首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
R C Shieh  J C Chang    J Arreola 《Biophysical journal》1998,75(5):2313-2322
Interactions of Ba2+ with K+ and molecules contributing to inward rectification were studied in the cloned inward rectifier K+ channels, Kir2.1. Extracellular Ba2+ blocked Kir2.1 channels with first-order kinetics in a Vm-dependent manner. At Vm more negative than -120 mV, the Kd-Vm relationship became less steep and the dissociation rate constants were larger, suggesting Ba2+ dissociation into the extracellular space. Both depolarization and increasing [K+]i accelerated the recovery from extracellular Ba2+ blockade. Intracellular K+ appears to relieve Ba2+ blockade by competitively slowing the Ba2+ entrance rate, instead of increasing its exit rate by knocking off action. Intracellular spermine (100 microM) reduced, whereas 1 mM [Mg2+]i only slightly reduced, the ability of intracellular K+ to repulse Ba2+ from the channel pore. Intracellular Ba2+ also blocked outward IKir2.1 in a voltage-dependent fashion. At Vm >/= +40 mV, where intrinsic inactivation is prominent, intracellular Ba2+ accelerated the inactivation rate of the outward IKir2.1 in a Vm-independent manner, suggesting interaction of Ba2+ with the intrinsic gate of Kir2.1 channels.  相似文献   

2.
Electrogenicity of the Na(+)/K(+) pump has the capability to generate a large negative membrane potential independently of ion-channel current. The high background membrane resistance of arterioles may make them susceptible to such an effect. Pump current was detected by patch-clamp recording from smooth muscle cells in fragments of arterioles (diameter 24-58 microm) isolated from pial membrane of rabbit cerebral cortex. The current was 20 pA at -60 mV, and the extrapolated zero current potential was -160 mV. Two methods of estimating the effect of pump electrogenicity on resting potential indicated an average contribution of -35 mV. In 20% of the recordings, block of inward rectifier K(+) channels by 10-100 microM Ba(2+) led to a small depolarization, but hyperpolarization was a more common response. Ba(2+) also inhibited depolarization evoked by 20 mM K(+). In arterioles within intact pial membrane, Ba(2+) failed to evoke constriction but inhibited K(+)-induced constriction. The data suggest that cerebral arterioles are vulnerable to the hyperpolarizing effect of the Na(+)/K(+) pump, excessive effects of which are prevented by depolarizing inward rectifier K(+) current  相似文献   

3.
Inwardly rectifying currents in enzymically dissociated olfactory receptor neurons of rat were studied by using patch-clamp techniques. Upon hyperpolarization to membrane potentials more negative than -100 mV, small inward-current relaxations were observed. Activation was described by a single exponential with a time constant that decreased e-fold for a 21 mV hyperpolarization. The current was not reduced by the external application of 5 mM Ba2+, but was abolished by the addition of 5 mM Cs+ to the bath solution. Increasing the external K+ concentration ([K+]o) to 25 mM dramatically enhanced the current without affecting the voltage range or the kinetics of activation. In 25 mM [K+]o, tail currents reversed at -26 mV, significantly more positive than the K+ equilibrium potential of -44 mV. These characteristics are consistent with those of a mixed Na+/K+ inward rectification that has been reported in several types of neuronal, cardiac and smooth muscle cells. The current may contribute to controlling cell excitability during the response to some odorants.  相似文献   

4.
FK-506, a widely used immunosuppressant, has caused a few clinical cases with QT prolongation and torsades de pointe at high blood concentration. The proarrhytmogenic potential of FK-506 was investigated in single rat ventricular cells using the whole cell clamp method to record action potentials (APs) and ionic currents. Fluorescence measurements of Ca2+ transients were performed with indo-1 AM using a multiphotonic microscope. FK-506 (25 micromol/l) hyperpolarized the resting membrane potential (RMP; -3 mV) and prolonged APs (AP duration at 90% repolarization increased by 21%) at 0.1 Hz. Prolongation was enhanced by threefold at 3.3 Hz, and early afterdepolarizations (EADs) occurred in 59% of cells. EADs were prevented by stronger intracellular Ca2+ buffering (EGTA: 10 vs. 0.5 mmol/l in the patch pipette) or replacement of extracellular Na+ by Li+, which abolishes Na+/Ca2+ exchange [Na+/Ca2+ exchanger current (INaCa)]. In indo-1-loaded cells, FK-506 generated doublets of Ca(2+) transients associated with increased diastolic Ca2+ in one-half of the cells. FK-506 reversibly decreased the L-type Ca2+ current (ICaL) by 25%, although high-frequency-dependent facilitation of ICaL persisted, and decreased three distinct K+ currents: delayed rectifier K+ current (IK; >80%), transient outward K+ current (<20%), and inward rectifier K+ current (IK1; >40%). A shift in the reversal potential of IK1 (-5 mV) accounted for RMP hyperpolarization. Numerical simulations, reproducing all experimental effects of FK-506, and the use of nifedipine showed that frequency-dependent facilitation of ICaL plays a role in the occurrence of EADs. In conclusion, the effects of FK-506 on the cardiac AP are more complex than previously reported and include inhibitions of IK1 and ICaL. Alterations in Ca2+ release and INaCa may contribute to FK-506-induced AP prolongation and EADs in addition to the permissive role of ICaL facilitation at high rates of stimulation.  相似文献   

5.
Conduction in inward rectifier, K+-channels in Aplysia neuron and Ba++ blockade of these channels were studied by rapid measurement of the membrane complex admittance in the frequency range 0.05 to 200 Hz during voltage clamps to membrane potentials in the range -90 to -40 mV. Complex ionic conductances of K+ and Cl- rectifiers were extracted from complex admittances of other membrane conduction processes and capacitance by vector subtraction of the membrane complex admittance during suppressed inward K+ current (near zero-mean current and in zero [K+]0) from complex admittances determined at other [K+]0 and membrane potentials. The contribution of the K+ rectifier to the admittance is distinguishable in the frequency domain above 1 Hz from the contribution of the Cl- rectifier, which is only apparent at frequencies less than 0.1 Hz. The voltage dependence (-90 to -40 mV) of the chord conductance (0.2 to 0.05 microS) and the relaxation time (4-8 ms) of K+ rectifier channels at [K+]0 = 40 mM were determined by curve fits of admittance data by a membrane admittance model based on the linearized Hodgkin-Huxley equations. The conductance of inward rectifier, K+ channels at a membrane potential of -80 mV had a square-root dependence on external K+ concentration, and the relaxation time increased from 2 to 7.5 ms for [K+]0 = 20 and 100 mM, respectively. The complex conductance of the inward K+ rectifier, affected by Ba++, was obtained by complex vector subtraction of the membrane admittance during blockage of inward rectifier, K+ channels (at -35 mV and [Ba++]0 = 5 mM) from admittances determined at -80 mV and at other Ba++ concentrations. The relaxation time of the blockade process decreased with increases in Ba++ concentration. An open-closed channel state model produces the inductive-like kinetic behavior in the complex conductance of inward rectifier, K+ channels and the addition of a blocked channel state accounts for the capacitive-like kinetic behavior of the Ba++ blockade process.  相似文献   

6.
The electrical properties of olfactory receptor neurons, enzymatically dissociated from the channel catfish (Ictalurus punctatus), were studied using the whole-cell patch-clamp technique. Six voltage-dependent ionic currents were isolated. Transient inward currents (0.1-1.7 nA) were observed in response to depolarizing voltage steps from a holding potential of -80 mV in all neurons examined. They activated between -70 and -50 mV and were blocked by addition of 1 microM tetrodotoxin (TTX) to the bath or by replacing Na+ in the bath with N-methyl-D-glucamine and were classified as Na+ currents. Sustained inward currents, observed in most neurons examined when Na+ inward currents were blocked with TTX and outward currents were blocked by replacing K+ in the pipette solution with Cs+ and by addition of 10 mM Ba2+ to the bath, activated between -40 and -30 mV, reached a peak at 0 mV, and were blocked by 5 microM nimodipine. These currents were classified as L-type Ca2+ currents. Large, slowly activating outward currents that were blocked by simultaneous replacement of K+ in the pipette with Cs+ and addition of Ba2+ to the bath were observed in all olfactory neurons examined. The outward K+ currents activated over approximately the same range as the Na+ currents (-60 to -50 mV), but the Na+ currents were larger at the normal resting potential of the neurons (-45 +/- 11 mV, mean +/- SD, n = 52). Four different types of K+ currents could be differentiated: a Ca(2+)-activated K+ current, a transient K+ current, a delayed rectifier K+ current, and an inward rectifier K+ current. Spontaneous action potentials of varying amplitude were sometimes observed in the cell-attached recording configuration. Action potentials were not observed in whole-cell recordings with normal internal solution (K+ = 100 mM) in the pipette, but frequently appeared when K+ was reduced to 85 mM. These observations suggest that the membrane potential and action potential amplitude of catfish olfactory neurons are significantly affected by the activity of single channels due to the high input resistance (6.6 +/- 5.2 G omega, n = 20) and low membrane capacitance (2.1 +/- 1.1 pF, n = 46) of the cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The patch-clamp method was used to examine inward rectifying potassium channels in the membrane of rat ventricular myocytes. Two types of inward rectifying channels strongly selective for K+ ions and with different conductance and kinetics coexist in rat myocardial cells. When the concentration of K+ was 140 mmol/l on the extracellular side of the patch, the conductance was 38.9 pS for type I channels and 25.7 pS for the type II. The type II channels had a detectable conductance (4 pS) at potentials positive than the potassium equilibrium potential. The mean open time was 18 ms at -60 mV patch membrane potential and 12 ms at -100 mV for type I channels, and 1.3 s at -60 mV and 0.94 s at -105 mV for type II channels, respectively. The opening probability of type II channels decreased with hyperpolarization. The type II channels can adopt several (about 10 or more) conductance states, which can occur either within one opening or as individual events.  相似文献   

8.
Voltage-dependent membrane currents were studied in dissociated hepatocytes from chick, using the patch-clamp technique. All cells had voltage-dependent outward K+ currents; in 10% of the cells, a fast, transient, tetrodotoxin-sensitive Na+ current was identified. None of the cells had voltage-dependent inward Ca2+ currents. The K+ current activated at a membrane potential of about -10 mV, had a sigmoidal time course, and did not inactivate in 500 ms. The maximum outward conductance was 6.6 +/- 2.4 nS in 18 cells. The reversal potential, estimated from tail current measurements, shifted by 50 mV per 10-fold increase in the external K+ concentration. The current traces were fitted by n2 kinetics with voltage-dependent time constants. Omitting Ca2+ from the external bath or buffering the internal Ca2+ with EGTA did not alter the outward current, which shows that Ca2+-activated K+ currents were not present. 1-5 mM 4-aminopyridine, 0.5-2 mM BaCl2, and 0.1-1 mM CdCl2 reversibly inhibited the current. The block caused by Ba was voltage dependent. Single-channel currents were recorded in cell-attached and outside-out patches. The mean unitary conductance was 7 pS, and the channels displayed bursting kinetics. Thus, avian hepatocytes have a single type of K+ channel belonging to the delayed rectifier class of K+ channels.  相似文献   

9.
10.
Slow components of potassium tail currents in rat skeletal muscle   总被引:2,自引:2,他引:0       下载免费PDF全文
The kinetics of potassium tail currents have been studied in the omohyoid muscle of the rat using the three-microelectrode voltage-clamp technique. The currents were elicited by a two-pulse protocol in which a conditioning pulse to open channels was followed by a test step to varying levels. The tail currents reversed at a single well-defined potential (VK). At hyperpolarized test potentials (-100 mV and below), tail currents were inward and exhibited two clearly distinguishable phases of decay, a fast tail with a time constant of 2-3 ms and a slow tail with a time constant of approximately 150 ms. At depolarized potentials (-60 mV and above), tail currents were outward and did not show two such easily separable phases of decay, although a slow kinetic component was present. The slow kinetic phase of outward tail currents appeared to be functionally distinct from the slow inward tail since the channels responsible for the latter did not allow significant outward current. Substitution of Rb for extracellular K abolished current through the anomalous (inward-going) rectifier and at the same time eliminated the slow inward tail, which suggests that the slow inward tail current flows through anomalous rectifier channels. The amplitude of the slow inward tail was increased and VK was shifted in the depolarizing direction by longer conditioning pulses. The shift in VK implies that during outward currents potassium accumulates in a restricted extracellular space, and it is suggested that this excess K causes the slow inward tail by increasing the inward current through the anomalous rectifier. By this hypothesis, the tail current slowly decays as K diffuses from the restricted space. Consistent with such a hypothesis, the decay of the slow inward tail was not strongly affected by changing temperature. It is concluded that a single delayed K channel is present in the omohyoid. Substitution of Rb for K has little effect on the magnitude or time course of outward current tails, but reduces the magnitude and slows the decay of the fast component of inward tails. Both effects are consistent with a mechanism proposed for squid giant axon (Swenson and Armstrong, 1981): that (a) the delayed potassium channel cannot close while Rb is inside it, and (b) that Rb remains in the channel longer than K.  相似文献   

11.
The whole cell patch-clamp technique was used to investigate whether there were inwardly rectifying K(+) (K(ir)) channels in the longitudinal muscle of cat esophagus. Inward currents were observable on membrane hyperpolarization negative to the K(+) equilibrium potential (E(k)) in freshly isolated esophageal longitudinal muscle cells. The current-voltage relationship exhibited strong inward rectification with a reversal potential (E(rev)) of -76.5 mV. Elevation of external K(+) increased the inward current amplitude and positively shifted its E(rev) after the E(k), suggesting that potassium ions carry this current. External Ba(2+) and Cs(+) inhibited this inward current, with hyperpolarization remarkably increasing the inhibition. The IC(50) for Ba(2+) and Cs(+) at -60 mV was 2.9 and 1.6 mM, respectively. Furthermore, external Ba(2+) of 10 microM moderately depolarized the resting membrane potential of the longitudinal muscle cells by 6.3 mV while inhibiting the inward rectification. We conclude that K(ir) channels are present in the longitudinal muscle of cat esophagus, where they contribute to its resting membrane potential.  相似文献   

12.
C-type natriuretic peptides (CNP) play an inhibitory role in smooth muscle motility of the gastrointestinal tract, but the effect of CNP on delayed rectifier potassium currents is still unclear. This study was designed to investigate the effect of CNP on delayed rectifier potassium currents and its mechanism by using conventional whole-cell patch-clamp technique in guinea-pig gastric myocytes isolated by collagenase. CNP significantly inhibited delayed rectifier potassium currents [I(K (V))] in dose-dependent manner, and CNP inhibited the peak current elicited by depolarized step pulse to 86.1+/-1.6 % (n=7, P<0.05), 78.4+/-2.6 % (n=10, P<0.01) and 67.7+/-2.3 % (n=14, P<0.01), at concentrations of 0.01 micromol/l, 0.1 micromol/l and 1 micromol/l, respectively, at +60 mV. When the cells were preincubated with 0.1 micromol/l LY83583, a guanylate cyclase inhibitor, the 1 ?micromol/l CNP-induced inhibition of I(K (V)) was significantly impaired but when the cells were preincubated with 0.1 micromol/l zaprinast, a cGMP-sensitive phosphodiesterase inhibitor, the 0.01 micromol/l CNP-induced inhibition of I(K (V)) was significantly potentiated. 8-Br-cGMP, a membrane permeable cGMP analogue mimicked inhibitory effect of CNP on I(K (V)). CNP-induced inhibition of I(K (V)) was completely blocked by KT5823, an inhibitor of cGMP-dependent protein kinase (PKG). The results suggest that CNP inhibits the delayed rectifier potassium currents via cGMP-PKG signal pathway in the gastric antral circular myocytes of the guinea-pig.  相似文献   

13.
Intracellular microelectrode recordings and a two-electrode voltage clamp have been used to characterize the current carried by inward rectifying K+ channels of stomatal guard cells from the broadbean, Vicia faba L. Superficially, the current displayed many features common to inward rectifiers of neuromuscular and egg cell membranes. In millimolar external K+ concentrations (Ko+), it activated on hyperpolarization with half-times of 100-200 ms, showed no evidence of time- or voltage-dependent inactivation, and deactivated rapidly (tau approximately 10 ms) on clamping to 0 mV. Steady-state conductance-voltage characteristics indicated an apparent gating charge of 1.3-1.6. Current reversal showed a Nernstian dependence on Ko+ over the range 3-30 mM, and the inward rectifier was found to be highly selective for K+ over other monovalent cations (K+ greater than Rb+ greater than Cs+ much greater than Na+). Unlike the inward rectifiers of animal membranes, the current was blocked by charybdotoxin and alpha-dendrotoxin (Kd much less than 50 nM), as well as by tetraethylammonium chloride (K1/2 = 9.1 mM); gating of the guard cell K+ current was fixed to voltages near -120 mV, independent of Ko+, and the current activated only with supramillimolar K+ outside (EK+ greater than -120 mV). Most striking, however, was inward rectifier sensitivity to [H+] with the K+ current activated reversibly by mild acid external pH. Current through the K+ inward rectifier was found to be largely independent of intracellular pH and the current reversal (equilibrium) potential was unaffected by pHo from 7.4 to 5.5. By contrast, current through the K+ outward rectifier previously characterized in these cells (1988. J. Membr. Biol. 102:235) was largely insensitive to pHo, but was blocked reversibly by acid-going intracellular pH. The action of pHo on the K+ inward rectifier could not be mimicked by extracellular Ca2+ for which changes in activation, deactivation, and conductance were consonant with an effect on surface charge ([Ca2+] less than or equal to 1 mM). Rather, extracellular pH affected activation and deactivation kinetics disproportionately, with acid-going pHo raising the K+ conductance and shifting the conductance-voltage profile positive-going along the voltage axis and into the physiological voltage range. Voltage and pH dependencies for gating were consistent with a single, titratable group (pKa approximately 7 at -200 mV) residing deep within the membrane electric field and accessible from the outside.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Peuler JD  Lee JM  Smith JM 《Life sciences》1999,65(23):PL 287-PL 293
The ability of metformin (MF) to acutely relax phenylephrine (PE)-induced contraction in the isolated rat tail artery is reported to be accompanied by repolarization of the arterial smooth muscle cell (SMC) membranes. These membranes contain potassium (K) channels which if opened could mediate such repolarization and resultant relaxation. We have shown that the acute relaxation of rat tail arterial tissue rings by graded levels of MF > or = 0.24 mmol/L is markedly antagonized by a high concentration of tetraethylammonium (TEA; 10 mmol/L) which nonselectively inhibits nearly all K channels. Thus, we tested effects of more selective inhibitors of K channels in the same tissue. We also tested MF for relaxation of contractions induced by high levels of extracellular K. To avoid confounding variables, we also conducted these tests in arterial rings in which endothelium and sympathetic nerve endings had been removed. In the absence of K channel inhibition, half-maximal PE-induced contractions were rapidly relaxed by all levels of MF with an EC50 of 1.7+/-0.2 mmol/L (n=8 rings). 1 mmol/L 4-aminopyridine (4AP) which only inhibits voltage-operated and ATP-sensitive K channels markedly antagonized this relaxation, shifting the EC50 for MF to 7.5+/-0.7 mmol/L (n=8; p < 0.05). TEA at 1 mmol/L (which only inhibits calcium-activated K channels), barium at 20 micromol/L (which only inhibits inward rectifier K channels) and glyburide at 5 micromol/L (which only inhibits ATP-sensitive K channels) did not alter this relaxation. Finally, MF failed to relax contractions produced by elevations of extracellular K to levels high enough to abolish the K gradient across arterial SMC membranes. Thus, acute relaxation of rat tail arterial smooth muscle by MF may be dependent on the transmembrane K gradient and mediated at least in part by specific activation of K efflux through 4AP-sensitive voltage-dependent K channels in arterial SMC membranes.  相似文献   

15.
Xenopus laevis oocytes codify a G-protein-activated inward rectifier potassium channel (GIRK5 or Kir3.5). Coinjection of other GIRKs, the muscarinic m2 receptor, or Gbetagamma protein cRNAs is required to observe functional GIRKx-GIRK5 heteromultimers in oocytes. Studies with GIRK2 isoforms have shown that the size of the amino or carboxyl terminus plays a crucial role on giving functional K(+) channels. In this work we studied the properties of a GIRK5 with 25 amino acids deleted toward its amino-terminal domain. Injection of GIRK5-Delta25 cRNA alone displayed large basal and transient inward rectifying currents in oocytes. The instantaneous currents reached a stationary level after a long duration voltage pulse (10 s). For this relaxation, fast (tau(1)) and slow (tau(2)) time constants were estimated at different voltages. Recovery from inactivation followed a monoexponential function (tau=0.95+/-0.07 s). By contrast with other inward rectifier channels, blockade of GIRK5-Delta25 by extracellular Ba(2+) was voltage-independent (K(d)=102+/-2 microM), suggesting the presence of a Ba(2+) site at the external channel vestibule. To confirm this hypothesis, the Ba(2+) sensitivity of two charged mutants GIRK5-Delta25(N129E) and GIRK5-Delta25(K157E) at each of the external loops was determined. GIRK5-Delta25(N129E) and GIRK5-Delta25(K157E) showed a 100-fold and 2-fold higher affinity to Ba(2+), respectively, supporting the existence of this Ba(2+) binding site.  相似文献   

16.
17.
In rat small mesenteric arteries, the influence of modulation of basal smooth muscle K+ efflux on the mechanism of endothelium-dependent hyperpolarization was investigated. The membrane potentials of the vascular smooth muscle cells were measured using conventional microelectrode techniques. Incubation of resting arteries with the gap junction uncoupler carbenoxolone (20 micro M) decreased the endothelium-dependent hyperpolarization elicited by a submaximal concentration of acetylcholine (3 micro M) to about 65% of the control. In the presence of Ba2+ (200 micro M), which depolarized the membrane potential by 10 mV, the acetylcholine-induced membrane potential response was doubled in magnitude, reaching values not different from control. Moreover, the hyperpolarization was more resistant to carbenoxolone in these conditions. Finally, both in the absence and in the presence of carbenoxolone, the combined application of Ba2+ and ouabain (0.5 mM) did not abolish the acetylcholine response. These results suggest that gap junctional coupling plays a role in endothelium-dependent hyperpolarization of smooth muscle cells of resting rat small mesenteric arteries. Additionally, these findings show that the hyperpolarization does not rely on activation of inward rectifying K+ channels. Although a minor contribution of Na-K pumping cannot be excluded, the Ba2+ experiments show that the membrane electrical response is mediated by activation of a Ba2+-resistant K+ conductance.  相似文献   

18.
Ether-à-go-go-related gene (ERG) K channels have been implicated in the generation of pacemaker activities in the heart. To study the presence and function of ERG K channels in the pacemaker cells of the small intestine [the interstitial cells of Cajal (ICC)], a combination of patch-clamp techniques, tissue and live cell immunohistochemistry, RT-PCR, and in vitro functional studies were performed. Nonenzymatically isolated ICC in culture were identified by vital staining and presence of rhythmic inward currents. RT-PCR showed the presence of ERG mRNA in the intestinal musculature, and immunohistochemistry on tissue and cultured cells demonstrated that protein similar to human ERG was concentrated on ICC in the Auerbach's plexus region. Whole cell ERG K+ currents were evoked on hyperpolarization from 0 mV (but not from -70 mV) up to -120 mV and showed strong inward rectification. The currents were inhibited by E-4031, cisapride, La3+, and Gd3+ but not by 50 microM Ba2+. The ERG K+ inward current had a typical transient component with fast activation and inactivation kinetics followed by significant steady-state current. E-4031 also inhibited tetraethylammonium (TEA)-insensitive outward current indicating that the ERG K+ current is operating at depolarizing potentials. In contrast to TEA, blockers of the ERG K+ currents caused marked increase in tissue excitability as reflected by an increase in slow-wave duration and an increase in superimposed action potential activity. In summary, ERG K channels in ICC contribute to the membrane potential and play a role in regulation of pacemaker activity of the small intestine.  相似文献   

19.
Voltage-gated potassium channels in brown fat cells   总被引:6,自引:4,他引:2       下载免费PDF全文
We studied the membrane currents of isolated cultured brown fat cells from neonatal rats using whole-cell and single-channel voltage-clamp recording. All brown fat cells that were recorded from had voltage-gated K currents as their predominant membrane current. No inward currents were seen in these experiments. The K currents of brown fat cells resemble the delayed rectifier currents of nerve and muscle cells. The channels were highly selective for K+, showing a 58-mV change in reversal potential for a 10-fold change in the external [K+]. Their selectivity was typical for K channels, with relative permeabilities of K+ greater than Rb+ greater than NH+4 much greater than Cs+, Na+. The K currents in brown adipocytes activated with a sigmoidal delay after depolarizations to membrane potentials positive to -50 mV. Activation was half maximal at a potential of -28 mV and did not require the presence of significant concentrations of internal calcium. Maximal voltage-activated K conductance averaged 20 nS in high external K+ solutions. The K currents inactivated slowly with sustained depolarization with time constants for the inactivation process on the order of hundreds of milliseconds to tens of seconds. The K channels had an average single-channel conductance of 9 pS and a channel density of approximately 1,000 channels/cell. The K current was blocked by tetraethylammonium or 4-aminopyridine with half maximal block occurring at concentrations of 1-2 mM for either blocker. K currents were unaffected by two blockers of Ca2+-activated K channels, charybdotoxin and apamin. Bath-applied norepinephrine did not affect the K currents or other membrane currents under our experimental conditions. These properties of the K channels indicate that they could produce an increase in the K+ permeability of the brown fat cell membrane during the depolarization that accompanies norepinephrine-stimulated thermogenesis, but that they do not contribute directly to the norepinephrine-induced depolarization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号