首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To calculate the global warming potential of biogenic carbon dioxide emissions (GWPbCO2) associated with diverting residual biomass to bioenergy use, the decay of annual biogenic carbon pulses into the atmosphere over 100 years was compared between biomass use for energy and its business-as-usual decomposition in agricultural, forestry, or landfill sites. Bioenergy use increased atmospheric CO2 load in all cases, resulting in a 100GWPbCO2 (units of g CO2e/g biomass CO2 released) of 0.003 for the fast-decomposing agricultural residues to 0.029 for the slow, 0.084–0.625 for forest residues, and 0.368–0.975 for landfill lignocellulosic biomass. In comparison, carbon emissions from fossil fuels have a 100GWP of 1.0 g (CO2e/g fossil CO2). The fast decomposition rate and the corresponding low 100GWPbCO2 values of agricultural residues make them a more climate-friendly feedstock for bioenergy production relative to forest residues and landfill lignocellulosic biomass. This study shows that CO2 released from the combustion of bioenergy or biofuels made from residual biomass has a greenhouse gas footprint that should be considered in assessing climate impacts.  相似文献   

2.
Traditionally, wood fuels, like other bioenergy sources, have been considered carbon neutral because the amount of CO2 released can be offset by CO2 sequestration due to the regrowth of the biomass. Thus, until recently, most studies assigned a global warming potential (GWP) of zero to CO2 generated by the combustion of biomass (biogenic CO2). Moreover, emissions of biogenic CO2 are usually not included in carbon tax and emissions trading schemes. However, there is now increasing awareness of the inadequacy of this way of treating bioenergy, especially bioenergy from boreal forests. Holtsmark (2014) recently quantified the GWP of biogenic CO2 from slow‐growing forests (GWPbio), finding it to be significantly higher than the GWP of fossil CO2 when a 100 year time horizon was applied. Hence, the climate impact seems to be even higher for the combustion of slow‐growing biomass than for the combustion of fossil carbon in a 100 year timeframe. The present study extends the analysis of Holtsmark (2014) in three ways. First, it includes the cooling effects of increased surface reflectivity after harvest (albedo). Second, it includes a comparison with the potential warming impact of fossil fuels, taking the CO2 emissions per unit of energy produced into account. Third, the study links the literature estimating GWPbio and the literature dealing with the carbon debt, and model simulations estimating the payback time of the carbon debt are presented. The conclusion is that, also after these extensions of the analysis, bioenergy from slow‐growing forests usually has a larger climate impact in a 100 year timeframe than fossil oil and gas. Whether bioenergy performs better or worse than coal depends on a number of conditions.  相似文献   

3.
Carbon dioxide (CO2) emissions from biomass combustion are traditionally assumed climate neutral if the bioenergy system is carbon (C) flux neutral, i.e. the CO2 released from biofuel combustion approximately equals the amount of CO2 sequestered in biomass. This convention, widely adopted in life cycle assessment (LCA) studies of bioenergy systems, underestimates the climate impact of bioenergy. Besides CO2 emissions from permanent C losses, CO2 emissions from C flux neutral systems (that is from temporary C losses) also contribute to climate change: before being captured by biomass regrowth, CO2 molecules spend time in the atmosphere and contribute to global warming. In this paper, a method to estimate the climate impact of CO2 emissions from biomass combustion is proposed. Our method uses CO2 impulse response functions (IRF) from C cycle models in the elaboration of atmospheric decay functions for biomass‐derived CO2 emissions. Their contributions to global warming are then quantified with a unit‐based index, the GWPbio. Since this index is expressed as a function of the rotation period of the biomass, our results can be applied to CO2 emissions from combustion of all the different biomass species, from annual row crops to slower growing boreal forest.  相似文献   

4.
There is growing interest in understanding how storage or delayed emission of carbon in products based on bioresources might mitigate climate change, and how such activities could be credited. In this research we extend the recently introduced approach that integrates biogenic carbon dioxide (CO2) fluxes with the global carbon cycle (using biogenic global warming potential [GWPbio]) to consider the storage period of harvested biomass in the anthroposphere, with subsequent oxidation. We then examine how this affects the climate impact from a bioenergy resource. This approach is compared to several recent methods designed to address the same problem. Using both a 100‐ and a 500‐year fixed time horizon we calculate the GWPbio factor for every combination of rotational and anthropogenic storage periods between 0 and 100 years. The resulting GWPbio factors range from ?0.99 (1‐year rotation and 100‐year storage) to +0.44 (100‐year rotation and 0‐year storage). The approach proposed in this study includes the interface between biomass growth and emissions and the global carbon cycle, whereas other methods do not model this. These results and the characterization factors produced can determine the climate change benefits or impacts associated with the storage of biomass in the anthroposphere, and the subsequent release of biogenic CO2 with the radiative forcing integrated in a fixed time window.  相似文献   

5.
Use of biomass‐based electricity and hydrogen in alternative transport could provide environmentally sustainable transport options with possible improvements in greenhouse gas balance. We perform a life cycle assessment of electric vehicle (EV) and fuel cell vehicle (FCV) powered by bioelectricity and biohydrogen, respectively, derived from Norwegian boreal forest biomass, considering the nonclimate neutrality of biological carbon dioxide (CO2) emissions and alteration in surface albedo resulting from biomass harvesting—both with and without CO2 capture and storage (CCS)—while benchmarking these options against EVs powered by the average European electricity mix. Results show that with due consideration of the countering effects from global warming potential (GWP) factors for biogenic CO2 emissions and change in radiative forcing of the surface for the studied region, bioenergy‐based EVs and FCVs provide reductions of approximately 30%, as compared to the reference EV powered by the average European electricity mix. With CCS coupled to bioenergy production, the biomass‐based vehicle transport results in a net global warming impact reduction of approximately 110% to 120% (giving negative GWP and creating a climate‐cooling benefit from biomass use). Other environmental impacts vary from ?60% to +60%, with freshwater eutrophication showing maximum reductions (40% for the EV case and 60% for the FCV case) and photochemical oxidation showing a maximum increase (60% in the FCV value chain).  相似文献   

6.
Biofuels are a potentially important source of energy for our society. Common practice in life cycle assessment (LCA) of bioenergy has been to assume that any carbon dioxide (CO2) emission related to biomass combustion equals the amount absorbed in biomass, thus assuming no climate change impacts. Recent developments show the significance of contributions of biogenic CO2 emissions during the time they stay in the atmosphere. The goal of this article is to develop a global, spatially explicit method to quantify the potential impact on human health and terrestrial ecosystems of biogenic carbon emissions coming from forest wood extraction for biofuel production. For this purpose, changes in aboveground carbon stock (ΔCforest) due to an increase in wood extraction via changes in rotation time are simulated worldwide with a 0.5° × 0.5° grid resolution. Our results show that both impacts and benefits can be obtained. When the extraction increase is reached by creating a longer rotation time, new growth is allowed resulting in carbon benefits. In a case study, we assessed the life cycle impacts of heat production via wood to determine the significance of including biogenic CO2 emissions due to changes in forest management. Impacts of biogenic CO2 dominate the total climate change impacts from a wood stove. Depending on the wood source country, climate change impacts due to heat production from wood either have an important share in the overall impacts on human health and terrestrial ecosystems, or allow for a large additional CO2 sink.  相似文献   

7.
Bioenergy is expected to have a prominent role in limiting global greenhouse emissions to meet the climate change target of the Paris Agreement. Many studies identify negative emissions from bioenergy generation with carbon capture and storage (BECCS) as its key contribution, but assume that no other CO2 removal technologies are available. We use a global integrated assessment model, TIAM‐UCL, to investigate the role of bioenergy within the global energy system when direct air capture and afforestation are available as cost‐competitive alternatives to BECCS. We find that the presence of other CO2 removal technologies does not reduce the pressure on biomass resources but changes the use of bioenergy for climate mitigation. While we confirm that when available BECCS offers cheaper decarbonization pathways, we also find that its use delays the phase‐out of unabated fossil fuels in industry and transport. Furthermore, it displaces renewable electricity generation, potentially increasing the likelihood of missing the Paris Agreement target. We found that the most cost‐effective solution is to invest in a basket of CO2 removal technologies. However, if these technologies rely on CCS, then urgent action is required to ramp up the necessary infrastructure. We conclude that a sustainable biomass supply is critical for decarbonizing the global energy system. Since only a few world regions carry the burden of producing the biomass resource and store CO2 in geological storage, adequate international collaboration, policies and standards will be needed to realize this resource while avoiding undesired land‐use change.  相似文献   

8.
Bioenergy from forest residues can be used to avoid fossil carbon emissions, but removing biomass from forests reduces carbon stock sizes and carbon input to litter and soil. The magnitude and longevity of these carbon stock changes determine how effective measures to utilize bioenergy from forest residues are to reduce greenhouse gas (GHG) emissions from the energy sector and to mitigate climate change. In this study, we estimate the variability of GHG emissions and consequent climate impacts resulting from producing bioenergy from stumps, branches and residual biomass of forest thinning operations in Finland, and the contribution of the variability in key factors, i.e. forest residue diameter, tree species, geographical location of the forest biomass removal site and harvesting method, to the emissions and their climate impact. The GHG emissions and the consequent climate impacts estimated as changes in radiative forcing were comparable to fossil fuels when bioenergy production from forest residues was initiated. The emissions and climate impacts decreased over time because forest residues were predicted to decompose releasing CO2 even if left in the forest. Both were mainly affected by forest residue diameter and climatic conditions of the forest residue collection site. Tree species and the harvest method of thinning wood (whole tree or stem‐only) had a smaller effect on the magnitude of emissions. The largest reduction in the energy production climate impacts after 20 years, up to 62%, was achieved when coal was replaced by the branches collected from Southern Finland, whereas the smallest reduction 7% was gained by using stumps from Northern Finland instead of natural gas. After 100 years the corresponding values were 77% and 21%. The choice of forest residue biomass collected affects significantly the emissions and climate impacts of forest bioenergy.  相似文献   

9.
Recent studies have introduced the metric GWPbio, an indicator of the potential global warming impact of CO2 emissions from biofuels. When a time horizon of 100 years was applied, the studies found the GWPbio of bioenergy from slow‐growing forests to be significantly lower than the traditionally calculated GWP of CO2 from fossil fuels. This result means that bioenergy is an attractive energy source from a climate mitigation perspective. The present paper provides an improved method for quantifying GWPbio. The method is based on a model of a forest stand that includes basic dynamics and interactions of the forest's multiple carbon pools, including harvest residues, other dead organic matter, and soil carbon. Moreover, the baseline scenario (with no harvest) takes into account that a mature stand will usually continue to capture carbon if not harvested. With these methodological adjustments, the resulting GWPbio estimates are found to be two to three times as high as the estimates of GWPbio found in other studies, and also significantly higher than the GWP of fossil CO2, when a 100‐year time horizon is applied. Hence, the climate impact per unit of CO2 emitted seems to be even higher for the combustion of slow‐growing biomass than for the combustion of fossil carbon in a 100‐year time frame.  相似文献   

10.
Heavy trucks contribute significantly to climate change, and in 2020 were responsible for 7% of total Swedish GHG emissions and 5% of total global CO2 emissions. Here we study the full lifecycle of cargo trucks powered by different energy pathways, comparing their biomass feedstock use, primary energy use, net biogenic and fossil CO2 emission and cumulative radiative forcing. We analyse battery electric trucks with bioelectricity from stand-alone or combined heat and power (CHP) plants, and pathways where bioelectricity is integrated with wind and solar electricity. We analyse trucks operated on fossil diesel fuel and on dimethyl ether (DME). All energy pathways are analysed with and without carbon capture and storage (CCS). Bioelectricity and DME are produced from forest harvest residues. Forest biomass is a limited resource, so in a scenario analysis we allocate a fixed amount of biomass to power Swedish truck transport. Battery lifespan and chemistry, the technology level of energy supply, and the biomass source and transport distance are all varied to understand how sensitive the results are to these parameters. We find that pathways using electricity to power battery electric trucks have much lower climate impacts and primary energy use, compared to diesel- and DME-based pathways. The pathways using bioelectricity with CCS result in negative emissions leading to global cooling of the earth. The pathways using diesel and DME have significant and very similar climate impact, even with CCS. The robust results show that truck electrification and increased renewable electricity production is a much better strategy to reduce the climate impact of cargo transport than the adoption of DME trucks, and much more primary energy efficient. This climate impact analysis includes all fossil and net biogenic CO2 emissions as well as the timing of these emissions. Considering only fossil emissions is incomplete and could be misleading.  相似文献   

11.
The area of dedicated energy crops is expected to increase in Sweden. This will result in direct land use changes, which may affect the carbon stocks in soil and biomass, as well as yield levels and the use of inputs. Carbon dioxide (CO2) fluxes of biomass are often not considered when calculating the climate impact in life cycle assessments (LCA) assuming that the CO2 released at combustion has recently been captured by the biomass in question. With the extended time lag between capture and release of CO2 inherent in many perennial bioenergy systems, the relation between carbon neutrality and climate neutrality may be questioned. In this paper, previously published methodologies and models are combined in a methodological framework that can assist LCA practitioners in interpreting the time‐dependent climate impact of a bioenergy system. The treatment of carbon differs from conventional LCA practice in that no distinction is made between fossil and biogenic carbon. A time‐dependent indicator is used to enable a representation of the climate impact that is not dependent on the choice of a specific characterization time horizon or time of evaluation and that does not use characterization factors, such as global warming potential and global temperature potential. The indicator used to aid in the interpretation phase of this paper is global mean surface temperature change (ΔTs(n)). A theoretical system producing willow for district heating was used to study land use change effects depending on previous land use and variations in the standing biomass carbon stocks. When replacing annual crops with willow this system presented a cooling contribution to ΔTs(n). However, the first years after establishing the willow plantation it presented a warming contribution to ΔTs(n). This behavior was due mainly to soil organic carbon (SOC) variation. A rapid initial increase in standing biomass counteracted the initial SOC loss.  相似文献   

12.
Albedo change during feedstock production can substantially alter the life cycle climate impact of bioenergy. Life cycle assessment (LCA) studies have compared the effects of albedo and greenhouse gases (GHGs) based on global warming potential (GWP). However, using GWP leads to unequal weighting of climate forcers that act on different timescales. In this study, albedo was included in the time‐dependent LCA, which accounts for the timing of emissions and their impacts. We employed field‐measured albedo and life cycle emissions data along with time‐dependent models of radiative transfer, biogenic carbon fluxes and nitrous oxide emissions from soil. Climate impacts were expressed as global mean surface temperature change over time (?T) and as GWP. The bioenergy system analysed was heat and power production from short‐rotation willow grown on former fallow land in Sweden. We found a net cooling effect in terms of ?T per hectare (?3.8 × 10–11 K in year 100) and GWP100 per MJ fuel (?12.2 g CO2e), as a result of soil carbon sequestration via high inputs of carbon from willow roots and litter. Albedo was higher under willow than fallow, contributing to the cooling effect and accounting for 34% of GWP100, 36% of ?T in year 50 and 6% of ?T in year 100. Albedo dominated the short‐term temperature response (10–20 years) but became, in relative terms, less important over time, owing to accumulation of soil carbon under sustained production and the longer perturbation lifetime of GHGs. The timing of impacts was explicit with ?T, which improves the relevance of LCA results to climate targets. Our method can be used to quantify the first‐order radiative effect of albedo change on the global climate and relate it to the climate impact of GHG emissions in LCA of bioenergy, alternative energy sources or land uses.  相似文献   

13.
The study describes an integrated impact assessment tool for the net carbon dioxide (CO2) exchange in forest production. The components of the net carbon exchange include the uptake of carbon into biomass, the decomposition of litter and humus, emissions from forest management operations and carbon released from the combustion of biomass and degradation of wood‐based products. The tool enables the allocation of the total carbon emissions to the timber and energy biomass and to the energy produced on the basis of biomass. In example computations, ecosystem model simulations were utilized as an input to the tool. We present results for traditional timber production (pulpwood and saw logs) and integrated timber and bioenergy production (logging residues, stumps and roots) for Norway spruce, in boreal conditions in Finland, with two climate scenarios over one rotation period. The results showed that the magnitude of management related emissions on net carbon exchange was smaller when compared with the total ecosystem fluxes; decomposition being the largest emission contributor. In addition, the effects of management and climate were higher on the decomposition of new humus compared with old humus. The results also showed that probable increased biomass growth, obtained under the changing climate (CC), could not compensate for decomposition and biomass combustion related carbon loss in southern Finland. In our examples, the emissions allocated for the energy from biomass in southern Finland were 172 and 188 kg CO2 MW h?1 in the current climate and in a CC, respectively, and 199 and 157 kg CO2 MW h?1 in northern Finland. This study concludes that the tool is suitable for estimating the net carbon exchange of forest production. The tool also enables the allocation of direct and indirect carbon emissions, related to forest production over its life cycle, in different environmental conditions and for alternative time periods and land uses. Simulations of forest management regimes together with the CC give new insights into ecologically sustainable forest bioenergy and timber production, as well as climate change mitigation options in boreal forests.  相似文献   

14.
The aim of this work was to study the sensitivity of carbon dioxide (CO2) emissions from wood energy to different forest management regimes when aiming at an integrated production of timber and energy biomass. For this purpose, the production of timber and energy biomass in Norway spruce [Picea abies (L.) Karst] and Scots pine (Pinus sylvestris L.) stands was simulated using an ecosystem model (SIMA) on sites of varying fertility under different management regimes, including various thinning and fertilization treatments over a fixed simulation period of 80 years. The simulations included timber (sawlogs, pulp), energy biomass (small‐sized stem wood) and/or logging residues (top part of stem, branches and needles) from first thinning, and logging residues and stumps from final felling for energy production. In this context, a life cycle analysis/emission calculation tool was used to assess the CO2 emissions per unit of energy (kg CO2 MWh?1) which was produced based on the use of wood energy. The energy balance (GJ ha?1) of the supply chain was also calculated. The evaluation of CO2 emissions and energy balance of the supply chain considered the whole forest bioenergy production chain, representing all operations needed to grow and harvest biomass and transport it to a power plant for energy production. Fertilization and high precommercial stand density clearly increased stem wood production (i.e. sawlogs, pulp and small‐sized stem wood), but also the amount of logging residues, stump wood and roots for energy use. Similarly, the lowest CO2 emissions per unit of energy were obtained, regardless of tree species and site fertility, when applying extremely or very dense precommercial stand density, as well as fertilization three times during the rotation. For Norway spruce such management also provided a high energy balance (GJ ha?1). On the other hand, the highest energy balance for Scots pine was obtained concurrently with extremely dense precommercial stands without fertilization on the medium‐fertility site, while on the low‐fertility site fertilization three times during the rotation was needed to attain this balance. Thus, clear differences existed between species and sites. In general, the forest bioenergy supply chain seemed to be effective; i.e. the fossil fuel energy consumption varied between 2.2% and 2.8% of the energy produced based on the forest biomass. To conclude, the primary energy use and CO2 emissions related to the forest operations, including the production and application of fertilizer, were small in relation to the increased potential of energy biomass.  相似文献   

15.
In life cycle assessment (LCA), the same characterization factors are conventionally applied irrespective of when the emissions occur (the same importance is given to emissions in the past, present, and future). When the assessment is constrained by fixed timeframes, the appropriateness of this paradigm is questioned and the temporal distribution of emissions becomes of relevance. One typical example is the accounting for biogenic CO2 emissions and removals. This article proposes a methodology for assessing the climate impact of time‐distributed CO2 fluxes using probability distributions. Three selected wood applications, such as fuel, nonstructural panels, and housing construction materials are assessed. In all the cases, CO2 sequestration in growing trees is modeled with an appropriate forest growth function, whereas CO2 emissions from wood oxidation are modeled with different probability distributions, such as the delta function, the uniform distribution, the exponential distribution, and the chi‐square distribution. The combination of these CO2 fluxes with the global carbon cycle provides the respective changes caused in CO2 atmospheric concentration and hence in the radiative forcing. The latter is then used as basis for climate impact metrics. Results demonstrate the utility of using emission and removal functions rather than single pulses, which generally overestimate the climate impact of CO2 emissions, especially in presence of short time horizons. Characterization factors for biogenic CO2 are provided for selected combinations of biomass species, rotation periods, and probability distributions. The time discrepancy between biogenic CO2 emissions and capture through regrowth results in a certain climate impact, even for a system that is carbon neutral over time. For the oxidation rate of wooden products, the use of a chi‐square distribution appears the most reliable and appropriate option under a methodological perspective. The feasibility of its adoption in LCA and emission accounting from harvested wood products deserves further scientific considerations.  相似文献   

16.
We estimate the mitigation potential of local use of bioenergy from harvest residues for the 2.3 × 10km2 (232 Mha) of Canada's managed forests from 2017 to 2050 using three models: Carbon Budget Model of the Canadian Forest Sector (CBM‐CFS3), a harvested wood products (HWP) model that estimates bioenergy emissions, and a model of emission substitution benefits from the use of bioenergy. We compare the use of harvest residues for local heat and electricity production relative to a base case scenario and estimate the climate change mitigation potential at the forest management unit level. Results demonstrate large differences between and within provinces and territories across Canada. We identify regions with increasing benefits to the atmosphere for many decades into the future and regions where no net benefit would occur over the 33‐year study horizon. The cumulative mitigation potential for regions with positive mitigation was predicted to be 429 Tg CO2e in 2050, with 7.1 TgC yr ?1 of harvest residues producing bioenergy that met 3.1% of the heat demand and 2.9% of the electricity demand for 32.1 million people living within these regions. Our results show that regions with positive mitigation produced bioenergy, mainly from combined heat and power facilities, with emissions intensities that ranged from roughly 90 to 500 kg CO2e MWh?1. Roughly 40% of the total captured harvest residue was associated with regions that were predicted to have a negative cumulative mitigation potential in 2050 of ?152 Tg CO2e. We conclude that the capture of harvest residues to produce local bioenergy can reduce GHG emissions in populated regions where bioenergy, mainly from combined heat and power facilities, offsets fossil fuel sources (fuel oil, coal and petcoke, and natural gas).  相似文献   

17.
This study estimated the potential emissions of greenhouse gases (GHG) from bioenergy ecosystems with a biogeochemical model AgTEM, assuming maize (Zea mays L.), switchgrass (Panicum virgatum L.), and Miscanthus (Miscanthus × giganteus) will be grown on the current maize‐producing areas in the conterminous United States. We found that the maize ecosystem acts as a mild net carbon source while cellulosic ecosystems (i.e., switchgrass and Miscanthus) act as mild sinks. Nitrogen fertilizer use is an important factor affecting biomass production and N2O emissions, especially in the maize ecosystem. To maintain high biomass productivity, the maize ecosystem emits much more GHG, including CO2 and N2O, than switchgrass and Miscanthus ecosystems, when high‐rate nitrogen fertilizers are applied. For maize, the global warming potential (GWP) amounts to 1–2 Mg CO2eq ha?1 yr?1, with a dominant contribution of over 90% from N2O emissions. Cellulosic crops contribute to the GWP of less than 0.3 Mg CO2eq ha?1 yr?1. Among all three bioenergy crops, Miscanthus is the most biofuel productive and the least GHG intensive at a given cropland. Regional model simulations suggested that substituting Miscanthus for maize to produce biofuel could potentially save land and reduce GHG emissions.  相似文献   

18.
The climate impact of bioenergy is commonly quantified in terms of CO2 equivalents, using a fixed 100‐year global warming potential as an equivalency metric. This method has been criticized for the inability to appropriately address emissions timing and the focus on a single impact metric, which may lead to inaccurate or incomplete quantification of the climate impact of bioenergy production. In this study, we introduce Dynamic Relative Climate Impact (DRCI) curves, a novel approach to visualize and quantify the climate impact of bioenergy systems over time. The DRCI approach offers the flexibility to analyze system performance for different value judgments regarding the impact category (e.g., emissions, radiative forcing, and temperature change), equivalency metric, and analytical time horizon. The DRCI curves constructed for fourteen bioenergy systems illustrate how value judgments affect the merit order of bioenergy systems, because they alter the importance of one‐time (associated with land use change emissions) versus sustained (associated with carbon debt or foregone sequestration) emission fluxes and short‐ versus long‐lived climate forcers. Best practices for bioenergy production (irrespective of value judgments) include high feedstock yields, high conversion efficiencies, and the application of carbon capture and storage. Furthermore, this study provides examples of production contexts in which the risk of land use change emissions, carbon debt, or foregone sequestration can be mitigated. For example, the risk of indirect land use change emissions can be mitigated by accompanying bioenergy production with increasing agricultural yields. Moreover, production contexts in which the counterfactual scenario yields immediate or additional climate impacts can provide significant climate benefits. This paper is accompanied by an Excel‐based calculation tool to reproduce the calculation steps outlined in this paper and construct DRCI curves for bioenergy systems of choice.  相似文献   

19.
The climate impacts from bioenergy involve an important time aspect. Using forest residues for energy may result in high initial emissions, but net emissions are reduced over time since, if the residues were left on the ground, they would decompose and release CO2 to the atmosphere. This article investigates the climate impacts from bioenergy with special focus on the time aspects. More specifically, we analyze the climate impacts of forest residues and stumps where combustion related emissions are compensated by avoided emissions from leaving them on the ground to decompose. These biofuels are compared with fossil gas and coal. Net emissions are defined as emissions from utilizing the fuel minus emissions from a reference case of no utilization. Climate impacts are estimated using the measures radiative forcing and global average surface temperature. We find that the climate impacts from using forest residues and stumps depend on the decomposition rates and the time perspective over which the analysis is done. Over a 100 year perspective, branches and tops have lower climate impacts than stumps which in turn have lower impacts than fossil gas and coal. Over a 20 year time perspective, branches and tops have lower climate impacts than all other fuels but the relative difference is smaller. However, stumps have slightly higher climate impacts over 20 years than fossil gas but lower impacts than coal. Regarding metrics for climate impacts, over shorter time scales, approximately 30 years or less, radiative forcing overestimates the climate impacts compared with impacts expressed by global surface temperature change, which is due to the inertia of the climate system. We also find that establishing willow on earlier crop land may reduce atmospheric CO2, provided new land is available. However, these results are inconclusive since we haven't considered the effects of producing the agricultural crops elsewhere.  相似文献   

20.
Forest harvest residues are important raw materials for bioenergy in regions practicing forestry. Removing these residues from a harvest site reduces the carbon stock of the forest compared with conventional stem‐only harvest because less litter in left on the site. The indirect carbon dioxide (CO2) emission from producing bioenergy occur when carbon in the logging residues is emitted into the atmosphere at once through combustion, instead of being released little by little as a result of decomposition at the harvest sites. In this study (1) we introduce an approach to calculate this indirect emission from using logging residues for bioenergy production, and (2) estimate this emission at a typical target of harvest residue removal, i.e. boreal Norway spruce forest in Finland. The removal of stumps caused a larger indirect emission per unit of energy produced than the removal of branches because of a lower decomposition rate of the stumps. The indirect emission per unit of energy produced decreased with time since starting to collect the harvest residues as a result of decomposition at older harvest sites. During the 100 years of conducting this practice, the indirect emission from average‐sized branches (diameter 2 cm) decreased from 340 to 70 kg CO2 eq. MWh?1 and that from stumps (diameter 26 cm) from 340 to 160 kg CO2 eq. MWh?1. These emissions are an order of magnitude larger than the other emissions (collecting, transporting, etc.) from the bioenergy production chain. When the bioenergy production was started, the total emissions were comparable to fossil fuels. The practice had to be carried out for 22 (stumps) or four (branches) years until the total emissions dropped below the emissions of natural gas. Our results emphasize the importance of accounting for land‐use‐related indirect emissions to correctly estimate the efficiency of bioenergy in reducing CO2 emission into the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号