首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 364 毫秒
1.
Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large‐scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring‐based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750–2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long‐term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within‐stand structural variability. Reconstructed spatial patterns suggest that high small‐scale structural variability has historically acted to reduce large‐scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region‐wide increase in disturbance susceptibility. Increasingly common high‐severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events).  相似文献   

2.
Wet‐sclerophyll forests are unique ecosystems that can transition to dry‐sclerophyll forests or to rainforests. Understanding of the dynamics of these forests for conservation is limited. We evaluated the long‐term succession of wet‐sclerophyll forest on World Heritage listed K'gari (Fraser Island)—the world's largest sand island. We recorded the presence and growth of tree species in three 0.4 hectare plots that had been subjected to selective logging, fire, and cyclone disturbance over 65 years, from 1952 to 2017. Irrespective of disturbance regimes, which varied between plots, rainforest trees recruited at much faster rates than the dominant wet‐sclerophyll forest trees, narrowly endemic species Syncarpia hillii and more common Lophostemon confertus. Syncarpia hillii did not recruit at the plot with the least disturbance and recruited only in low numbers at plots with more prominent disturbance regimes in the ≥10 cm at breast height size. Lophostemon confertus recruited at all plots but in much lower numbers than rainforest trees. Only five L. confertus were detected in the smallest size class (<10 cm diameter) in the 2017 survey. Overall, we find evidence that more pronounced disturbance regimes than those that have occurred over the past 65 years may be required to conserve this wet‐sclerophyll forest, as without intervention, transition to rainforest is a likely trajectory. Fire and other management tools should therefore be explored, in collaboration with Indigenous landowners, to ensure conservation of this wet‐sclerophyll forest.  相似文献   

3.
The distribution of tree species in tropical forests is generally related to the occurrence of disturbances and shifts in the local environmental conditions such as light, temperature, and biotic factors. Thus, the distribution of pioneer tree species is expected to vary according to the gap characteristics and with human disturbances. We asked whether there was variation in the distribution of a pioneer species under different environmental conditions generated by natural disturbances, and between two forests with contrasting levels of human disturbance. To answer this question, we studied the distribution patterns and population persistence of the pioneer tree species Croton floribundus in the size and age gap range of a primary Brazilian forest. Additionally, we compared the plant density of two size‐classes between a primary and an early successional human‐disturbed forest. Croton floribundus was found to be widespread and equally distributed along the gap‐size gradient in the primary forest. Overall density did not vary with gap size or age (F‐ratio = 0.062, = 0.941), and while juveniles were found to have a higher density in the early successional forest (= 0.021), tree density was found to be similar between forests (= 0.058). Our results indicate that the population structure of a pioneer tree species with long life span and a broad gap‐size niche preference varied between natural and human‐disturbed forests, but not with the level of natural disturbance. We believe this can be explained by the extreme environmental changes that occur after human disturbance. The ecological processes that affect the distribution of pioneer species in natural and human‐modified forests may be similar, but our results suggest they act differently under the contrasting environmental conditions generated by natural and human disturbances.  相似文献   

4.
Predicting species distributions with changing climate has often relied on climatic variables, but increasingly there is recognition that disturbance regimes should also be included in distribution models. We examined how changes in rainfall and disturbances along climatic gradients determined demographic patterns in a widespread and long‐lived tree species, Callitris glaucophylla in SE Australia. We examined recruitment since 1950 in relation to annual (200–600 mm) and seasonal (summer, uniform, winter) rainfall gradients, edaphic factors (topography), and disturbance regimes (vertebrate grazing [tenure and species], fire). A switch from recruitment success to failure occurred at 405 mm mean annual rainfall, coincident with a change in grazing regime. Recruitment was lowest on farms with rabbits below 405 mm rainfall (mean = 0–0.89 cohorts) and highest on less‐disturbed tenures with no rabbits above 405 mm rainfall (mean = 3.25 cohorts). Moderate levels of recruitment occurred where farms had no rabbits or less disturbed tenures had rabbits above and below 405 mm rainfall (mean = 1.71–1.77 cohorts). These results show that low annual rainfall and high levels of introduced grazing has led to aging, contracting populations, while higher annual rainfall with low levels of grazing has led to younger, expanding populations. This study demonstrates how demographic patterns vary with rainfall and spatial variations in disturbances, which are linked in complex ways to climatic gradients. Predicting changes in tree distribution with climate change requires knowledge of how rainfall and key disturbances (tenure, vertebrate grazing) will shift along climatic gradients.  相似文献   

5.
Question: Have past windstorm events influenced the structure and composition of mountain forests in the Tatra Mountains? Can severe and infrequent wind disturbances lead to dynamic coexistence of two tree species with different ecological requirements? Location: Subalpine mixed spruce‐larch forest at 1200‐1300 m a.s.l. in the Slovakian Tatra Mountains. A forested site affected by catastrophic large‐scale windthrow on 19 November 2004. Methods: Sixty‐seven spruce and 30 larch cross‐sections from the oldest cohorts were collected in a regular pattern in a 100‐ha plot. Tree‐ring series were analysed to reconstruct growth releases associated with past windthrows. A boundary‐line release criterion was applied to detect disturbance year. Spatial patterns of release signals were statistically detected with Mantel's test. We compared reconstructed years of disturbance events with historical records. Results: Releases in both species showed three main pulses. More than 85% showed major or moderate releases in 1865‐1879, 48% in 1915‐1924, and 25% in 1940‐1949. All of these disturbance events affected the whole 100‐ha area. Releases were spatially patterned in the first disturbances, but distributed randomly in the last. Releases co‐occurred in time with enhanced production of compression wood, suggesting disturbances were of wind origin. Reconstructed dates of windthrows were confirmed using historical data on storms. Conclusions: At least three windthrows of major and moderate severity took place in the last 150 years on southern slopes of the Tatra Mountains. This disturbance regime may contribute to coexistence of spruce and larch through differences in vulnerability and response to heavy windstorms.  相似文献   

6.
One of the most important drivers of local adaptation for forest trees is climate. Coupled to these patterns, however, are human‐induced disturbances through habitat modification and pollution. The confounded effects of climate and disturbance have rarely been investigated with regard to selective pressure on forest trees. Here, we have developed and used a population genetic approach to search for signals of selection within a set of 36 candidate genes chosen for their putative effects on adaptation to climate and human‐induced air pollution within five populations of red spruce (Picea rubens Sarg.), distributed across its natural range and air pollution gradient in eastern North America. Specifically, we used FST outlier and environmental correlation analyses to highlight a set of seven single nucleotide polymorphisms (SNPs) that were overly correlated with climate and levels of sulphate pollution after correcting for the confounding effects of population history. Use of three age cohorts within each population allowed the effects of climate and pollution to be separated temporally, as climate‐related SNPs (= 7) showed the strongest signals in the oldest cohort, while pollution‐related SNPs (= 3) showed the strongest signals in the youngest cohorts. These results highlight the usefulness of population genetic scans for the identification of putatively nonneutral evolution within genomes of nonmodel forest tree species, but also highlight the need for the development and application of robust methodologies to deal with the inherent multivariate nature of the genetic and ecological data used in these types of analyses.  相似文献   

7.
Abstract. We investigated the variability in spatial pattern of some structural, dendrochronological and dendroclimatological features of a mixed Larix decidua‐Pinus cembra forest at the timberline in the eastern Italian Alps at fine geographical and temporal scales. Forest structure variables such as stem diameter, tree height, age and tree‐ring related parameters (yearly growth index, mean sensitivity, first order autocorrelation and some dendroclimatic variables) have been compared at various scale levels. We observed that most of the variables show positive autocorrelated structures due to both forest dynamics and fine‐scale driving forces, probably related to microrelief. Spatial structure of yearly indexed radial growth appears sensitive to extreme climatic events. Secondary succession after past disturbances drives the forest towards a structure governed by a gap regeneration dynamics that seems to ensure the different requirements of the two main tree species present. Small spatial scale studies of forest structures, especially if integrated to dendro‐ecological data, seem an efficient tool to assess the disturbance regime and species sensitivity to environmental change.  相似文献   

8.
Evergreen broadleaved forests (EBLF), the zonal forest ecosystem of the subtropical zone in east China, have been degraded from recent anthropogenic disturbance. Understanding the role of past disturbances in EBLFs would be helpful to the restoration of degraded EBLFs. We used dendroecological techniques to reconstruct the disturbance history of a secondary EBLF dominated by Schima superba and Castanopsis carlesii in Tiantong National Forest Park (29°48′N, 121°47′E), Zhejiang Province, East China. The disturbances were inferred from tree-ring growth release and long-term establishment patterns obtained from 91 overstory trees. The initial growth rates of these trees were compared to trees originating in the understory to evaluate the intensity of past disturbances. The spatial distribution patterns of disturbances were portrayed with tree mapping. The results revealed that there were five disturbances, averaging one disturbance per decade over the past half century. The first disturbance event was probably most intense given that most canopy trees established at that time and displayed high initial growth rates. The timing of the second disturbance event coincided with the documented selective logging. The last three disturbances, having lower tree growth responses and a clumped spatial distribution of gap creation, were probably the result of recurring typhoons. The first two disturbances led to tree regeneration and secondary succession, represented mainly by long-lived deciduous trees in the forest. The subsequent disturbances facilitated the stand development process, creating a complex three-dimensional structure from a pre-existing single-age cohort. This study suggests that EBLFs affected by large disturbances can recover in a few decades and the frequent gap disturbances probably facilitate its process in the early successional stages.  相似文献   

9.
The globally observed trend of changing intensity of tropical cyclones over the past few decades emphasizes the need for a better understanding of the effects of such disturbance events in natural and inhabited areas. On the Korean Peninsula, typhoon intensity has increased over the past 100 years as evidenced by instrumental data recorded from 1904 until present. We examined how the increase in three weather characteristics (maximum hourly and daily precipitation, and maximum wind speed) during the typhoon activity affected old‐growth oak forests. Quercus mongolica is a dominant species in the Korean mountains and the growth releases from 220 individuals from three sites along a latitudinal gradient (33–38°N) of decreasing typhoon activity were studied. Growth releases indicate tree‐stand disturbance and improved light conditions for surviving trees. The trends in release events corresponded to spatiotemporal gradients in maximum wind speed and precipitation. A high positive correlation was found between the maximum values of typhoon characteristics and the proportion of trees showing release. A higher proportion of disturbed trees was found in the middle and southern parts of the Korean peninsula where typhoons are most intense. This shows that the releases are associated with typhoons and also indicates the differential impact of typhoons on the forests. Finally, we present a record of the changing proportion of trees showing release based on tree‐rings for the period 1770–1979. The reconstruction revealed no trend during the period 1770–1879, while the rate of forest disturbances increased rapidly from 1880 to 1979. Our results suggest that if typhoon intensity rises, as is projected by some climatic models, the number of forest disturbance events will increase thus altering the disturbance regime and ecosystem processes.  相似文献   

10.
The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four 'old-growth' tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr(-1)) and decreased at HKK (-0.56% yr(-1)) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget.  相似文献   

11.
The frequency of extreme precipitation events is predicted to increase in some tropical regions in response to global climate change, but the impacts of this form of disturbance on the structure and dynamics of tropical tree communities across heterogeneous landscapes remain understudied. We determined the effects of an extreme precipitation event (EPE) in July 2006 on mortality of dipterocarps on a 68 ha permanent inventory plot in Sepilok Forest Reserve, Sabah. For stems ≥30 cm dbh, 12 of the 15 species of Dipterocarpaceae on this plot have significant positive and/or negative associations to habitats defined by topography and soil type. Short‐term mortality induced by the EPE was much greater for individuals growing on the alluvial floodplain (13.7%) than in the mudstone (1.4%) or sandstone (0.0%) habitats, but mortality of dipterocarps did not differ among these habitats in the subsequent 5‐yr interval. The likelihood of mortality in response to the EPE was highest for a small group of fast growing dipterocarps that possess low wood density and a strong association to the alluvial forest habitat. This group of species represents a high percentage of dipterocarp individuals but a low proportion of dipterocarp diversity in this habitat. We conclude that disturbance induced by high rainfall events contributes to the episodic nature of tropical forest dynamics, and that increases in the frequency of these events would disproportionately impact low‐lying alluvial forest environments and some of the species growing in them.  相似文献   

12.
Abstract Spatial heterogeneity in the intensity of past disturbances has directly influenced the structure and composition of present‐day forests around the world. In south‐eastern Australia infrequent, high‐intensity wildfires are a major part of the historical disturbance regime. While these fires are often assumed to produce even‐aged stands, spatial heterogeneity in fire intensity due to highly variable topography may lead to more complex forest age structures. Our study describes the influence of disturbance on the age structure and dynamics of a mosaic of tall, open eucalypt forest, cool temperate rainforest and mixed species forest surrounding Bellel Creek in the Central Highlands of Victoria using dendrochronological techniques. We were particularly interested in the impacts of the 1939 Black Friday fire and its effects on forest age structure and subsequent stand development patterns. Within our study site tall open forest displayed two distinct age cohorts: (i) trees that established immediately after the 1939 fire and accounted for the majority of individuals in the forest, and (ii) scattered groups of older trees estimated to be approximately 200–250 years old. Cool temperate rainforest and mixed forest were also dominated by the post‐1939 fire age cohort. However, a greater proportion of trees in these forest types survived the 1939 fire relative to the tall open forest. The impact of the 1939 fire on the growth of surviving trees was highly variable but generally short‐lived. In most cases growth decreased after the 1939 fire, but generally returned to prefire levels within 1–3 years. Non‐fire disturbances were limited to small‐scale branch‐ and tree‐fall events, although the extreme snowstorm of 1977 appears to have caused extensive damage to rainforest communities. Our study demonstrates the opportunities for dendroecological studies to reconstruct historical dynamics and disturbance patterns in Australian forests and provides important insights into variation in landscape‐scale fire impacts and their effect on subsequent forest development patterns.  相似文献   

13.
Background: Variation in the distribution and abundance of woody plants as consequence of disturbances such as fire may be explained by lineage age.

Aims: We tested whether lowland tropical tree lineages that colonise secondary forests are more late-diverging than clades from old-growth forests, and whether tree phylogenetic beta diversity from old-growth to secondary forests is higher in burned than non-burned secondary forests.

Methods: We sampled tree communities in old-growth forests and in secondary forests with distinct disturbance histories (burned and unburned). We calculated mean family age in each plot, and tested for differences among forest types using ANOVA. A phylogenetic fuzzy-weighting procedure was employed to generate a matrix describing the abundance of tree clades per plot, which was then analysed using a principal coordinate analysis.

Results: Most clades found in old-growth forests were underrepresented in secondary forests, which have been heavily colonised by a single species from a young lineage that is not found in old-growth forests. Phylogenetic beta diversity was higher between unburned secondary forests and old-growth forests than between burned secondary forests and old-growth forests.

Conclusions: The capacity of Neotropical trees to colonise secondary forests and persist after fire disturbance may be related to the age of distinct lineages.  相似文献   

14.
The rising discussion on carbon balance of tropical forests often does not consider the sequestration potential of secondary dry forests, which are becoming an increasing importance due to land use change and reforestation. We have developed an easy applicable tool for the estimation of biomass increment of tropical secondary forest stands on the base of tree ring analysis. The existence of annual rings was shown by a combination of anatomical examination and radiocarbon estimations. With tree ring analysis, forest inventories and destructive sampling the above-ground biomass increment of secondary forest stands of age between 9 and 48 years in the dry forest region of Guanacaste, Costa Rica were estimated. The above-ground biomass increment of the tree layer varies between 2.4 and 3.2 Mg/ha yr in different stands. Lianas contribute with up to 23% additional production. Differences in productivity among the stands along a chronosequence were not significant. The measured carbon allocation potential of 1.7–2.1 Mg C/ha yr lies in the range of reported values from other tropical dry forests and old growth humid forests as well.  相似文献   

15.
Question: What were the temporal patterns and rates of tree mortality in a recent episodic tree mortality event? Have similar events occurred in the past, and does climatic variability play a role in the disturbance regime? Location: Intact Picea abies‐dominated taiga in the Arkhangelsk region, northwestern Russia. Methods: We reconstructed the past tree mortality and disturbance history by applying dendroecological methods in five forest stands and related these to climatic data. The role of other potential causes of tree mortality was assessed in a field inventory. Results: The recent episode lasted from 1999 to 2004, influenced all stands studied, and killed on average 21% of trees with a diameter of over 10 cm at 1.3‐m height. The annual tree mortality rate in the decades preceding this episode was 0.49%. During the past 200 years, the stands have experienced chronic small‐scale disturbances, with several irregular disturbances of moderate severity. The recent episode was associated with abundant signs of the bark beetle Ips typographus. Furthermore, the timing of both the recent tree mortality episode and the past disturbance events was associated with dry summers. Conclusion: The results indicate a connection between climatic variability and forest dynamics, the likely driving factors being droughts and bark beetles. In the context of the past 200 years, the recent episode was potentially at the higher end of the range of disturbance variability in terms of severity and spatial extent. This has ecological implications in a changing climate, potentially influencing ecosystem structure and long‐term dynamics.  相似文献   

16.
Worldwide, extreme climatic events such as drought and heatwaves are associated with forest mortality. However, the precise drivers of tree mortality at individual and stand levels vary considerably, with substantial gaps in knowledge across studies in biomes and continents. In 2010–2011, a drought‐associated heatwave occurred in south‐western Australia and drove sudden and rapid forest canopy collapse. Working in the Northern Jarrah (Eucalyptus marginata) Forest, we quantified the response of key overstory (E. marginata, Corymbia calophylla) and midstory (Banksia grandis, Allocasuarina fraseriana) tree species to the extreme climate event. Using transects spanning a gradient of drought impacts (minimal (50–100 m), transitional (100–150 m) and severe (30–60 m)), tree species mortality in relation to stand characteristics (stand basal area and stem density) and edaphic factors (soil depth) was determined. We show differential mortality between the two overstory species and the two midstory species corresponding to the drought‐associated heatwave. The dominant overstory species, E. marginata, had significantly higher mortality (~19%) than C. calophylla (~7%) in the severe zone. The midstory species, B. grandis, demonstrated substantially higher mortality (~59%) than A. fraseriana (~4%) in the transitional zone. Banksia grandis exhibited a substantial shift in structure in response to the drought‐associated heatwave in relation to tree size, basal area and soil depth. This study illustrates the role of climate extremes in driving ecosystem change and highlights the critical need to identify and quantify the resulting impact to help predict future forest die‐off events and to underpin forest management and conservation.  相似文献   

17.
The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio‐temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is thus essential to understanding the current global forest carbon sink, and to predicting how it will change in future. We analyzed forest inventory data from the eastern United States to estimate plot‐level variation in mortality (relative to a long‐term background rate for individual trees) for nine distinct forest regions. Disturbances that produced at least a fourfold increase in tree mortality over an approximately 5 year interval were observed in 1–5% of plots in each forest region. The frequency of disturbance was lowest in the northeast, and increased southwards along the Atlantic and Gulf coasts as fire and hurricane disturbances became progressively more common. Across the central and northern parts of the region, natural disturbances appeared to reflect a diffuse combination of wind, insects, disease, and ice storms. By linking estimated covariation in tree growth and mortality over time with a data‐constrained forest dynamics model, we simulated the implications of stochastic variation in mortality for long‐term aboveground biomass changes across the eastern United States. A geographic gradient in disturbance frequency induced notable differences in biomass dynamics between the least‐ and most‐disturbed regions, with variation in mortality causing the latter to undergo considerably stronger fluctuations in aboveground stand biomass over time. Moreover, regional simulations showed that a given long‐term increase in mean mortality rates would support greater aboveground biomass when expressed through disturbance effects compared with background mortality, particularly for early‐successional species. The effects of increased tree mortality on carbon stocks and forest composition may thus depend partly on whether future mortality increases are chronic or episodic in nature.  相似文献   

18.
Although tropical forests have been rapidly converted into human‐modified landscapes, tree species response to forest edges remains poorly examined. In this study, we addressed four pioneer tree species to document demographic shifts experienced by this key ecological group and make inferences about pioneer response to forest edges. All individuals with dbh ≥ 1 cm of two short‐lived (Bellucia grossularioides and Cecropia sciadophylla) and two long‐lived species (Goupia glabra and Laetia procera) were sampled in 20 1‐ha forest edge plots and 20 1‐ha forest interior plots in Oiapoque and Manaus, Northeast and Central Amazon, respectively. As expected, pioneer stem density with dbh ≥ 1 cm increased by around 10–17‐fold along forest edges regardless of species, lifespan, and study site. Edge populations of long‐lived pioneers presented 84–94 percent of their individuals in sapling/subadult size classes, whereas edge populations of short‐lived pioneers showed 56–97 percent of their individuals in adult size classes. These demographic biases were associated with negative and positive net adult recruitment of long‐ and short‐lived pioneers, respectively. Our population‐level analyses support three general statements: (1) native pioneer tree species proliferate along forest edges (i.e., increased density), at least in terms of non‐reproductive individuals; (2) pioneer response to edge establishment is not homogeneous as species differ in terms of demographic structure and net adult recruitment; and (3) some pioneer species, particularly long‐lived ones, may experience population decline due to adult sensitivity to edge‐affected habitats.  相似文献   

19.
We evaluated growth responses to gap formation for juvenile individuals of three canopy rain forest species: Peltogyne cf. heterophylla, Clarisia racemosa and Cedrelinga catenaeformis. Gaps were formed during selective logging operations 7 yr before sampling in a Bolivian rain forest. We collected wood samples for tree‐ring analyses at different distances to the stump (<10, 10–40 and >40 m) and from trees with different diameters (5–30 cm diameter at breast height [dbh]). Tree‐rings width was measured in at least two radii and converted to average diameter growth. Changes in 7‐yr median diameter growth before and after selective logging were analyzed. Diameter growth rates significantly increased by 0.7–0.8 mm/yr after gap formation for P. heterophylla and C. catenaeformis, but not for C. racemosa. We applied a multiple regression analysis to explain variation in growth responses of P. heterophylla and C. catenaeformis by distance to logging gap and tree size. For P. heterophylla we found that growth increase occurring close to logging gaps was strongest for large juvenile trees (20–25 cm dbh) and almost absent in small juveniles. For C. catenaeformis, variation in growth responses was not related to tree size or distance to gaps. Our results show that growth responses to gap formation strongly differ across species and tree sizes. This finding calls for caution in the interpretation of growth releases in tree‐ring series, as gap formation does not necessarily invoke growth responses and if such growth responses occur, their strength is species‐ and size specific.  相似文献   

20.
Negative impacts of discrete, short‐term disturbances to wildlife populations are well‐documented. The consequences of more gradual environmental change are less apparent and harder to study because they play out over longer periods and are often indirect in their action. Yet, they can drive the decline of wildlife populations even in seemingly pristine and currently well‐protected habitats. One such environmental change is a successional shift in a community's species composition as it regenerates from disturbance caused by past human land use. Early and middle successional tree species often provide key foods to folivores and frugivores, but the abundance of these resources drops as the forest matures, with adverse repercussions for these consumers. Our 44‐year record (1974–2018) of howler monkey (Alouatta palliata) group sizes and demographic composition from Barro Colorado Island, Panama, a protected reserve, documents an example of this phenomenon. After 70 years of relative stability, the mean size of howler monkey groups exhibited a marked decline, beginning in 2003. This downward trajectory in group size has continued through the most recent census in 2018. The composition of howler groups also changed significantly during the study period, with the patterns of decline differing among age/sex classes. There is no evidence that these changes were caused by increased rates of emigration, group fission, predation, parasitism, or disease. Rather, they are best explained by an island‐wide, succession‐driven decline in the densities of two species of free‐standing fig trees, Ficus yoponensis and F. insipida, which together were providing ~36% of BCI howlers’ annual diet. Abstract in Spanish is available with online material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号