首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A 74-kDa protein (adseverin) derived from adrenal medulla severs actin filaments and nucleates actin polymerization in a Ca2(+)-dependent manner but does not form an EGTA-resistant complex with actin monomers, which is different from the gelsolin-actin interaction. The dissociation of gelsolin-actin complexes by phosphatidylinositol 4,5-bisphosphate (PIP2) and the inhibitory effect on actin filament severing by gelsolin was recently reported. This study shows that the activity of adseverin is inhibited not only by PIP2 but also by some common phospholipids including phosphatidylinositol (PI) and phosphatidylserine (PS). Other phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE) showed no effect. The addition of PC or PE to PI diminished the inhibitory effect of PI. Triton X-100 and neomycin were also found effective in suppressing the effect of PI, suggesting that the arrangement of polar head groups is important in exerting the inhibitory effect. Ca2(+)-dependent binding of adseverin to PS liposomes but not to PC or PE liposomes was observed by a centrifugation assay.  相似文献   

2.
Gelsolin is a calcium binding protein that shortens actin filaments. This effect occurs in the presence but not in the absence of micromolar calcium ion concentrations and is partially reversed following removal of calcium ions. Once two actin molecules have bound to gelsolin in solutions containing Ca2+, one of the actins remains bound following chelation of calcium, so that the reversal of gelsolin's effect cannot be accounted for simply by its dissociation from the ends of the shortened filaments to allow for elongation. In this paper, the interactions with actin of the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) stable 1:1 gelsolin-actin complexes are compared with those of free gelsolin. The abilities of free or complexed gelsolin to sever actin filaments, nucleate filament assembly, bind to the fast growing (+) filament ends, and lower the filament size distribution in the presence of either Ca2+ or EGTA were examined. The results show that both free gelsolin and gelsolin-actin complexes are highly dependent on Ca2+ concentration when present in a molar ratio to actin less than 1:50. The gelsolin-actin complexes, however, differ from free gelsolin in that they have a higher affinity for (+) filament ends in EGTA and they cannot sever filaments in calcium. The limited reversal of actin-gelsolin binding following removal of calcium and the calcium sensitivity of nucleation by complexes suggest an alternative to reannealing of shortened filaments that involves redistribution of actin monomers and may account for the calcium-sensitive functional reversibility of the solation of actin by gelsolin.  相似文献   

3.
《The Journal of cell biology》1985,101(4):1236-1244
Platelet gelsolin (G), a 90,000-mol-wt protein, binds tightly to actin (A) and calcium at low ionic strength to form a 1:2:2 complex, GA2Ca2 (Bryan, J., and M. Kurth, 1984, J. Biol. Chem. 259:7480-7487). Chromatography of actin and gelsolin mixtures in EGTA-containing solutions isolates a stable binary complex, GA1Ca1 (Kurth, M., and J. Bryan, 1984, J. Biol. Chem. 259:7473-7479). The effects of platelet gelsolin and the binary gelsolin-actin complex on the depolymerization kinetics of rabbit skeletal muscle actin were studied by diluting pyrenyl F-actin into gelsolin or complex-containing buffers; a decrease in fluorescence represents disassembly of filaments. Dilution of F- actin to below the critical concentration required for filament assembly gave a biphasic depolymerization curve with both fast and slow components. Dilution into buffers containing gelsolin, as GCa2, increased the rate of depolymerization and gave a first order decay. The rate of decrease in fluorescence was found to be gelsolin concentration dependent. Electron microscopy of samples taken shortly after dilution into GCa2 showed a marked reduction in filament length consistent with filament severing and an increase in the number of ends. Conversely, occupancy of the EGTA-stable actin-binding site by an actin monomer eliminated the severing activity. Dilution of F-actin into the gelsolin-actin complex, either as GA1Ca1 or GA1Ca2, resulted in a decrease in the rate of depolymerization that was consistent with filament end capping. This result indicates that the EGTA-stable binding site is required and must be unoccupied for filament severing to occur. The effectiveness of gelsolin, GCa2, in causing filament depolymerization was dependent upon the ionic conditions: in KCI, actin filaments appeared to be more stable and less susceptible to gelsolin, whereas in Mg2+, actin filaments were more easily fragmented. Finally, a comparison of the number of kinetically active ends generated when filaments were diluted into gelsolin versus the number formed when gelsolin can function as a nucleation site suggests that gelsolin may sever more than once. The data are consistent with a mechanism where gelsolin, with both actin-binding sites unoccupied, can sever but not cap F-actin. Occupancy of the EGTA-stable binding site yields a gelsolin-actin complex that can no longer sever filaments, but can cap filament ends.  相似文献   

4.
A family of homologous actin-binding proteins sever and cap actin filaments and accelerate actin filament assembly. The functions of two of these proteins, villin and gelsolin, and of their proteolytically derived actin binding domains were compared directly by measuring their effects, under various ionic conditions, on the rates and extents of polymerization of pyrene-labeled actin. In 1 mM Ca2+ and 150 mM KCl, villin and gelsolin have similar severing and polymerization-accelerating properties. Decreasing [Ca2+] to 25 microM greatly reduces severing by villin but not gelsolin. Decreasing [KCl] from 150 to 10 mM at 25 microM Ca2+ increases severing by villin, but not gelsolin, over 10-fold. The C-terminal half domains of both proteins have Ca2+-sensitive actin monomer-binding properties, but neither severs filaments nor accelerates polymerization. The N-terminal halves of villin and gelsolin contain all the filament-severing activity of the intact proteins. Severing by gelsolin's N-terminal half is Ca2+-independent, but that of villin has the same Ca2+ requirement as intact villin. The difference in Ca2+ sensitivity extends to 14-kDa N-terminal fragments which bind actin monomers and filament ends, requiring Ca2+ in the case of villin but not gelsolin. Severing of filaments by villin and its N-terminal half is shown to be inhibited by phosphatidylinositol 4,5-bisphosphate, as shown previously for gelsolin (Janmey, P.A., and Stossel, T.P. (1987) Nature 325, 362-364). The functional similarities of villin and gelsolin correlate with known structural features, and the greater functional dependence of villin on Ca2+ compared to gelsolin is traced to differences in their N-terminal domains.  相似文献   

5.
Gelsolin is a Ca2+- and polyphosphoinositide-modulated actin-binding protein which severs actin filaments, nucleates actin assembly, and caps the "barbed" end of actin filaments. Proteolytic cleavage analysis of human plasma gelsolin has shown that the NH2-terminal half of the molecule severs actin filaments almost as effectively as native gelsolin in a Ca2+-insensitive but polyphosphoinositide-inhibited manner. Further proteolysis of the NH2-terminal half generates two unique fragments (CT14N and CT28N), which have minimal severing activity. Under physiological salt conditions, CT14N binds monomeric actin coupled to Sepharose but CT28N does not. In this paper, we show that CT28N binds stoichiometrically and with high affinity to actin subunits in filaments, suggesting that it preferentially recognizes the conformation of polymerized actin. Analysis of the binding data shows that actin filaments have one class of CT28N binding sites with Kd = 2.0 X 10(-7) M, which saturates at a CT28N/actin subunit ratio of 0.8. Binding of CT28N to actin filaments is inhibited by phosphatidylinositol 4,5-bisphosphate micelles. In contrast, neither CT14N nor another actin-binding domain located in the COOH-terminal half of gelsolin form stable stoichiometric complexes with actin along the filaments, and their binding to actin monomers is not inhibited by PIP2. Based on these observations, we propose that CT28N is the polyphosphoinositide-regulated actin-binding domain which allows gelsolin to bind to actin subunits within a filament before serving.  相似文献   

6.
The polyphosphoinositides phosphatidylinositol 4-monophosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) inactivate the actin filament-severing proteins villin and gelsolin and dissociate them from monomeric and polymeric actin. A potential polyphosphoinositide- (PPI) binding site of human plasma gelsolin regulating filament severing has been localized to the region between residues 150-169 and to the corresponding region in villin which occurs in the second of six homologous domains present in both proteins. Synthetic peptides based on these sequences bind tightly to both PIP and PIP2, in either micelles or bilayer vesicles, compete with gelsolin for binding to PPIs, and dissociate gelsolin-PIP2 complexes, restoring severing activity to the protein. These peptides also bind with moderate affinity to F-actin, suggesting that inactivation of the severing function of the intact proteins by PPIs results from competition between actin and PPIs for a critical binding site on gelsolin-villin. The PPI-binding peptides contain numerous basic amino acids, but their effects on PPIs are far greater than those of Arg or Lys oligomers, a highly basic peptide derived from the calmodulin-binding site of myristoylated, alanine-rich kinase C substrate protein, or the 5-kDa actin-binding protein thymosin beta-4, suggesting that specific aspects of the primary and secondary structure of these basic peptides are important for their interaction with the acidic headgroups of PPIs. In addition to elucidating the structure of PIP2-binding sites in gelsolin, the results describe a sensitive assay for phosphoinositide-binding molecules based on their ability to prevent inhibition of gelsolin function.  相似文献   

7.
In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent.  相似文献   

8.
Actin-depolymerizing factor (ADF)/cofilin and gelsolin are the two major factors to enhance actin filament disassembly. Actin-interacting protein 1 (AIP1) enhances fragmentation of ADF/cofilin-bound filaments and caps the barbed ends. However, the mechanism by which AIP1 disassembles ADF/cofilin-bound filaments is not clearly understood. Here, we directly observed the effects of these proteins on filamentous actin by fluorescence microscopy and gained novel insight into the function of ADF/cofilin and AIP1. ADF/cofilin severed filaments and AIP1 strongly enhanced disassembly at nanomolar concentrations. However, gelsolin, gelsolin-actin complex, or cytochalasin D did not enhance disassembly by ADF/cofilin, suggesting that the strong activity of AIP1 cannot be explained by simple barbed end capping. Barbed end capping by ADF/cofilin and AIP1 was weak and allowed filament elongation, whereas gelsolin or gelsolin-actin complex strongly capped and inhibited elongation. These results suggest that AIP has an active role in filament severing or depolymerization and that ADF/cofilin and AIP1 are distinct from gelsolin in modulating filament elongation.  相似文献   

9.
gCap39 is an actin filament end-capping protein which has a threefold repeated domain structure similar to the N-terminal half of gelsolin. However, unlike gelsolin, gCap39 does not sever actin filaments and dissociates completely from filament ends after calcium removal. We have capitalized on these differences to explore the structural basis for actin filament capping, severing, and their regulation. Using truncated gCap39, generated by limited proteolysis or deletion mutagenesis, we found that actin filament capping requires multiple gCap domains, and almost the entire molecule is necessary for optimal activity. gCap39 domain I, like the equivalent domain in gelsolin, contains an actin monomer binding site. gCap39 domains II-III are, however, different from gelsolin in that they do not bind to the side of actin filaments. Since filament side binding is hypothesized to be the first step in severing, lack of side binding may explain why gCap39 does not sever. This is confirmed directly by swapping gCap39 domains II-III for the side-binding gelsolin domains to generate a chimera which severs actin filaments. The chimera is Ca2+ independent in actin filament severing and capping, although gCap39 domain I itself is regulated by Ca2+.  相似文献   

10.
Various concentrations of gelsolin (25-100 nM) were added to 2 microM polymerized actin. The concentrations of free calcium were adjusted to 0.05-1.5 microM by EGTA/Ca2+ buffer. Following addition of gelsolin actin depolymerization was observed that was caused by dissociation of actin subunits from the pointed ends of treadmilling actin filaments and inhibition by gelsolin of polymerization at barbed ends. The time course of depolymerization revealed an initial lag phase that was followed by slow decrease of the concentration of polymeric actin to reach the final steady state polymer and monomer concentration. The initial lag phase was pronounced at low free calcium and low gelsolin concentrations. On the basis of quantitative analysis the kinetics of depolymerization could be interpreted as capping, i.e. binding of gelsolin to the barbed ends of actin filaments and subsequent inhibition of polymerization, rather than severing. The main argument for this conclusion was that even gelsolin concentrations (100 nM) that exceed the concentration of filament ends ( approximately 2 nM), cause the filaments to depolymerize at a rate that is similar to the rate of depolymerization of the concentration of pointed ends existing before addition of gelsolin. The rate of capping is directly proportional to the free calcium concentration. These experiments demonstrate that at micromolar and submicromolar free calcium concentrations gelsolin acts as a calcium-regulated capping protein but not as an actin filament severing protein, and that the calcium binding sites of gelsolin which regulate the various functions of gelsolin (capping, severing and monomer binding), differ in their calcium affinity.  相似文献   

11.
The fraction of polymerized actin in human blood neutrophils increases after exposure to formyl-methionyl-leucyl-phenylalanine (fmlp), is maximal 10 s after peptide addition, and decreases after 300 s. Most of the gelsolin (85 +/- 11%) in resting ficoll-hypaque (FH)-purified neutrophils is in an EGTA resistant, 1:1 gelsolin-actin complex, and, within 5 s after 10(-7) M fmlp activation, the amount of gelsolin complexed with actin decreases to 42 +/- 12%. Reversal of gelsolin binding to actin occurs concurrently with an increase in F-actin content, and the appearance of barbed-end nucleating activity. The rate of dissociation of EGTA resistant, 1:1 gelsolin-actin complexes is more rapid in cells exposed to 10(-7) M fmlp than in cells exposed to 10(-9) M fmlp, and the extent of dissociation 10 s after activation depends upon the fmlp concentration. Furthermore, 300 s after fmlp activation when F-actin content is decreasing, gelsolin reassociates with actin as evidenced by an increase in the amount of EGTA resistant, 1:1 gelsolin-actin complex. Since fmlp induces barbed end actin polymerization in neutrophils and since in vitro the gelsolin-actin complex caps the barbed ends of actin filaments and blocks their growth, the data suggests that in FH neutrophils fmlp-induced actin polymerization could be initiated by the reversal of gelsolin binding to actin and the uncapping of actin filaments or nuclei. The data shows that formation and dissociation of gelsolin-actin complexes, together with the effects of other actin regulatory proteins, are important steps in the regulation of actin polymerization in neutrophils. Finally, finding increased amounts of gelsolin-actin complex in basal FH cells and dissociation of the complex in fmlp-activated cells suggests a mechanism by which fmlp can cause actin polymerization without an acute increase in cytosolic Ca++.  相似文献   

12.
The organization and regulation of the macrophage actin skeleton   总被引:11,自引:0,他引:11  
To move, leukocytes extend portions of their cortical cytoplasm as pseudopods. These pseudopods are filled with a three-dimensional actin filament skeleton, the reversible assembly of which in response to receptor stimulation is thought to play a major role in providing the mechanical force for these protrusive movements. The organization of this actin skeleton occurs at different levels within the cell, and a number of macrophage proteins have been isolated and shown to affect the architecture, assembly, stability, and length of actin filaments in vitro. The architecture of cytoplasmic actin is regulated by proteins that cross-link filaments in higher-order structures. Actin-binding protein plays a major role in defining network structure by cross-linking actin filaments into orthogonal networks. Gelsolin may have a central role in regulating network structure. It binds to the sides of actin filaments and severs them, and binds the "barbed" filament end, thereby blocking monomer addition at this end. Gelsolin is activated to bind actin filaments by microM calcium. Dissociation of gelsolin bound on filament ends occurs in the presence of the polyphosphoinositides, PIP and PIP2. Calcium and PIP2 have been shown to be intracellular messengers of cell stimulation.  相似文献   

13.
Tropomyosin has been shown to cause annealing of gelsolin-capped actin filaments. Here we show that tropomyosin is highly efficient in transforming even the smallest gelsolin-actin complexes into long actin filaments. At low concentrations of tropomyosin, the effect of tropomyosin depends on the length of the actin oligomer, and the cooperative nature of the process is a direct indication that tropomyosin induces a conformational change in the gelsolin-actin complexes, altering the structure at the actin (+) end such that capping by gelsolin is abolished. At increased concentrations of tropomyosin, heterodimers, trimers, and tetramers are converted to actin filaments. In addition, evidence is presented demonstrating that gelsolin, once removed from the (+) end of the actin, can reassociate with the newly formed tropomyosin-decorated actin filaments. Interestingly, the binding of gelsolin to the tropomyosin-actin filament complexes saturates at 2 gelsolin molecules per 14 actin and 2 tropomyosins, i.e. two gelsolins per tropomyosin-regulatory unit along the filament. These observations support the view that both tropomyosin and gelsolin are likely to have important functions in addition to those proposed earlier.  相似文献   

14.
Gelsolin is a Ca2+-binding protein of mammalian leukocytes, platelets and other cells which has multiple and closely regulated powerful effects on actin. In the presence of micromolar Ca2+, gelsolin severs actin filaments, causing profound changes in the consistency of actin polymer networks. A variant of gelsolin containing a 25-amino acid extension at the NH2-terminus is present in plasma where it may be involved in the clearance of actin filaments released during tissue damage. Gelsolin has two sites which bind actin cooperatively. These sites have been localized using proteolytic cleavage and monoclonal antibody mapping techniques. The NH2-terminal half of the molecule contains a Ca2+-insensitive actin severing domain while the COOH-terminal half contains a Ca2+-sensitive actin binding domain which does not sever filaments. These data suggest that the NH2-terminal severing domain in intact gelsolin is influenced by the Ca2+-regulated COOH-terminal half of the molecule. The primary structure of gelsolin, deduced from human plasma gelsolin cDNA clones, supports the existence of actin binding domains and suggests that these may have arisen from a gene duplication event, and diverged subsequently to adopt their respective unique functions. The plasma and cytoplasmic forms of gelsolin are encoded by a single gene, and preliminary results indicate that separate mRNAs code for the two forms. Further application of molecular biological techniques will allow exploration into the structural basis for the multifunctionality of gelsolin, as well as the molecular basis for the genesis of the cytoplasmic and secreted forms of gelsolin.  相似文献   

15.
Gelsolin can sever actin filaments, nucleate actin filament assembly, and cap the fast-growing end of actin filaments. These functions are activated by Ca2+ and inhibited by polyphosphoinositides (PPI). We report here studies designed to delineate critical domains within gelsolin by deletional mutagenesis, using COS cells to secrete truncated plasma gelsolin after DNA transfection. Deletion of 11% of gelsolin from the COOH terminus resulted in a major loss of its ability to promote the nucleation step in actin filament assembly, suggesting that a COOH-terminal domain is important in this function. In contrast, derivatives with deletion of 79% of the gelsolin sequence exhibited normal PPI-regulated actin filament-severing activity. Combined with previous results using proteolytic fragments, we deduce that an 11-amino acid sequence in the COOH terminus of the smallest severing gelsolin derivative identified here mediates PPI-regulated binding of gelsolin to the sides of actin filaments before severing. Deletion of only 3% of gelsolin at the COOH terminus, including a dicarboxylic acid sequence similar to that found on the NH2 terminus of actin, resulted in a loss of Ca2+-requirement for filament severing and monomer binding. Since these residues in actin have been implicated as potential binding sites for gelsolin, our results raise the possibility that the analogous sequence at the COOH terminus of gelsolin may act as a Ca2+-regulated pseudosubstrate. However, derivatives with deletion of 69-79% of the COOH-terminal residues of gelsolin exhibited normal Ca2+ regulation of severing activity, establishing the intrinsic Ca2+ regulation of the NH2-terminal region. One or both mechanisms of Ca2+ regulation may occur in members of the gelsolin family of actin-severing proteins.  相似文献   

16.
An initial step in platelet shape change is disassembly of actin filaments, which are then reorganized into new actin structures, including filopodia and lamellipodia. This disassembly is thought to be mediated primarily by gelsolin, an abundant actin filament-severing protein in platelets. Shape change is inhibited by VASP, another abundant actin-binding protein. Paradoxically, in vitro VASP enhances formation of actin filaments and bundles them, activities that would be expected to increase shape change, not inhibit it. We hypothesized that VASP might inhibit shape change by stabilizing filaments and preventing their disassembly by gelsolin. Such activity would explain VASP's known physiological role. Here, we test this hypothesis in vitro using either purified recombinant or endogenous platelet VASP by fluorescence microscopy and biochemical assays. VASP inhibited gelsolin's ability to disassemble actin filaments in a dose-dependent fashion. Inhibition was detectable at the low VASP:actin ratio found inside the platelet (1:40 VASP:actin). Gelsolin bound to VASP-actin filaments at least as well as to actin alone. VASP inhibited gelsolin-induced nucleation at higher concentrations (1:5 VASP:actin ratios). VASP's affinity for actin (K(d) approximately 0.07 microM) and its ability to promote polymerization (1:20 VASP actin ratio) were greater with Ca(++)-actin than with Mg(++)-actin (K(d) approximately 1 microM and 1:1 VASP), regardless of the presence of gelsolin. By immunofluorescence, VASP and gelsolin co-localized in the filopodia and lamellipodia of platelets spreading on glass, suggesting that these in vitro interactions could take place within the cell as well. We conclude that VASP stabilizes actin filaments to the severing effects of gelsolin but does not inhibit gelsolin from binding to the filaments. These results suggest a new concept for actin dynamics inside cells: that bundling proteins protect the actin superstructure from disassembly by severing, thereby preserving the integrity of the cytoskeleton.  相似文献   

17.
It is generally assumed that of the six domains that comprise gelsolin, domain 2 is primarily responsible for the initial contact with the actin filament that will ultimately result in the filament being severed. Other actin-binding regions within domains 1 and 4 are involved in gelsolin's severing and subsequent capping activity. The overall fold of all gelsolin repeated domains are similar to the actin depolymerizing factor (ADF)/cofilin family of actin-binding proteins and it has been proposed that there is a similarity in the actin-binding interface. Gelsolin domains 1 and 4 bind G-actin in a similar manner and compete with each other, whereas domain 2 binds F-actin at physiological salt concentrations, and does not compete with domain 1. Here we investigate the domain 2 : actin interface and compare this to our recent studies of the cofilin : actin interface. We conclude that important differences exist between the interfaces of actin with gelsolin domains 1 and 2, and with ADF/cofilin. We present a model for F-actin binding of domain 2 with respect to the F-actin severing and capping activity of the whole gelsolin molecule.  相似文献   

18.
Dynamic cytoplasmic streaming, organelle positioning, and nuclear migration use molecular tracks generated from actin filaments arrayed into higher-order structures like actin cables and bundles. How these arrays are formed and stabilized against cellular depolymerizing forces remains an open question. Villin and fimbrin are the best characterized actin-filament bundling or cross-linking proteins in plants and each is encoded by a multigene family of five members in Arabidopsis thaliana. The related villins and gelsolins are conserved proteins that are constructed from a core of six homologous gelsolin domains. Gelsolin is a calcium-regulated actin filament severing, nucleating and barbed end capping factor. Villin has a seventh domain at its C terminus, the villin headpiece, which can bind to an actin filament, conferring the ability to crosslink or bundle actin filaments. Many, but not all, villins retain the ability to sever, nucleate, and cap filaments. Here we have identified a putative calcium-insensitive villin isoform through comparison of sequence alignments between human gelsolin and plant villins with x-ray crystallography data for vertebrate gelsolin. VILLIN1 (VLN1) has the least well-conserved type 1 and type 2 calcium binding sites among the Arabidopsis VILLIN isoforms. Recombinant VLN1 binds to actin filaments with high affinity (K(d) approximately 1 microM) and generates bundled filament networks; both properties are independent of the free Ca(2+) concentration. Unlike human plasma gelsolin, VLN1 does not nucleate the assembly of filaments from monomer, does not block the polymerization of profilin-actin onto barbed ends, and does not stimulate depolymerization or sever preexisting filaments. In kinetic assays with ADF/cofilin, villin appears to bind first to growing filaments and protects filaments against ADF-mediated depolymerization. We propose that VLN1 is a major regulator of the formation and stability of actin filament bundles in plant cells and that it functions to maintain the cable network even in the presence of stimuli that result in depolymerization of other actin arrays.  相似文献   

19.
We elucidated the mechanism by which gelsolin, a Ca2+-dependent regulatory protein from lung macrophages, controls the network structure of actin filaments. In the presence of micromolar Ca2+, gelsolin bound Ca2+. The Ca2+-gelsolin complex reduced the apparent viscosity and flow birefringence of F-actin and the lengths of actin filaments viewed in the electron microscope. However, concentrations of gelsolin causing these alterations did not effect proportionate changes in the turbidity of actin filament solutions or in the quantity of nonsedimentable actin as determined by a radioassay. From these findings, we conclude that gelsolin shortens actin filaments without net depolymerization. Such an effect on the distribution of actin filament lengths led to the prediction that low concentrations of gelsolin would increase the critical concentration of actin-binding protein required for incipient gelation of actin filaments in the presence of Ca2+, providing an efficient mechanism for controlling actin network structure. We verified the prediction experimentally, and we estimated that the Ca2+-gelsolin complex effectively breaks the bond between actin monomers in filaments with a stoichiometry of 1:1. The effect of Ca2+-gelsolin complex on actin solation was rapid, independent of temperature between 0 degrees and 37 degrees C, and reversed by reducing the free Ca2+ concentration.  相似文献   

20.
Phosphatidylinositol bisphosphate (PIP2) serves as a precursor for diacylglycerol and inositol trisphosphate in signal transduction cascades and regulates the activities of several actin binding proteins that influence the organization of the actin cytoskeleton. Molecules of PIP2 form 6-nm diameter micelles in water, but aggregate into larger, multilamellar structures in physiological concentrations of divalent cations. Electron microscopic analysis of these aggregates reveals that they are clusters of striated filaments, suggesting that PIP2 aggregates form stacks of discoid micelles rather than multilamellar vesicles or inverted hexagonal arrays as previously inferred from indirect observations. The distance between striations within the filaments varies from 4.2 to 5.4 nm and the diameter of the filaments depends on the dehydrated ionic radius of the divalent cation, with average diameters of 19, 12, and 10 nm for filaments formed by Mg2+, Ca2+, and Ba2+, respectively. The structure of the divalent cation-induced aggregates can be altered by PIP2 binding proteins. Gelsolin and the microtubule associated protein tau both affect the formation of aggregates, indicating that tau acts as a PIP2 binding protein in a manner similar to gelsolin. In contrast, another PIP2 binding protein, profilin, does not modify the aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号