首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the effect of exercise training on the flow-mediated dilation (FMD) in gastrocnemius muscle arteries from spontaneously hypertensive rats (SHR). SHR and WKY rats were divided into sedentary and exercised groups. After swimming exercise for eight weeks, the isolated arteries were mounted on pressurized myograph and FMD responses examined. The role of nitric oxide (NO), prostaglandins (PGs) and endothelium derived hyperpolarizing factor (EDHF) on FMD were assessed by obtaining dilation responses in the presence and absence of pharmacological antagonists. N(omega)-nitro-L-arginine methyl ester (L-NAME), indomethacin (INDO) and tetraethylamonium (TEA) were used to inhibit nitric oxide synthase, cyclooxygenase and EDHF-mediated responses, respectively. The FMD response was significantly blunted in arteries of SHR compared with WKY rats, and, improved by exercise training in SHR (SHR-ET) group. In SHR arteries, L NAME and TEA did not affect dilation responses to flow, while INDO led to a significant enhancement in this response. Although dilation response was not altered by L-NAME in arteries obtained from trained SHR, TEA caused a significant attenuation and INDO led to significant increases. These results demonstrate that exercise training improves FMD in SHR, and, this enhancement induced by exercise training occurs through EDHF-mediated mechanism(s).  相似文献   

2.
Activation of AMP-activated protein kinase (AMPK) induces vasorelaxation in arteries from healthy animals, but the mechanisms coordinating this effect are unclear and the integrity of this response has not been investigated in dysfunctional arteries of hypertensive animals. Here we investigate the mechanisms of relaxation to the AMPK activator 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAR) in isolated thoracic aorta rings from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Although AICAR generated dose-dependent (10(-6)-10(-2) M) relaxation in precontracted WKY and SHR aortic rings with (E(+)) or without (E(-)) endothelium, relaxation was enhanced in E(+) rings. Relaxation in SHR E(+) rings was also enhanced at low [AICAR] (10(-6) M) compared with that of WKY (57 ± 8% vs. 3 ± 2% relaxation in SHR vs. WKY E(+)), but was similar and near 100% in both groups at high [AICAR]. Pharmacological dissection showed that the mechanisms responsible for the endothelium-dependent component of relaxation across the dose range of AICAR are exclusively nitric oxide (NO) mediated in WKY rings, but partly NO dependent and partly cyclooxygenase (COX) dependent in SHR vessels. Further investigation revealed that ACh-stimulated COX-endothelium-derived contracting factors (EDCF)-mediated contractions were suppressed by AICAR, and this effect was reversed in the presence of the AMPK inhibitor Compound C in quiescent E(+) SHR aortic rings. Western blots demonstrated that P(Thr(172))-AMPK and P(Ser(79))-acetyl-CoA carboxylase (indexes of AMPK activation) were elevated in SHR versus WKY E(+) rings at low AICAR (~2-fold). Together these findings suggest that AMPK-mediated inhibition of EDCF-dependent contraction and elevated AMPK activation may contribute to the enhanced sensitivity of SHR E(+) rings to AICAR. These results demonstrate AMPK-mediated vasorelaxation is present and enhanced in arteries of SHR and suggest that activation of AMPK may be a potential strategy to improve vasomotor dysfunction by suppressing enhanced endoperoxide-mediated contraction and enhancing NO-mediated relaxation.  相似文献   

3.
We investigated, in mesenteric arteries from hypertensive rats (SHR), the possible changes in neurogenic nitric oxide (NO) release produced by angiotensin II (AII), and the possible mechanisms involved in this process. In deendothelialized segments the NO synthase inhibitor N(G)-nitro-L-arginine (L-NAME, 10 microM) increased the contractions caused by electrical field stimulation (EFS, 200 mA, 0.3 ms, 1-16 Hz, for 30 s). AII (0.1 nM) enhanced the response to EFS, which was unmodified by the subsequent addition of L-NAME. The AII antagonist receptor saralasine (0.1 microM) prevented the effect of AII, and the subsequent addition of L-NAME restored the contractile response. SOD (25 u/ml) decreased the reponse to EFS and the subsequent addition of L-NAME increased this response. AII did not modify the decrease in EFS response induced by SOD, and the addition of L-NAME increased the response. None of these drugs altered the response to exogenous noradrenaline (NA) or basal tone except SOD, which increased the basal tone, an effect blocked by phentolamine (1 microM). In arteries pre-incubated with [3H]-NA, AII did not modify the tritium efflux evoked by EFS, which was diminished by SOD. AII did not alter basal tritium efflux while SOD significantly increased it. These results suggest that EFS of SHR mesenteric arteries releases neurogenic NO, the metabolism of which is increased in the presence of AII by the generation of superoxide anions.  相似文献   

4.

Uridine 5′-triphosphate (UTP) has an important role as an extracellular signaling molecule that regulates inflammation, angiogenesis, and vascular tone. While chronic hypertension has been shown to promote alterations in arterial vascular tone regulation, carotid artery responses to UTP under hypertensive conditions have remained unclear. The present study investigated carotid artery responses to UTP in spontaneously hypertensive rats (SHR) and control Wistar Kyoto rats (WKY). Accordingly, our results found that although UTP promotes concentration-dependent relaxation in isolated carotid artery segments from both SHR and WKY after pretreatment with phenylephrine, SHR exhibited significantly lower arterial relaxation responses compared with WKY. Moreover, UTP-induced relaxation was substantially reduced by endothelial denudation and by the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine in both SHR and WKY. The difference in UTP-induced relaxation between both groups was abolished by the selective P2Y2 receptor antagonist AR-C118925XX and the cyclooxygenase (COX) inhibitor indomethacin but not by the thromboxane-prostanoid receptor antagonist SQ29548. Furthermore, we detected the release of PGE2, PGF, and PGI2 in the carotid arteries of SHR and WKY, both at baseline and in response to UTP. UTP administration also increased TXA2 levels in WKY but not SHR. Overall, our results suggest that UTP-induced relaxation in carotid arteries is impaired in SHR perhaps due to impaired P2Y2 receptor signaling, reductions in endothelial NO, and increases in the levels of COX-derived vasoconstrictor prostanoids.

  相似文献   

5.
We have investigated the involvement of Cl(-) in regulating vascular tone in rat isolated coronary arteries mounted on a small vessel myograph. Mechanical removal of the endothelium or inhibition of nitric oxide (NO) synthase with N(omega)-nitro-L-arginine methyl ester (L-NAME, 10(-4) M) led to contraction of rat coronary arteries, and these contractions were sensitive to nicardipine (10(-6) M). This suggests that release of NO tonically inhibits a contractile mechanism that involves voltage-dependent Ca(2+) channels. In arteries contracted with L-NAME, switching the bathing solution to physiological saline solution with a reduced Cl(-) concentration potentiated the contraction. DIDS (5 x 10(-6)-3 x 10(-4) M) caused relaxation of L-NAME-induced tension (IC(50) = 55 +/- 10 microM), providing evidence for a role of Cl(-). SITS (10(-5)-5 x 10(-4) M) did not affect L-NAME-induced tension, suggesting that DIDS is not acting by inhibition of anion exchange. Mechanical removal of the endothelium led to contraction of arteries, which was sensitive to DIDS (IC(50) = 50 +/- 8 microM) and was not affected by SITS. This study suggests that, in rat coronary arteries, NO tonically suppresses a contractile mechanism that involves a Cl(-) conductance.  相似文献   

6.
Little is known about vascular effects of testosterone. We previously reported chronic testosterone treatment increases vascular tone in middle cerebral arteries (MCA; 300 microm diameter) of male rats. In the present study, we investigated the hypothesis that physiological levels of circulating testosterone affect endothelial factors that modulate cerebrovascular reactivity. Small branches of MCA (150 microm diameter) were isolated from orchiectomized (ORX) and testosterone-treated (ORX+T) rats. Intraluminal diameters were recorded after step changes in intraluminal pressure (20-100 Torr) in the absence or presence of N(G)-nitro-L-arginine-methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor; indomethacin, a cyclooxygenase (COX) inhibitor; and/or apamin and charybdotoxin (CTX); and K(Ca) channel blockers used to inhibit endothelium-derived hyperpolarizing factors (EDHF). At intraluminal pressures >or=60 Torr, arteries from ORX+T developed greater tone compared with ORX arteries. This difference was abolished by removal of the endothelium but remained after treatment of intact arteries with indomethacin or L-NAME. In addition, testosterone treatment had no effect on cerebrovascular production of endothelin-1 or prostacyclin nor did it alter protein levels of endothelial NOS or COX-1. Endothelium removal after L-NAME/indomethacin exposure caused an additional increase in tone. Interestingly, the latter effect was smaller in arteries from ORX+T, suggesting testosterone affects endothelial vasodilators that are independent of NOS and COX. Apamin/CTX, in the presence of L-NAME/indomethacin, abolished the difference in tone between ORX and ORX+T and resulted in vessel diameters similar to those of endothelium-denuded preparations. In conclusion, testosterone may modulate vascular tone in cerebral arteries by suppressing EDHF.  相似文献   

7.
Graded contractions to cumulative additions of calcium in the presence of KCl were obtained in strips of aorta and mesenteric arteries of normotensive (WKY) and spontaneously hypertensive (SHR) rats. In calcium-free medium, a maximally effective concentration of KCl produced a response that was larger in the mesenteric arteries (43-51% of control) than in the aorta (12-14% of control). The calcium channel blocker nifedipine (NFD, up to 10(-7) M) did not significantly alter these calcium-insensitive responses. The Ca2+-induced responses were inhibited by NFD, in a concentration-dependent fashion, in both vessel types of WKY and SHR rats. The aortic responses were more sensitive to inhibition by NFD than the responses of mesenteric arteries. Moreover, the aortic responses of WKY were inhibited to a greater extent than those of the SHR. The results suggest: (a) a differential calcium dependence of contractions to KCl in the vessels studied; (b) that aortic responses are dependent on NFD-sensitive voltage-sensitive Ca2+ channels to a greater extent than the responses of mesenteric arteries; and (c) that hypertension results in a decreased sensitivity of the aorta Ca2+ channels to NFD.  相似文献   

8.
Nitric Oxide in Systemic and Pulmonary Hypertension   总被引:2,自引:0,他引:2  
Endothelium-derived nitric oxide (NO) is an important gas molecule in the regulation of vascular tone and arterial pressure. It has been considered that endothelial dysfunction with impairment of NO production contributes to a hypertensive state. Alternatively, long-term hypertension may affect the endothelial function, depress NO production, and thereby reduce the dilator action on vasculatures. There were many studies to support that endothelium-dependent vasodilatation was impaired in animals and humans with long-term hypertension. However, results of some reports were not always consistent with this consensus. Recent experiments in our laboratory revealed that an NO synthase inhibitor, NG-nitro-L-arginine monomethyl ester (L-NAME) caused elevation of arterial pressure (AP) in spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). The magnitude of AP increase following NO blockade with L-NAME was much higher in SHR than WKY. In other experiments with the use of arterial impedance analysis, we found that L-NAME slightly or little affected the pulsatile hemodynamics including characteristic impedance, wave reflection and ventricular work. Furthermore, these changes were not different between SHR and WKY. The increase in AP and total peripheral resistance (TPR) following NO blockade in SHR were significantly greater than those in WKY, despite higher resting values of AP and TPR in SHR. In connection with the results of other studies, we propose that heterogeneity with respect to the involvement of NO (impairment, no change or enhancement) in the development of hypertension may exist among animal species, hypertensive models and different organ vessels. Our study in SHR provide evidence to indicate that the effects of basal release of NO on the arterial pressure and peripheral resistance are not impaired, but enhanced in the hypertensive state. The increase in NO production may provide a compensatory mechanism to keep the blood pressure and peripheral resistance at lower levels. The phenomenon of enhanced NO release also occurs in certain type of pulmonary hypertension. We first hypothesized that a decrease in NO formation might be responsible for the pulmonary vasoconstriction during hypoxia. With the measurement of NO release in the pulmonary vein, we found that ventilatory hypoxia produced pulmonary hypertension accompanying an increase in NO production. Addition of NO inhibitor (L-NAME), blood or RBC into the perfusate attenuated or abolished the NO release, while potentiating pulmonary vasoconstriction. During hypoxia, the increased NO formation in the pulmonary circulation similarly exerts a compensatory mechanism to offset the degree of pulmonary vasoconstriction.  相似文献   

9.
Maintenance of norepinephrine (NE)-induced contraction is dependent on Ca(2+) influx through L-type voltage-dependent Ca(2+) channels (VDCC), which is opposed by nitric oxide. Adrenergic receptors are coupled with different G proteins, including inhibitory G proteins (Gi) that can be inactivated by pertussis toxin (PTX). Our study was aimed to investigate the effects of endothelium removal, PTX pretreatment and acute VDCC blockade by nifedipine on the contractions of femoral arteries stimulated by norepinephrine. We used 12-week-old male WKY, half of the rats being injected with PTX (10 microg/kg i.v., 48 h before the experiment), which considerably reduced their blood pressure (BP). Contractions of isolated arteries were measured using Mulvany-Halpern myograph. NE dose-response curves determined in femoral arteries from PTX-treated WKY rats were shifted to the right compared to those from control WKY. On the contrary, removal of endothelium augmented NE dose-response curves shifting them to the left. Acute VDCC blockade by nifedipine (10(-7) M) abolished all differences in NE dose-response curves which were dependent on the presence of either intact endothelium or functional Gi proteins because all NE dose-response curves were identical to the curve seen in vessels with intact endothelium from PTX-treated animals. We can conclude that BP reduction after PTX injection is accompanied by the attenuation of NE-induced contraction of femoral arteries irrespective of endothelium presence. Moreover, our data indicate that both vasodilator action of endothelium and Gi-dependent vasoconstrictor effect of norepinephrine operate via the control of Ca(2+) influx through VDCC.  相似文献   

10.
Exercise training has reversible beneficial effects on cardiovascular diseases, e.g. hypertension, which may result from a decrease in systemic vascular resistance. The purpose of this study was to investigate possible mechanisms associated with the changes in vascular reactivity in large and small arteries with vasoconstrictors and vasodilators in rats after exercise. Wistar-Kyoto rats were trained for 8 weeks (Ex group) on a treadmill and compared with sedentary counterparts (Sed group). After the measurement of blood pressure and heart rate at 8 weeks, rat mesenteric arteries and thoracic aortas were excised and prepared as rings for this study. In addition, special care was taken not to damage the endothelium of the preparations. Our results showed that exercise training for 8 weeks (1) not only prevented an increase in blood pressure but also caused a fall in heart rate, (2) attenuated the contractions induced by both prostaglandin F(2alpha) (PGF(2alpha)) and high K(+) in the mesenteric artery, but reduced the PGF(2alpha)-induced contraction in the aorta only, (3) enhanced the relaxation elicited by acetylcholine (ACh) in both mesenteric arteries and aortas, and (4) increased nitrate [an indicator of nitric oxide (NO) formation] in plasma. The enhancement of ACh-induced relaxation in the mesenteric arteries in the Ex group was suppressed by pretreatment with N(omega) -nitro-L-arginine methyl ester (L-NAME), tetraethylammonium (TEA; a nonselective inhibitor of K(+) channels) or charybdotoxin [CTX; a selective inhibitor of large-conductance calcium-activated K(+) (BK(Ca)) channels], whereas in the aorta that response was attenuated by TEA or CTX and almost completely abolished by L-NAME. However, with a combination of L-NAME plus CTX in the mesenteric artery, ACh-induced relaxation was completely abolished in the Sed group, but not in the Ex group. These results suggest that in addition to NO, activation of BK(Ca) channels in the vascular beds, at least in part, also contributes to vasodilatation in animals with exercise training.  相似文献   

11.
Insulin stimulates production of NO in vascular endothelium via activation of phosphatidylinositol (PI) 3-kinase, Akt, and endothelial NO synthase. We hypothesized that insulin resistance may cause imbalance between endothelial vasodilators and vasoconstrictors (e.g., NO and ET-1), leading to hypertension. Twelve-week-old male spontaneously hypertensive rats (SHR) were hypertensive and insulin resistant compared with control Wistar-Kyoto (WKY) rats (systolic blood pressure 202 +/- 11 vs. 132 +/- 10 mmHg; fasting plasma insulin 5 +/- 1 vs. 0.9 +/- 0.1 ng/ml; P < 0.001). In WKY rats, insulin stimulated dose-dependent relaxation of mesenteric arteries precontracted with norepinephrine (NE) ex vivo. This depended on intact endothelium and was blocked by genistein, wortmannin, or N(omega)-nitro-l-arginine methyl ester (inhibitors of tyrosine kinase, PI3-kinase, and NO synthases, respectively). Vasodilation in response to insulin (but not ACh) was impaired by 20% in SHR (vs. WKY, P < 0.005). Preincubation of arteries with insulin significantly reduced the contractile effect of NE by 20% in WKY but not SHR rats. In SHR, the effect of insulin to reduce NE-mediated vasoconstriction became evident when insulin pretreatment was accompanied by ET-1 receptor blockade (BQ-123, BQ-788). Similar results were observed during treatment with the MEK inhibitor PD-98059. In addition, insulin-stimulated secretion of ET-1 from primary endothelial cells was significantly reduced by pretreatment of cells with PD-98059 (but not wortmannin). We conclude that insulin resistance in SHR is accompanied by endothelial dysfunction in mesenteric vessels with impaired PI3-kinase-dependent NO production and enhanced MAPK-dependent ET-1 secretion. These results may reflect pathophysiology in other vascular beds that directly contribute to elevated peripheral vascular resistance and hypertension.  相似文献   

12.
The aim of this study was to investigate nitric oxide (NO) production and L-NAME-sensitive component of endothelium-dependent vasorelaxation in adult normotensive Wistar-Kyoto rats (WKY), borderline hypertensive rats (BHR) and spontaneously hypertensive rats (SHR). Blood pressure (BP) of WKY, BHR and SHR (determined by tail-cuff) was 111+/-3, 140+/-4 and 184+/-6 mm Hg, respectively. NO synthase activity (determined by conversion of [(3)H]-L-arginine) was significantly higher in the aorta of BHR and SHR vs. WKY and in the left ventricle of SHR vs. both BHR and WKY. L-NAME-sensitive component of endothelium-dependent relaxation was investigated in the preconstricted femoral arteries using the wire myograph during isometric conditions as a difference between acetylcholine-induced relaxation before and after acute N(G)-nitro-L-arginine methyl ester pre-treatment (L-NAME, 10(-5) mol/l). Acetylcholine-induced vasorelaxation of SHR was significantly greater than that in WKY. L-NAME-sensitive component of vasorelaxation in WKY, BHR and SHR was 20+/-3 %, 29+/-4 % (p<0.05 vs. WKY) and 37+/-3 % (p<0.05 vs. BHR), respectively. There was a significant positive correlation between BP and L-NAME-sensitive component of relaxation of the femoral artery. In conclusion, results suggest the absence of endothelial dysfunction in the femoral artery of adult borderline and spontaneously hypertensive rats and gradual elevation of L-NAME-sensitive component of vasorelaxation with increasing blood pressure.  相似文献   

13.
Nitric oxide (NO) and reactive oxygen species (ROS) have fundamentally important roles in the regulation of vascular tone and remodeling. Although arterial disease and endothelial dysfunction alter NO and ROS levels to impact vasodilation and vascular structure, direct measurements of these reactive species under in vivo conditions with flow alterations are unavailable. In this study, in vivo measurements of NO and H2O2 were made on mesenteric arteries to determine whether antioxidant therapies could restore normal NO production in spontaneously hypertensive rats (SHR). Flow was altered from approximately 50-200% of control in anesthetized Wistar-Kyoto rats (WKY) and SHR by selective placement of microvascular clamps on adjacent arteries while NO and H2O2 were directly measured with microelectrodes. Relative to WKY, SHR had significantly increased baseline NO and H2O2 concentrations (2,572 +/- 241 vs. 1,059 +/- 160 nM, P < 0.01; and 26 +/- 7 vs. 7 +/- 1 microM, P < 0.05, respectively). With flow elevation, H2O2 but not NO increased in SHR; NO but not H2O2 was elevated in WKY. Apocynin and polyethylene-glycolated catalase decreased baseline SHR NO and H2O2 to WKY levels and restored flow-mediated NO production. Suppression of NAD(P)H oxidase with gp91ds-tat decreased SHR H2O2 to WKY levels. Addition of topical H2O2 to increase peroxide to the basal concentration measured in SHR elevated WKY NO to levels observed in SHR. The results support the hypothesis that increased vascular peroxide in SHR is primarily derived from NAD(P)H oxidase and increases NO concentration to levels that cannot be further elevated with increased flow. Short-term and even acute administration of antioxidants are able to restore normal flow-mediated NO signaling in young SHR.  相似文献   

14.
Arterial smooth muscle constriction in response to pressure, i.e., myogenic tone, may involve calcium-dependent and calcium-sensitization mechanisms. Calcium sensitization in vascular smooth muscle is regulated by kinases such as PKC and Rho kinase, and activity of these kinases is known to be altered in cardiovascular disorders. In the present study, we evaluated the relative contribution of PKC and Rho kinase to myogenic tone in cerebral arteries in hypertension. Myogenic tone and arterial wall calcium in Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR) were measured simultaneously, and the effect of PKC and Rho kinase inhibitors on myogenic tone was evaluated. SHR arteries showed significantly greater myogenic tone than WKY arteries. Pressure/wall tension-arterial wall calcium curves showed a hyperbolic relation in WKY rats, but the curves for SHR arteries were parabolic. Myogenic tone was decreased by the Rho kinase inhibitors Y-27632 and HA-1077, with a significantly greater effect in SHR than in WKY arteries. Reduction in myogenic tone produced by the PKC inhibitor bisindolylmaleimide I in WKY and SHR arteries was significantly less than that produced by Rho kinase inhibition. The pressure-dependent increase in myogenic tone was significantly decreased by Y-27632, and the decrease was markedly greater than that produced by bisindolylmaleimide I in SHR arteries. In WKY arteries, the pressure-dependent increase in myogenic tone was decreased to a similar extent by Y-27632 and bisindolylmaleimide I. These results suggest greater myogenic tone with increased calcium sensitization in SHR arteries, largely because of Rho kinase activation, with a minor contribution of PKC activation.  相似文献   

15.
In mature spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY), acetylcholine and the calcium ionophore A-23187 release endothelium-derived contracting factors (EDCFs), cyclooxygenase derivatives that activate thromboxane-endoperoxide (TP) receptors on vascular smooth muscle. The EDCFs released by acetylcholine are most likely prostacyclin and prostaglandin (PG)H(2), whereas those released by A-23187 remain to be identified. Isometric tension and the release of PGs were measured in rings of isolated aortas of WKY and SHR. A-23187 evoked the endothelium-dependent release of prostacyclin, thromboxane A(2), PGF(2alpha), PGE(2), and possibly PGH(2) (PGI(2) > thromboxane A(2) = PGF(2alpha) = PGE(2)). In SHR aortas, the release of prostacyclin and thromboxane A(2) was significantly larger in response to A-23187 than to acetylcholine. In response to the calcium ionophore, the release of thromboxane A(2) was significantly larger in aortas of SHR than in those of WKY. In both strains of rat, the inhibition of cyclooxygenase-1 prevented the release of PGs and the occurrence of endothelium-dependent contractions. Dazoxiben, the thromboxane synthase inhibitor, abolished the A-23187-dependent production of thromboxane A(2) and inhibited by approximately one-half the endothelium-dependent contractions. U-51605, an inhibitor of PGI synthase, reduced the release of prostacyclin elicited by A-23187 but induced a parallel increase in the production of PGE(2) and PGF(2alpha), suggestive of a PGH(2) spillover, which was associated with the enhancement of the endothelium-dependent contractions. These results indicate that in the aorta of SHR and WKY, the endothelium-dependent contractions elicited by A-23187 involve the release of thromboxane A(2) and prostacyclin with a most likely concomitant contribution of PGH(2).  相似文献   

16.
Gender is known to influence the incidence and severity of cerebrovascular disease. In the present study, luminal diameter was measured in vitro in pressurized middle cerebral artery segments from male rats that were either untreated, orchiectomized (ORX), ORX with testosterone treatment (ORX+TEST), or ORX with estrogen treatment (ORX+EST). The maximal passive diameters (0 Ca(2+) + 3 mM EDTA) of arteries from all four groups were similar. In endothelium-intact arteries, myogenic tone was significantly greater in arteries from untreated and ORX+TEST compared with arteries from either ORX or ORX+EST. During exposure to N(G)-nitro-L-arginine-methyl ester (L-NAME), an NO synthase (NOS) inhibitor, myogenic tone significantly increased in all groups. The effect of L-NAME was significantly greater in arteries from untreated and ORX+EST compared with arteries from ORX and ORX+TEST rats. Differences in myogenic tone between ORX and ORX+TEST persisted after inhibition of NOS. After endothelium removal or inhibition of the cyclooxygenase pathway combined with K(+) channel blockers, myogenic tone differences between ORX and ORX+TEST were abolished. Wall thickness and forced dilation were not significantly different between arteries from ORX and ORX+TEST. Our data show that gonadal hormones affect myogenic tone in male rat cerebral arteries through NOS- and/or endothelium-dependent mechanisms.  相似文献   

17.
The aims of the study were to examine the roles of the ATP-sensitive potassium (K(ATP)) channel, the endothelium, and nitric oxide (NO) in the responses of rat coronary small arteries to adenosine and hypoxia. Segments of rat coronary vessel were investigated in vitro using pressure myography; all vessels studied developed stable spontaneous myogenic tone during equilibration. Glibenclamide (a K(ATP) channel inhibitor) reversed pinacidil but not 2-deoxyglucose-induced dilation. Both adenosine and hypoxia dilated the vessels, and glibenclamide did not reverse these responses. Endothelial removal or N(G)-nitro-L-arginine methyl ester (L-NAME) inhibited the dilation to adenosine by approximately 50%; subsequent addition of glibenclamide was without effect. Hypoxic dilation was completely inhibited by endothelium removal or L-NAME. We conclude that adenosine- and hypoxia-induced dilation of rat coronary arteries does not appear to involve the K(ATP) channel. Adenosine-induced dilation is partially and hypoxic dilation is completely dependent on endothelium-derived NO.  相似文献   

18.
Changes in K(+) conductances and their contribution to membrane depolarization in the setting of an acidic pH environment have been studied in myocytes from aortic smooth muscle cells of spontaneously hypertensive rats (SHR) compared with those from Wistar-Kyoto (WKY) rats. The resting membrane potential (RMP) of aortic smooth muscle at extracellular pH (pH(o)) of 7.4 was significantly more depolarized in SHR than in WKY rats. Acidification to pH(o) 6.5 made this difference in RMP between SHR and WKY rats more significant by further depolarizing the SHR myocytes. Large-conductance Ca(2+)-activated K(+) (BK) currents, which were markedly suppressed by acidification, were larger in aortic myocytes of SHR than in those of WKY rats. In contrast, acid-sensitive, non-BK currents were smaller in SHR. Western blot analyses showed that expression of BK-alpha- and -beta(1) subunits in SHR aortas was upregulated and comparable with those in WKY rats, respectively. Additional electrophysiological and molecular studies showed that pH- and halothane-sensitive two-pore domain weakly inward rectifying K(+) channel (TWIK)-like acid-sensitive K(+) (TASK) channel subtypes were functionally expressed in aortas, and TASK1 expression was significantly higher in WKY than in SHR. Although the background current through TASK channels at normal pH(o) (7.4) was small and may not contribute significantly to the regulation of RMP, TASK channel activation by halothane or alkalization (pH(o) 8.0) induced significant hyperpolarization in WKY but not in SHR. In conclusion, the larger depolarization and subsequent abnormal contractions after acidification in aortic myocytes in the setting of SHR hypertension are mainly attributable to the larger contribution of BK current to the total membrane conductance than in WKY aortas.  相似文献   

19.
L-carnitine and propionyl-L-carnitine are supplements to therapy in cardiovascular pathologies. Their effect on endothelial dysfunction in hypertension was studied after treatment with either 200 mg/kg of L-carnitine or propionyl-L-carnitine during 8 weeks of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY). Endothelial function was assessed in aortic rings by carbachol-induced relaxation (CCh 10(-8) to 10(-4) M) and factors involved were characterized in the presence of the inhibitors: L-NAME, indomethacin, the TXA2/PGH2 Tp receptor antagonist ICI-192,605 and the thromboxane synthetase inhibitor-Tp receptor antagonist, Ro-68,070. The effect on phenylephrine-induced contractions was also observed. To identify the nature of vasoactive COX-derived products, enzyme-immunoassay of incubation media was assessed. Involvement of reactive oxygen species was evaluated by incubating with superoxide dismutase and catalase. Nitric oxide production was evaluated by serum concentration of NO2+NO3.Treatment with both compounds improved endothelial function of rings from SHR without blood pressure change. Propionyl-L-carnitine increased NO participation in WKY and SHR. L-carnitine reduced endothelium-dependent responses to CCh in WKY due to an increase of TXA2 production. In both SHR and WKY, L-carnitine enhanced concentration of PGI2 and increased participation of NO. Results in the presence of SOD plus catalase show that it might be related to antioxidant properties of L-carnitine and propionyl-L-carnitine. Comparison between the effect of both compounds shows that both may reduce reactive oxygen species and increase NO participation in endothelium-dependent relaxations in SHR. However, only L-carnitine was able to increase the release of the vasodilator PGI2 and even enhanced TXA2 production in normotensive rats.  相似文献   

20.
The present study tested the hypothesis that cyclic ADP ribose (cADPR) serves as a novel second messenger to mediate intracellular Ca2+ mobilization in coronary arterial endothelial cells (CAECs) and thereby contributes to endothelium-dependent vasodilation. In isolated and perfused small bovine coronary arteries, bradykinin (BK)-induced concentration-dependent vasodilation was significantly attenuated by 8-bromo-cADPR (a cell-permeable cADPR antagonist), ryanodine (an antagonist of ryanodine receptors), or nicotinamide (an ADP-ribosyl cyclase inhibitor). By in situ simultaneously fluorescent monitoring, Ca2+ transient and nitric oxide (NO) levels in the intact coronary arterial endothelium preparation, 8-bromo-cADPR (30 microM), ryanodine (50 microM), and nicotinamide (6 mM) substantially attenuated BK (1 microM)-induced increase in intracellular [Ca2+] by 78%, 80%, and 74%, respectively, whereas these compounds significantly blocked BK-induced NO increase by about 80%, and inositol 1,4,5-trisphosphate receptor blockade with 2-aminethoxydiphenyl borate (50 microM) only blunted BK-induced Ca2+-NO signaling by about 30%. With the use of cADPR-cycling assay, it was found that inhibition of ADP-ribosyl cyclase by nicotinamide substantially blocked BK-induced intracellular cADPR production. Furthermore, HPLC analysis showed that the conversion rate of beta-nicotinamide guanine dinucleotide into cyclic GDP ribose dramatically increased by stimulation with BK, which was blockable by nicotinamide. However, U-73122, a phospholipase C inhibitor, had no effect on this BK-induced increase in ADP-ribosyl cyclase activity for cADPR production. In conclusion, these results suggest that cADPR importantly contributes to BK- and A-23187-induced NO production and vasodilator response in coronary arteries through its Ca2+ signaling mechanism in CAECs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号