   

12.
Modeling Ecological Restoration Effects on Ponderosa Pine Forest Structure   总被引:3,自引:0,他引:3  
FIRESUM, an ecological process model incorporating surface fire disturbance, was modified for use in southwestern ponderosa pine ecosystems. The model was used to determine changes in forest structure over time and then applied to simulate changes in aboveground biomass and nitrogen storage since exclusion of the natural frequent fire regime in an unharvested Arizona forest. Dendroecological reconstruction of forest structure in 1876, prior to Euro‐American settlement, was used to initialize the model; projections were validated with forest measurements in 1992. Biomass allocations shifted from herbaceous plants to trees, and nitrogen was increasingly retained in living and dead tree biomass over the 116‐year period (1876–1992). Forest conditions in 1992 were substantially degraded compared to reference presettlement conditions: old‐growth trees were dying at accelerated rates, herbaceous production was reduced nearly 90%, and the entire stand was highly susceptible to high‐intensity wildfire. Following an experiment initiated in 1993 to test ecological restoration treatments, future changes were modeled for the next century. Future forest structure remained within the natural presettlement range of variability under the full restoration treatment, in which forest biomass structure was thinned to emulate presettlement conditions and repeated low‐intensity fire was reintroduced. Simulation of the control treatment indicated continuation of exceptionally high tree density, probably culminating in stand‐replacing ecosystem change through high‐intensity wildfire or tree mortality from pathogens. Intermediate results were observed in the partial restoration treatment (tree thinning only); the open forest structure and high herbaceous productivity found immediately after treatment were gradually degraded as dense tree cover reestablished in the absence of fire. Modeling results support comprehensive restorative management as a long‐term approach to conservation of key indigenous ecosystem characteristics.  相似文献   

13.
Understanding the carbon flux of forests is critical for constraining the global carbon cycle and managing forests to mitigate climate change. Monitoring forest growth and mortality rates is critical to this effort, but has been limited in the past, with estimates relying primarily on field surveys. Advances in remote sensing enable the potential to monitor tree growth and mortality across landscapes. This work presents an approach to measure tree growth and loss using multidate lidar campaigns in a high‐biomass forest in California, USA. Individual tree crowns were delineated in 2008 and again in 2013 using a 3D crown segmentation algorithm, with derived heights and crown radii extracted and used to estimate individual tree aboveground biomass. Tree growth, loss, and aboveground biomass were analyzed with respect to tree height and crown radius. Both tree growth and loss rates decrease with increasing tree height, following the expectation that trees slow in growth rate as they age. Additionally, our aboveground biomass analysis suggests that, while the system is a net source of aboveground carbon, these carbon dynamics are governed by size class with the largest sources coming from the loss of a relatively small number of large individuals. This study demonstrates that monitoring individual tree‐based growth and loss can be conducted with multidate airborne lidar, but these methods remain relatively immature. Disparities between lidar acquisitions were particularly difficult to overcome and decreased the sample of trees analyzed for growth rate in this study to 21% of the full number of delineated crowns. However, this study illuminates the potential of airborne remote sensing for ecologically meaningful forest monitoring at an individual tree level. As methods continue to improve, airborne multidate lidar will enable a richer understanding of the drivers of tree growth, loss, and aboveground carbon flux.  相似文献   

14.
Climate-driven increases in wildfires, drought conditions, and insect outbreaks are critical threats to forest carbon stores. In particular, bark beetles are important disturbance agents although their long-term interactions with future climate change are poorly understood. Droughts and the associated moisture deficit contribute to the onset of bark beetle outbreaks although outbreak extent and severity is dependent upon the density of host trees, wildfire, and forest management. Our objective was to estimate the effects of climate change and bark beetle outbreaks on ecosystem carbon dynamics over the next century in a western US forest. Specifically, we hypothesized that (a) bark beetle outbreaks under climate change would reduce net ecosystem carbon balance (NECB) and increase uncertainty and (b) these effects could be ameliorated by fuels management. We also examined the specific tree species dynamics—competition and release—that determined NECB response to bark beetle outbreaks. Our study area was the Lake Tahoe Basin (LTB), CA and NV, USA, an area of diverse forest types encompassing steep elevation and climatic gradients and representative of mixed-conifer forests throughout the western United States. We simulated climate change, bark beetles, wildfire, and fuels management using a landscape-scale stochastic model of disturbance and succession. We simulated the period 2010–2100 using downscaled climate projections. Recurring droughts generated conditions conducive to large-scale outbreaks; the resulting large and sustained outbreaks significantly increased the probability of LTB forests becoming C sources over decadal time scales, with slower-than-anticipated landscape-scale recovery. Tree species composition was substantially altered with a reduction in functional redundancy and productivity. Results indicate heightened uncertainty due to the synergistic influences of climate change and interacting disturbances. Our results further indicate that current fuel management practices will not be effective at reducing landscape-scale outbreak mortality. Our results provide critical insights into the interaction of drivers (bark beetles, wildfire, fuel management) that increase the risk of C loss and shifting community composition if bark beetle outbreaks become more frequent.  相似文献   

15.
Forest bioenergy opportunities may be hindered by a long greenhouse gas (GHG) payback time. Estimating this payback time requires the quantification of forest‐atmosphere carbon exchanges, usually through process‐based simulation models. Such models are prone to large uncertainties, especially over long‐term carbon fluxes from dead organic matter pools. We propose the use of whole ecosystem field‐measured CO2 exchanges obtained from eddy covariance flux towers to assess the GHG mitigation potential of forest biomass projects as a way to implicitly integrate all field‐level CO2 fluxes and the inter‐annual variability in these fluxes. As an example, we perform the evaluation of a theoretical bioenergy project that uses tree stems as bioenergy feedstock and include multi‐year measurements of net ecosystem exchange (NEE) from forest harvest chronosequences in the boreal forest of Canada to estimate the time dynamics of ecosystem CO2 exchanges following harvesting. Results from this approach are consistent with previous results using process‐based models and suggest a multi‐decadal payback time for our project. The time for atmospheric carbon debt repayment of bioenergy projects is highly dependent on ecosystem‐level CO2 exchanges. The use of empirical NEE measurements may provide a direct evaluation of, or at least constraints on, the GHG mitigation potential of forest bioenergy projects.  相似文献   

16.
Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large‐scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring‐based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750–2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long‐term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within‐stand structural variability. Reconstructed spatial patterns suggest that high small‐scale structural variability has historically acted to reduce large‐scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region‐wide increase in disturbance susceptibility. Increasingly common high‐severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events).  相似文献   

17.
Stand dynamics and the gap initiation prior to gap formation are not well‐understood because of its long‐term nature and the scarcity of late‐successional stands. Reconstruction of such disturbance is normally based on historical records and dendroecological methods. We investigated gap initiation and formation at the fine‐scale stand level in the old‐growth reserve of Karlshaugen in Norway. Given its long‐term conservation history, and thorough mapping in permanent marked plots with spatially referenced trees, it provides an opportunity to present stand development before, during, and after gap formation. Late‐successional decline in biomass was recorded after more than 50 years of close to steady state. Gaps in the canopy were mainly created by large old trees that had been killed by spruce bark beetles. Snapping by wind was the main reason for treefall. Long‐term dominance of Norway spruce excluded downy birch and Scots pine from the stand. Comparisons of the forest floor soil properties between the gap and nongap area showed significantly higher concentrations of plant available Ca within the gap area. Plant root simulator (PRS?) probes showed significantly higher supply rates for Ca and Mg, but significantly lower K for the gap compared to the nongap area. Soil water from the gap area had significantly higher C:N ratios compared to the nongap area. Fine‐scale variation with increasing distance to logs indicated that CWD is important for leaking of DOC and Ca. Our long‐term study from Karlshaugen documents gap dynamics after more than 50 years of steady state and a multiscale disturbance regime in an old‐growth forest. The observed disturbance dynamic caused higher aboveground and belowground heterogeneity in plots, coarse woody debris, and nutrients. Our study of the nutrient levels of the forest floor suggest that natural gaps of old‐growth forest provide a long‐lasting biogeochemical feedback system particularly with respect to Ca and probably also N. Norway spruce trees near the gap edge responded with high plasticity to reduced competition, showing the importance of the edge zone as hot spots for establishing heterogeneity, but also the potential for carbon sequestration in old‐growth forest.  相似文献   

18.
Atmospheric measurements and land‐based inventories imply that terrestrial ecosystems in the northern hemisphere are taking up significant amounts of anthropogenic cabon dioxide (CO2) emissions; however, there is considerable disagreement about the causes of this uptake, and its expected future trajectory. In this paper, we use the ecosystem demography (ED) model to quantify the contributions of disturbance history, CO2 fertilization and climate variability to the past, current, and future terrestrial carbon fluxes in the Eastern United States. The simulations indicate that forest regrowth following agricultural abandonment accounts for uptake of 0.11 Pg C yr?1 in the 1980s and 0.15 Pg C yr?1 in the 1990s, and regrowth following forest harvesting accounts for an additional 0.1 Pg C yr?1 of uptake during both these decades. The addition of CO2 fertilization into the model simulations increases carbon uptake rates to 0.38 Pg C yr?1 in the 1980s and 0.47 Pg C yr?1 in the 1990s. Comparisons of predicted aboveground carbon uptake to regional‐scale forest inventory measurements indicate that the model's predictions in the absence of CO2 fertilization are 14% lower than observed, while in the presence of CO2 fertilization, predicted uptake rates are 28% larger than observed. Comparable results are obtained from comparisons of predicted total Net Ecosystem Productivity to the carbon fluxes observed at the Harvard Forest flux tower site and in model simulations free‐air CO2 enrichment (FACE) experiments. These results imply that disturbance history is the principal mechanism responsible for current carbon uptake in the Eastern United States, and that conventional biogeochemical formulations of plant growth overestimate the response of plants to rising CO2 levels. Model projections out to 2100 imply that the carbon uptake arising from forest regrowth will increasingly be dominated by forest regrowth following harvesting. Consequently, actual carbon storage declines to near zero by the end of the 21st century as the forest regrowth that has occurred since agricultural abandonment comes into equilibrium with the landscape's new disturbance regime. Incorporating interannual climate variability into the model simulations gives rise to large interannual variation in regional carbon fluxes, indicating that long‐term measurements are necessary to detect the signature of processes that give rise to long‐term uptake and storage.  相似文献   

19.
Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought‐induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad‐leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad‐leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long‐term climate change.  相似文献   

20.
The responses of forest communities to interacting anthropogenic disturbances like climate change and logging are poorly known. Subtropical forests have been heavily modified by humans and their response to climate change is poorly understood. We investigated the 9‐year change observed in a mixed conifer‐hardwood Atlantic forest mosaic that included both mature and selectively logged forest patches in subtropical South America. We used demographic monitoring data within 10 1 ha plots that were subjected to distinct management histories (plots logged until 1955, until 1987, and unlogged) to test the hypothesis that climate change affected forest structure and dynamics differentially depending on past disturbances. We determined the functional group of all species based on life‐history affinities as well as many functional traits like leaf size, specific leaf area, wood density, total height, stem slenderness, and seed size data for the 66 most abundant species. Analysis of climate data revealed that minimum temperatures and rainfall have been increasing in the last few decades of the 20th century. Floristic composition differed mainly with logging history categories, with only minor change over the nine annual census intervals. Aboveground biomass increased in all plots, but increases were higher in mature unlogged forests, which showed signs of forest growth associated with increased CO2, temperature, and rainfall/treefall gap disturbance at the same time. Logged forests showed arrested succession as indicated by reduced abundances of Pioneers and biomass‐accumulators like Large Seeded Pioneers and Araucaria, as well as reduced functional diversity. Management actions aimed at creating regeneration opportunities for long‐lived pioneers are needed to restore community functional diversity, and ecosystem services such as increased aboveground biomass accumulation. We conclude that the effects of climate drivers on the dynamics of Brazilian mixed Atlantic forests vary with land‐use legacies, and can differ importantly from the ones prevalent in better known tropical forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号