首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
The actin filament-severing domain of plasma gelsolin   总被引:20,自引:10,他引:10       下载免费PDF全文
Gelsolin, a multifunctional actin-modulating protein, has two actin-binding sites which may interact cooperatively. Native gelsolin requires micromolar Ca2+ for optimal binding of actin to both sites, and for expression of its actin filament-severing function. Recent work has shown that an NH2-terminal chymotryptic 17-kD fragment of human plasma gelsolin contains one of the actin-binding sites, and that this fragment binds to and severs actin filaments weakly irrespective of whether Ca2+ is present. The other binding site is Ca2+ sensitive, and is found in a chymotryptic peptide derived from the COOH-terminal two-thirds of plasma gelsolin; this fragment does not sever F-actin or accelerate the polymerization of actin. This paper documents that larger thermolysin-derived fragments encompassing the NH2-terminal half of gelsolin sever actin filaments as effectively as native plasma gelsolin, although in a Ca2+-insensitive manner. This result indicates that the NH2-terminal half of gelsolin is the actin-severing domain. The stringent Ca2+ requirement for actin severing found in intact gelsolin is not due to a direct effect of Ca2+ on the severing domain, but indirectly through an effect on domains in the COOH-terminal half of the molecule to allow exposure of both actin-binding sites.  相似文献   

2.
Gelsolin is a Ca2+- and polyphosphoinositide-modulated actin-binding protein which severs actin filaments, nucleates actin assembly, and caps the "barbed" end of actin filaments. Proteolytic cleavage analysis of human plasma gelsolin has shown that the NH2-terminal half of the molecule severs actin filaments almost as effectively as native gelsolin in a Ca2+-insensitive but polyphosphoinositide-inhibited manner. Further proteolysis of the NH2-terminal half generates two unique fragments (CT14N and CT28N), which have minimal severing activity. Under physiological salt conditions, CT14N binds monomeric actin coupled to Sepharose but CT28N does not. In this paper, we show that CT28N binds stoichiometrically and with high affinity to actin subunits in filaments, suggesting that it preferentially recognizes the conformation of polymerized actin. Analysis of the binding data shows that actin filaments have one class of CT28N binding sites with Kd = 2.0 X 10(-7) M, which saturates at a CT28N/actin subunit ratio of 0.8. Binding of CT28N to actin filaments is inhibited by phosphatidylinositol 4,5-bisphosphate micelles. In contrast, neither CT14N nor another actin-binding domain located in the COOH-terminal half of gelsolin form stable stoichiometric complexes with actin along the filaments, and their binding to actin monomers is not inhibited by PIP2. Based on these observations, we propose that CT28N is the polyphosphoinositide-regulated actin-binding domain which allows gelsolin to bind to actin subunits within a filament before serving.  相似文献   

3.
Gelsolin can sever actin filaments, nucleate actin filament assembly, and cap the fast-growing end of actin filaments. These functions are activated by Ca2+ and inhibited by polyphosphoinositides (PPI). We report here studies designed to delineate critical domains within gelsolin by deletional mutagenesis, using COS cells to secrete truncated plasma gelsolin after DNA transfection. Deletion of 11% of gelsolin from the COOH terminus resulted in a major loss of its ability to promote the nucleation step in actin filament assembly, suggesting that a COOH-terminal domain is important in this function. In contrast, derivatives with deletion of 79% of the gelsolin sequence exhibited normal PPI-regulated actin filament-severing activity. Combined with previous results using proteolytic fragments, we deduce that an 11-amino acid sequence in the COOH terminus of the smallest severing gelsolin derivative identified here mediates PPI-regulated binding of gelsolin to the sides of actin filaments before severing. Deletion of only 3% of gelsolin at the COOH terminus, including a dicarboxylic acid sequence similar to that found on the NH2 terminus of actin, resulted in a loss of Ca2+-requirement for filament severing and monomer binding. Since these residues in actin have been implicated as potential binding sites for gelsolin, our results raise the possibility that the analogous sequence at the COOH terminus of gelsolin may act as a Ca2+-regulated pseudosubstrate. However, derivatives with deletion of 69-79% of the COOH-terminal residues of gelsolin exhibited normal Ca2+ regulation of severing activity, establishing the intrinsic Ca2+ regulation of the NH2-terminal region. One or both mechanisms of Ca2+ regulation may occur in members of the gelsolin family of actin-severing proteins.  相似文献   

4.
Gelsolin has three actin-binding sites   总被引:21,自引:13,他引:8       下载免费PDF全文
Gelsolin, a Ca2+-modulated actin filament-capping and -severing protein, complexes with two actin monomers. Studies designed to localize binding sites on proteolytic fragments identify three distinct actin-binding peptides. 14NT, a 14-kD fragment that contains the NH2 terminal, will depolymerize F-actin. This peptide forms a 1:1 complex with G-actin which blocks the exchange of etheno-ATP from bound actin. The estimated association and dissociation rates for this complex are 0.3 microM-1 s-1 and 1.35 x 10(-6) s-1 which gives a maximum calculated Kd = 4.5 x 10(-12) M. 26NT, the adjacent peptide on the NH2-terminal half of gelsolin, binds to both G- and F-actin. This fragment has little or no intrinsic severing activity and will bind to F-actin to nearly stoichiometric ratios. The interactions of 14NT and 26NT with actin are largely Ca2+ independent and one of these sites, probably 14NT, is the EGTA-stable site identified in the intact protein. 41CT, the COOH-terminal half of gelsolin, forms a rapidly reversible 1:1 complex with actin, Kd = 25 nM, that slows but does not block etheno-ATP exchange. This interaction is Ca2+ dependent and is the exchangeable site in the intact protein. One of these sites is hidden in the intact protein, but cleavage into half fragments exposes all three and removes the Ca2+ dependence of severing.  相似文献   

5.
Isolation and properties of two actin-binding domains in gelsolin   总被引:16,自引:0,他引:16  
Gelsolin is a Ca2+-sensitive 90-kDa protein which regulates actin filament length. A molecular variant of gelsolin is present in plasma as a 93-kDa protein. Functional studies have shown that gelsolin contains two actin-binding sites which are distinct in that after Ca2+-mediated binding, removal of free Ca2+ releases actin from one site but not from the other. We have partially cleaved human plasma gelsolin with alpha-chymotrypsin and identified two distinct actin-binding domains. Peptides CT17 and CT15, which contain one of the actin-binding domains, bind to actin independently of Ca2+; peptides CT54 and CT47, which contain the other domain, bind to actin reversibly in response to changes in Ca2+ concentration. These peptides sequester actin monomers inhibiting polymerization. Unlike intact gelsolin, neither group of peptides nucleates actin assembly or forms stable filament end caps. CT17 and CT15 can however sever actin filaments. Amino acid sequence analyses place CT17 at the NH2 terminus of gelsolin and CT47 at the carboxyl-terminal two-thirds of gelsolin. Circular dichroism measurements show that Ca2+ induces an increase in the alpha-helical content of CT47. These studies provide a structural basis for understanding the interaction of gelsolin with actin and allow comparison with other Ca2+-dependent actin filament severing proteins.  相似文献   

6.
Microinjection of gelsolin into living cells   总被引:29,自引:18,他引:11  
Gelsolins are actin-binding proteins that cap, nucleate, and sever actin filaments. Microinjection of cytoplasmic or plasma gelsolin into living fibroblasts and macrophages did not affect the shape, actin distribution, deformability, or ruffling activity of the cells. Gelsolin requires calcium for activity, but the NH2-terminal half is active without calcium. Microinjection of this proteolytic fragment had marked effects: the cells rounded up, stopped ruffling, became soft, and stress fibers disappeared. These changes are similar to those seen with cytochalasin, which also caps barbed ends of actin filaments. Attempts to raise the cytoplasmic calcium concentration and thereby activate the injected gelsolin were unsuccessful, but the increases in calcium concentration were minimal or transient and may not have been sufficient. Our interpretation of these results is that at the low calcium concentrations normally found in cells, gelsolin does not express the activities observed in vitro at higher calcium concentrations. We presume that gelsolin may be active at certain times or places if the calcium concentration is elevated to a sufficient level, but we cannot exclude the existence of another molecule that inhibits gelsolin. Microinjection of a 1:1 gelsolin/actin complex had no effect on the cells. This complex is stable in the absence of calcium and has capping activity but no severing and less nucleation activity as compared with either gelsolin in calcium or the NH2-terminal fragment. The NH2-terminal fragment-actin complex also has capping and nucleating activity but no severing activity. On microinjection it had the same effects as the fragment alone. The basis for the difference between the two complexes is unknown. The native molecular weight of rabbit plasma gelsolin is 82,500, and the extinction coefficient at 280 nm is 1.68 cm2/mg. A new simple procedure for purification of plasma gelsolin is described.  相似文献   

7.
Severin from Dictyostelium discoideum is a Ca2(+)-activated actin-binding protein that severs actin filaments, nucleates actin assembly, and caps the fast growing ends of actin filaments. Sequence comparison with functionally related proteins, such as gelsolin, villin, or fragmin revealed highly conserved domains which are thought to be of functional significance. To attribute the different activities of the severin molecule to defined regions, progressively truncated severin polypeptides were constructed. The complete cDNA coding for 362 (DS362) amino acids and five 3' deletions coding for 277 (DS277), 177 (DS177), 151 (DS151), 117 (DS117), or 111 (DS111) amino acids were expressed in Escherichia coli. The proteins were purified to homogeneity and then characterized with respect to their effects on the polymerization or depolymerization kinetics of G- or F-actin solutions and their binding to G-actin. Furthermore, the Ca2+ binding of these proteins was investigated with a 45Ca-overlay assay and by monitoring Ca2(+)-dependent changes in tryptophan fluorescence. Bacterially expressed DS362 showed the same Ca2(+)-dependent activities as native severin. DS277, missing the 85 COOH-terminal amino acids of severin, had lost its strict Ca2+ regulation and displayed a Ca2(+)-independent capping activity, but was still Ca2+ dependent in its severing and nucleating activities. DS151 which corresponded to the first domain of gelsolin or villin had completely lost severing and nucleating properties. However, a residual severing activity of approximately 2% was detectable if 26 amino acids more were present at the COOH-terminal end (DS177). This locates similar to gelsolin the second actin-binding site to the border region between the first and second domain. Measuring the fluorescence enhancement of pyrene-labeled G-actin in the presence of DS111 showed that the first actin-binding site was present in the NH2-terminal 111 amino acids. Extension by six or more amino acids stabilized this actin-binding site in such a way that DS117 and even more pronounced DS151 became Ca2(+)-independent capping proteins. In comparison to many reports on gelsolin we draw the following conclusions. Among the three active actin-binding sites in gelsolin the closely neighboured sites one and two share the F-actin fragmenting function, whereas the actin-binding sites two and three, which are located in far distant domains, collaborate for nucleation. In contrast, severin contains two active actin-binding sites which are next to each other and are responsible for the severing as well as the nucleating function. The single actin-binding site near the NH2-terminus is sufficient for capping of actin filaments.  相似文献   

8.
Adseverin (74-kDa protein, scinderin) is a calcium- and phospholipid-modulated actin-binding protein that promotes actin polymerization, severs actin filaments, and caps the barbed end of the actin filament, with its NH2-terminal half retaining these properties (Sakurai, T., Kurokawa, H., and Nonomura, Y. (1991) J. Biol. Chem. 266, 4581-4585). Further proteolysis of this NH2-terminal half generated five fragments, and two of them (Mr 15,000 and 31,000) showed Ca(2+)-dependent binding to monomeric actin. The Mr 31,000 fragment especially caused actin filament fragmentation, although its severing activity was also inhibited by several acidic phospholipids as was found in adseverin and its NH2-terminal half. Amino acid sequencing demonstrated that the two fragments' NH2 terminus were blocked in the same manner as the NH2 terminus of adseverin, and thus these two fragments are possibly located at the NH2-terminal of the adseverin molecule. This would then indicate that NH2-terminal fragments had a Ca(2+)-sensitive actin-binding function that relates to actin severing. The other two fragments' NH2-terminal sequencing showed a similar homology to the amino acid sequences of gelsolin and villin. Based on these observations, we propose that adseverin has a functional domain structure similar to that of the gelsolin and villin core.  相似文献   

9.
The Ca2+-activated actin-binding protein gelsolin regulates actin filament length by severing preformed filaments and by binding actin monomers, stabilizing nuclei for their assembly into filaments. Gelsolin binds to phosphatidylinositol 4,5-bisphosphate (PIP2), with consequent inhibition of its filament severing activity and dissociation of EGTA-resistant complexes made with rabbit macrophage or human plasma gelsolin and rabbit muscle actin. This study provides evidence for an interaction of gelsolin with phosphatidylinositol monophosphate (PIP) as well as PIP2 and further describes their effects on gelsolin's function. Both phosphoinositides completely dissociate EGTA-insensitive rabbit macrophage cytoplasmic gelsolin-actin complexes and inhibit gelsolin's severing activity. The magnitude of inhibition depends strongly on the physical state of the phosphoinositides, being maximal in preparations that contain small micelles of either purified PIP or PIP2. Aggregation of PIP or PIP2 micelles by divalent cations or insufficient sonication or their incorporation into vesicles containing other phospholipids decreases but does not eliminate the inhibitory properties of the polyphosphoinositides. The presence of gelsolin partly inhibits the divalent cation-induced aggregation of PIP2 micelles. PIP2 in combination with EGTA inactivates gelsolin molecules that block the fast-growing end of actin filaments, thereby accelerating actin polymerization. Regulation of gelsolin by the intracellular messengers Ca2+ and polyphosphoinositides allows for the formation of several different gelsolin-actin intermediates with distinct functional properties that may be involved in changes in the state of cytoplasmic actin following cell stimulation.  相似文献   

10.
gCap39 is an actin filament end-capping protein which has a threefold repeated domain structure similar to the N-terminal half of gelsolin. However, unlike gelsolin, gCap39 does not sever actin filaments and dissociates completely from filament ends after calcium removal. We have capitalized on these differences to explore the structural basis for actin filament capping, severing, and their regulation. Using truncated gCap39, generated by limited proteolysis or deletion mutagenesis, we found that actin filament capping requires multiple gCap domains, and almost the entire molecule is necessary for optimal activity. gCap39 domain I, like the equivalent domain in gelsolin, contains an actin monomer binding site. gCap39 domains II-III are, however, different from gelsolin in that they do not bind to the side of actin filaments. Since filament side binding is hypothesized to be the first step in severing, lack of side binding may explain why gCap39 does not sever. This is confirmed directly by swapping gCap39 domains II-III for the side-binding gelsolin domains to generate a chimera which severs actin filaments. The chimera is Ca2+ independent in actin filament severing and capping, although gCap39 domain I itself is regulated by Ca2+.  相似文献   

11.
Gelsolin is one of the best known actin-binding proteins with several distinct activities regulated by calcium. Using a kinase fraction isolated from mitotic HeLa cells, we found that the plasma form of gelsolin can be phosphorylated at a site located within the NH2-terminus region which does not exist in the cytoplasmic form. After this phosphorylation, gelsolin no longer requires Ca2+ for activity; it severs and subsequently caps actin filaments, and nucleates filament formation in Ca2+-free solution. These findings may clarify the mechanism of gelsolin regulation by Ca2+, and indicate that changes in electrical interactions between the NH2- and COOH-terminal ends are important for this regulation. Moreover, since only a single site is phosphorylated, and since the phosphorylated region does not contribute to this protein's own activity, the results suggest that a single chemical charge modification at a site away from the protein's core structure, such as this phosphorylation site, is sufficient to alter the protein's function.  相似文献   

12.
Severin is a gelsolin prototype   总被引:2,自引:0,他引:2  
A number of Ca2(+)-activated actin filament severing proteins have been identified in eukaryotic cells of diverse lineages. Gelsolin and villin, with molecular mass of about 80-90 kDa, and severin and fragmin, with molecular mass of about 40 kDa, have been isolated from vertebrates and invertebrates, respectively. We report here a direct comparison of the functional properties of gelsolin and severin, and the finding that the actin filament severing activity of severin, like that of gelsolin, is inhibited by polyphosphoinositides. However, severin does not nucleate actin filament assembly as well as gelsolin. These characteristics are very similar to those ascribed to the NH2-terminal half of gelsolin, supporting the idea that they are evolutionarily related. Regulation of severin by polyphospholipids raises the possibility that it may participate in agonist-stimulated regulation of the actin cytoskeleton in Dictyostelium discoideum.  相似文献   

13.
The F-actin binding domains of gelsolin and alpha-actinin compete for the same site on actin filaments with similar binding affinities. Both contain tandem repeats of approximately 125 amino acids, the first of which is shown to contain the actin-binding site. We have replaced the F-actin binding domain in the NH2-terminal half of gelsolin by that of alpha-actinin. The hybrid severs filaments almost as efficiently as does gelsolin or its NH2-terminal half, but unlike the latter, requires calcium ions. The hybrid binds two actin monomers and caps the barbed ends of filaments in the presence or absence of calcium. The cap produced by the hybrid binds with lower affinity than that of gelsolin and is not stable: It dissociates from filament ends with a half life of approximately 15 min. Although there is no extended sequence homology between these two different F-actin binding domains, our experiments show that they are functionally equivalent and provide new insights into the mechanism of microfilament severing.  相似文献   

14.
唐静  朱晓玲  张磊 《生物磁学》2013,(3):578-581
凝溶胶蛋白(gelsolin,GSN)是一种在机体内普遍存在的,对细胞结构和代谢功能具有多种调节作用的蛋白。GSN作为凝溶胶蛋白超家族的成员之一,是一种重要的肌动蛋白(actin)结合蛋白,可通过切断、封闭肌动蛋白丝,或使actin聚集成核等方式来调控actin的结构与代谢功能.GSN不仅能在重组的肌动蛋白细丝(F-actin)中发挥作用,而且在细胞运动、细胞凋亡等细胞活动中也发挥着重要的作用。GSN有血浆型(plasma gelsolin,pGSN)和细胞质型(cytoplasmic gelsolin,cGSN)两种亚型,它们在淀粉样变性、炎症、癌症、心血管疾病、阿茨海默病(AD)及肾脏疾病中都起着重要的作用,GSN可能成为多种疾病的一个新的生物标记物或者治疗靶点。本文将就GSN与相关疾病的关系的研究进展做一综述。  相似文献   

15.
Gelsolin is an actin filament-severing and -capping protein that has profound effects on actin filament organization and assembly. It is activated by Ca2+ and inhibited by polyphosphoinositides (PPI). We have previously shown that PPI inhibit actin filament severing by the amino-terminal half of gelsolin and hypothesized that this is mediated through inhibition of actin filament side binding (by domains II-III of gelsolin), a requisite first step in severing. In this paper, we report that the subsequent step in severing, which is mediated by an actin monomer binding site located in domain I of gelsolin, is also regulated by PPI. We used deletional mutagenesis and a synthetic peptide to locate the sequence required for high affinity PPI binding in domain I. Our results show that the PPI-binding sequence has a basic charge distribution that is also present in the PPI-regulated actin filament side binding domain, and the two gelsolin PPI-binding sites have similar PPI-binding affinities. In addition, a similar motif is present in several other PPI-binding proteins, including a highly conserved region in the phospholipase C family. We propose that the sequences identified in gelsolin may represent a consensus for PPI binding in a variety of proteins.  相似文献   

16.
A re-evaluation of cytoplasmic gelsolin localization   总被引:10,自引:6,他引:4       下载免费PDF全文
Gelsolin is a 90,000-mol-wt Ca2+-binding, actin-associated protein that can nucleate actin filament growth, sever filaments, and cap barbed filament ends. Brevin is a closely related 92,000-mol-wt plasma protein with similar properties. Gelsolin has been reported to be localized on actin filaments in stress fibers, in cardiac and skeletal muscle I-bands, and in cellular regions where actin filaments are known to be concentrated. Previous localization studies have used sera or antibody preparations that contain brevin. Using purified brevin-free IgG and IgA monoclonal antibodies or affinity-purified polyclonal antibodies for gelsolin and brevin, we find no preferential stress fiber staining in cultured human fibroblasts or I-band staining in isolated rabbit skeletal muscle sarcomeres. Cardiac muscle frozen sections show no pronounced I-band staining, except in local areas where brevin may have penetrated from adjacent blood vessels. Spreading platelets show endogenous gelsolin localized at the cell periphery, in the central cytoplasmic mass and on thin fibers that radiate from the central cytoplasm. Addition of 3-30 micrograms/ml of brevin to the antibodies restores intense stress fiber and I-band staining. We see no evidence for large-scale severing and removal of filaments in stress fibers in formaldehyde-fixed, acetone-permeabilized cells even at brevin concentrations of 30 micrograms/ml. The added brevin or brevin antibody complex binds to actin filaments and is detected by the fluorescently tagged secondary antibody. Brevin binding occurs in either Ca2+ or EGTA, but is slightly more intense in EGTA suggesting some severing and filament removal may occur in Ca2+. The I-band staining is limited to the region where actin and myosin do not overlap. In addition, brevin does not appear to bind at the Z-line. A comparison of cells double-labeled with fluorescein-phallotoxin, exogenous brevin, and a monoclonal antibody, detected with a rhodamine-labeled secondary antibody, shows almost complete co-localization of F-actin with the brevin-gelsolin-binding sites. A major exception is in the area of the adhesion plaque. A quantitative comparison of the fluorescein-rhodamine fluorescence intensities along a stress fiber and into the adhesion plaque shows that the fluorescein signal, associated with F-actin, increases while the rhodamine signal decreases. We infer that exogenous brevin or endogenous gelsolin can bind to and potentially sever most actin filaments, but that actin-associated proteins in the adhesion plaque can prevent binding and severing.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Calcium sensitive actin severing protein, adseverin, with Mr 74,000, was cleaved into two fragments of Mr 42,000 and Mr 39,000 by V8 protease and trypsin, and both fragments were purified by high performance (pressure) liquid chromatography ion-exchange column chromatography. To understand how adseverin can sever actin filaments, we identified the actin-binding domains. The NH2 termini of native adseverin and the Mr 42,000 fragment were confirmed to be blocked by amino acid sequencing. Twelve amino acids of the Mr 39,000 fragment were sequenced from the NH2 terminus; the sequence of this part had a homology to the hinge region between segments 3 and 4 of gelsolin and villin. Thus, the Mr 42,000 fragment is the NH2-terminal half (N42), and the Mr 39,000 fragment is the COOH-terminal half (C39). Each fragment was examined for actin-severing, -nucleating, -capping, and phospholipid binding activities with and without calcium. N42 contained a calcium-dependent actin-severing activity regulated by phospholipid. C39 bound to G-actin in a calcium-dependent manner, but had no severing activity. The sequence homology and similar functional domain structure suggest a common structural basis for the calcium- and phospholipid-regulated actin-severing properties shared by adseverin, gelsolin, and villin.  相似文献   

18.
Gelsolin is activated by Ca(2+) to sever actin filaments. Ca(2+) regulation is conferred on the N-terminal half by the C-terminal half. This paper seeks to understand how Ca(2+) regulates gelsolin by testing the "tail helix latch hypothesis," which is based on the structural data showing that gelsolin has a C-terminal tail helix that contacts the N-terminal half in the absence of Ca(2+). Ca(2+) activation of gelsolin at 37 degrees C occurs in three steps, with apparent K(d) for Ca(2+) of 0.1, 0.3, and 6.4 x 10(-6) m. Tail helix truncation decreases the apparent Ca(2+) requirement for severing to 10(-7) m and eliminates the conformational change observed at 10(-6) m Ca(2+). The large decrease in Ca(2+) requirement for severing is not due to a change in Ca(2+) binding nor to Ca(2+)-independent activation of the C-terminal half per se. Thus, the tail helix latch is primarily responsible for transmitting micromolar Ca(2+) information from the gelsolin C-terminal half to the N-terminal half. Occupation of submicromolar Ca(2+)-binding sites primes gelsolin for severing, but gelsolin cannot sever because the tail latch is still engaged. Unlatching the tail helix by 10(-6) m Ca(2+) releases the final constraint to initiate the severing cascade.  相似文献   

19.
Regulation of the F-actin severing activity of gelsolin by Ca2+ has been investigated under physiologic ionic conditions. Tryptophan fluorescence intensity measurements indicate that gelsolin contains at least two Ca2+ binding sites with affinities of 2.5 x 10(7) M-1 and 1.5 x 10(5) M-1. At F-actin and gelsolin concentrations in the range of those found intracellularly, gelsolin is able to bind F-actin with half-maximum binding at 0.14 microM free Ca2+ concentration. Steady-state measurements of gelsolin-induced actin depolymerization suggest that half-maximum depolymerization occurs at approximately 0.4 microM free Ca2+ concentration. Dynamic light scattering measurements of the translational diffusion coefficient for actin filaments and nucleated polymerization assays for number concentration of actin filaments both indicate that severing of F-actin occurs slowly at micromolar free Ca2+ concentrations. The data suggest that binding of Ca2+ to the gelsolin-F-actin complex is the rate-limiting step for F-actin severing by gelsolin; this Ca2+ binding event is a committed step that results in a Ca2+ ion bound at a high-affinity, EGTA-resistant site. The very high affinity of gelsolin for the barbed end of an actin filament drives the binding reaction equilibrium toward completion under conditions where the reaction rate is slow.  相似文献   

20.
凝溶蛋白是F-肌动蛋白丝的钙依赖性切割性蛋白质.经过焦磷酸溶液选择性抽提和微酸性介质的有效分离,可以得到纯度较高的天然细肌丝.在Ca2+存在时,凝溶蛋白可以切割天然细肌丝.但是,凝溶蛋白对天然细肌丝的作用时程与其对F-肌动蛋白丝的作用有着显著差异,提示细肌丝中的非肌动蛋白蛋白质可能影响了凝溶蛋白对天然细肌丝的结合或者切割速率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号