首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Impacts of biogenic CO2 emissions on human health and terrestrial ecosystems: the case of increased wood extraction for bioenergy production on a global scale
Authors:Rosalie van Zelm  Patience A N Muchada  Marijn van der Velde  Georg Kindermann  Michael Obersteiner  Mark A J Huijbregts
Institution:1. Department of Environmental Science, Institute for Water and Wetland Research, Radboud University Nijmegen, P.O. Box 9010, Nijmegen, GL, 6500 the Netherlands;2. International Institute of Applied Systems Analysis, Ecosystem Services and Management Program, Laxenburg, A-2361 Austria
Abstract:Biofuels are a potentially important source of energy for our society. Common practice in life cycle assessment (LCA) of bioenergy has been to assume that any carbon dioxide (CO2) emission related to biomass combustion equals the amount absorbed in biomass, thus assuming no climate change impacts. Recent developments show the significance of contributions of biogenic CO2 emissions during the time they stay in the atmosphere. The goal of this article is to develop a global, spatially explicit method to quantify the potential impact on human health and terrestrial ecosystems of biogenic carbon emissions coming from forest wood extraction for biofuel production. For this purpose, changes in aboveground carbon stock (ΔCforest) due to an increase in wood extraction via changes in rotation time are simulated worldwide with a 0.5° × 0.5° grid resolution. Our results show that both impacts and benefits can be obtained. When the extraction increase is reached by creating a longer rotation time, new growth is allowed resulting in carbon benefits. In a case study, we assessed the life cycle impacts of heat production via wood to determine the significance of including biogenic CO2 emissions due to changes in forest management. Impacts of biogenic CO2 dominate the total climate change impacts from a wood stove. Depending on the wood source country, climate change impacts due to heat production from wood either have an important share in the overall impacts on human health and terrestrial ecosystems, or allow for a large additional CO2 sink.
Keywords:carbon balance  characterization factor  ecosystems quality  forestry rotation time  global scale modelling  human health impact  life cycle impact assessment  spatially explicit
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号