首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast growth factor (FGF) induces the notochord and mesenchyme in ascidian embryos, via extracellular signal-regulated kinase (ERK) that belongs to the mitogen-activated protein kinase (MAPK) family. A cDNA microarray analysis was carried out to identify genes affected by an inhibitor of MAPK/ERK kinase (MEK), U0126, in embryos of the ascidian Ciona intestinalis. Data obtained from the microarray and in situ hybridization suggest that the majority of genes are downregulated by U0126 treatment. Genes that were downregulated in U0126-treated embryos included Ci-Bra and Ci-Twist-like1 that are master regulatory genes of notochord and mesenchyme differentiation, respectively. The plasminogen mRNA was downregulated by U0126 in presumptive endoderm cells. This suggests that a MEK-mediated extracellular signal is necessary for gene expression in tissues whose specification does not depend on cell-to-cell interaction. Among 85 cDNA clusters that were not affected by U0126, 30 showed mitochondria-like mRNA localization in the nerve cord/muscle lineage blastomeres in the equatorial region. The expression level and asymmetric distribution of these mRNA were independent of MEK signaling.  相似文献   

2.
3.
4.
In sea urchins, the nuclear accumulation of β-catenin in micromeres and macromeres at 4th and 5th cleavage activates the developmental gene regulatory circuits that specify all of the vegetal tissues (i.e. skeletogenic mesoderm, endoderm and non-skeletogenic mesoderm). Here, through the analysis of maternal Frizzled receptors as potential contributors to these processes, we found that, in Paracentrotus lividus, the receptor Frizzled1/2/7 is required by 5th cleavage for β-catenin nuclearisation selectively in macromere daughter cells. Perturbation analyses established further that Frizzled1/2/7 signaling is required subsequently for the specification of the endomesoderm and then the endoderm but not for that of the non-skeletogenic mesoderm, even though this cell type also originates from the endomesoderm lineage. Complementary analyses on Wnt6 showed that this maternal ligand is similarly required at 5th cleavage for the nuclear accumulation of β-catenin exclusively in the macromeres and for endoderm but not for non-skeletogenic mesoderm specification. In addition, Wnt6 misexpression reverses Frizzled1/2/7 downregulation-induced phenotypes. Thus, the results indicate that Wnt6 and Frizzled1/2/7 are likely to behave as the ligand-receptor pair responsible for initiating β-catenin nuclearisation in macromeres at 5th cleavage and that event is necessary for endoderm specification. They show also that β-catenin nuclearisation in micromeres and macromeres takes place through a different mechanism, and that non-skeletogenic mesoderm specification occurs independently of the nuclear accumulation of β-catenin in macromeres at the 5th cleavage. Evolutionarily, this analysis outlines further the conserved involvement of the Frizzled1/2/7 subfamily, but not of specific Wnts, in the activation of canonical Wnt signaling during early animal development.  相似文献   

5.
6.
Korzh VP 《Ontogenez》2001,32(3):196-203
During gastrulation in vertebrate embryos, three definitive germ layers (ectoderm, mesoderm, and endoderm) are formed by organized and coordinated cell movements. In zebrafish, further subdivision of the mesoderm gives rise to the axial, adaxial and paraxial mesoderm. The axial mesoderm contributes to the prechordal plate and notochord whereas the adaxial and paraxial cells give rise to slow and fast muscles, respectively (Devoto et al., 1996; Blagden et al., 1997; Currie and Ingham, 1998). An inductive interaction in which the notochord plays an essential role will also provide an input in forming other specialized types of tissue contributing to the axial structures: the floor plate located dorsally to the notochord in the ventral spinal cord and the hypochord located ventrally of the notochord and deriving probably from the endoerm. It is known that despite the difference in developmental roles (Str?hle et al., 1993; Krauss et al., 1993), the floor plate and hypochord co-express a number of common molecular markers (Jan et al., 1995; our unpublished results) that may illustrate a certain similarity of their origin. Their close proximity to the notochord determines specialized features of these structures that differ substantially from the rest of the neural tube and endoderm, correspondingly. Once formed under the influence of the notochordal signaling, the floor plate will acquire an ability, similar to the notochord, to express genes of the Hedgehog family and several other groups of genes and to induce specification of ventral cell types in the neural tube during later development (for review, see Korzh, 1998). The biology of the hypochord is much less understood. It seems that the hypochord develops slightly later than the floor plate. It may be required for proper positioning of the dorsal aorta as well as induction of some other endoderm derivatives.  相似文献   

7.
Fibroblast growth factor (FGF) signalling has been implicated in the generation of mesoderm and neural fates in chordate embryos including ascidians and vertebrates. In Ciona, FGF9/16/20 has been implicated in both of these processes. However, in FGF9/16/20 knockdown embryos, notochord fate recovers during later development. It is thus not clear if FGF signalling is an essential requirement for notochord specification in Ciona embryos. We show that FGF-MEK-ERK signals act during two distinct phases to establish notochord fate. During the first phase, FGF signalling is required during an asymmetric cell division to promote notochord at the expense of neural identity. Consistently, ERK1/2 is specifically activated in the notochord precursors following this cell division. Sustained activation of ERK1/2 is then required to maintain notochord fate. We demonstrate that FGF9/16/20 acts solely during the initial induction step and that, subsequently, FGF8/17/18 together with FGF9/16/20 is involved in the following maintenance step. These results together with others' show that the formation of a large part of the mesoderm cell types in ascidian larvae is dependent on signalling events involving FGF ligands.  相似文献   

8.
9.
10.
The major mesodermal tissues of ascidian larvae are muscle, notochord and mesenchyme. They are derived from the marginal zone surrounding the endoderm area in the vegetal hemisphere. Muscle fate is specified by localized ooplasmic determinants, whereas specification of notochord and mesenchyme requires inducing signals from endoderm at the 32-cell stage. In the present study, we demonstrated that all endoderm precursors were able to induce formation of notochord and mesenchyme cells in presumptive notochord and mesenchyme blastomeres, respectively, indicating that the type of tissue induced depends on differences in the responsiveness of the signal-receiving blastomeres. Basic fibroblast growth factor (bFGF), but not activin A, induced formation of mesenchyme cells as well as notochord cells. Treatment of mesenchyme-muscle precursors isolated from early 32-cell embryos with bFGF promoted mesenchyme fate and suppressed muscle fate, which is a default fate assigned by the posterior-vegetal cytoplasm (PVC) of the eggs. The sensitivity of the mesenchyme precursors to bFGF reached a maximum at the 32-cell stage, and the time required for effective induction of mesenchyme cells was only 10 minutes, features similar to those of notochord induction. These results support the idea that the distinct tissue types, notochord and mesenchyme, are induced by the same signaling molecule originating from endoderm precursors. We also demonstrated that the PVC causes the difference in the responsiveness of notochord and mesenchyme precursor blastomeres. Removal of the PVC resulted in loss of mesenchyme and in ectopic notochord formation. In contrast, transplantation of the PVC led to ectopic formation of mesenchyme cells and loss of notochord. Thus, in normal development, notochord is induced by an FGF-like signal in the anterior margin of the vegetal hemisphere, where PVC is absent, and mesenchyme is induced by an FGF-like signal in the posterior margin, where PVC is present. The whole picture of mesodermal patterning in ascidian embryos is now known. We also discuss the importance of FGF induced asymmetric divisions, of notochord and mesenchyme precursor blastomeres at the 64-cell stage.  相似文献   

11.
12.
In the sea urchin, entry of β-catenin into the nuclei of the vegetal cells at 4th and 5th cleavages is necessary for activation of the endomesoderm gene regulatory network. Beyond that, little is known about how the embryo uses maternal information to initiate specification. Here, experiments establish that of the three maternal Wnts in the egg, Wnt6 is necessary for activation of endodermal genes in the endomesoderm GRN. A small region of the vegetal cortex is shown to be necessary for activation of the endomesoderm GRN. If that cortical region of the egg is removed, addition of Wnt6 rescues endoderm. At a molecular level, the vegetal cortex region contains a localized concentration of Dishevelled (Dsh) protein, a transducer of the canonical Wnt pathway; however, Wnt6 mRNA is not similarly localized. Ectopic activation of the Wnt pathway, through the expression of an activated form of β-catenin, of a dominant-negative variant of GSK-3β or of Dsh itself, rescues endomesoderm specification in eggs depleted of the vegetal cortex. Knockdown experiments in whole embryos show that absence of Wnt6 produces embryos that lack endoderm, but those embryos continue to express a number of mesoderm markers. Thus, maternal Wnt6 plus a localized vegetal cortical molecule, possibly Dsh, is necessary for endoderm specification; this has been verified in two species of sea urchin. The data also show that Wnt6 is only one of what are likely to be multiple components that are necessary for activation of the entire endomesoderm gene regulatory network.  相似文献   

13.
14.
The interplay of fibroblast growth factor (FGF) and nodal signaling in the Xenopus gastrula marginal zone specifies distinct populations of presumptive mesodermal cells. Cells in the vegetal marginal zone, making up the presumptive leading edge mesoderm, are exposed to nodal signaling, as evidenced by SMAD2 activation, but do not appear to be exposed to FGF signaling, as evidenced by the lack of MAP kinase (MAPK) activation. However, in the animal marginal zone, activation of both SMAD2 and MAPK occurs. The differential activation of these two signaling pathways in the marginal zone results in the vegetal and animal marginal zones expressing different genes at gastrulation, and subsequently having different fates, with the vegetal marginal zone contributing to ventral mesoderm (e.g. ventral blood island) and the animal marginal zone giving rise to dorsal fates (e.g. notochord and somite). We report here the cloning of a cDNA encoding a novel nuclear protein, Xmenf, that is expressed in the vegetal marginal zone. The expression of Xmenf is induced by nodal signaling and negatively regulated by FGF signaling. Results from animal cap studies indicate that Xmenf plays a role in the pathway of ventral mesoderm induction in the vegetal marginal zone.  相似文献   

15.
16.
17.
18.
19.
In early Ciona embryos, nuclear accumulation of beta-catenin is most probably the first step of endodermal cell specification. If beta-catenin is mis- and/or overexpressed, presumptive notochord cells and epidermal cells change their fates into endodermal cells, whereas if beta-catenin nuclear localization is downregulated by the overexpression of cadherin, the endoderm differentiation is suppressed, accompanied with the differentiation of extra epidermal cells ( Imai, K., Takada, N., Satoh, N. and Satou, Y. (2000) Development 127, 3009-3020). Subtractive hybridization screens of mRNAs between beta-catenin overexpressed embryos and cadherin overexpressed embryos were conducted to identify potential beta-catenin target genes that are responsible for endoderm differentiation in Ciona savignyi embryos. We found that a LIM-homeobox gene (Cs-lhx3), an otx homolog (Cs-otx) and an NK-2 class gene (Cs-ttf1) were among beta-catenin downstream genes. In situ hybridization signals for early zygotic expression of Cs-lhx3 were evident only in the presumptive endodermal cells as early as the 32-cell stage, those of Cs-otx in the mesoendodermal cells at the 32-cell stage and those of Cs-ttf1 in the endodermal cells at the 64-cell stage. Later, Cs-lhx3 was expressed again in a set of neuronal cells in the tailbud embryo, while Cs-otx was expressed in the anterior nervous system of the embryo. Expression of all three genes was upregulated in beta-catenin overexpressed embryos and downregulated in cadherin overexpressed embryos. Injection of morpholino oligonucleotides against Cs-otx did not affect the embryonic endoderm differentiation, although the formation of the central nervous system was suppressed. Injection of Cs-ttf1 morpholino oligonucleotides also failed to suppress the endoderm differentiation, although injection of its synthetic mRNAs resulted in ectopic development of endoderm differentiation marker alkaline phosphatase. By contrast, injection of Cs-lhx3 morpholino oligo suppressed the endodermal cell differentiation and this suppression was rescued by injection of Cs-lhx3 mRNA into eggs. In addition, although injection of delE-Ci-cadherin mRNA into eggs resulted in the suppression of alkaline phosphatase development, injection of delE-Ci-cadherin mRNA with Cs-lhx3 mRNA rescued the alkaline phosphatase development. These results strongly suggest that a LIM-homeobox gene Cs-lhx3 is one of the beta-catenin downstream genes and that its early expression in embryonic endodermal cells is responsible for their differentiation.  相似文献   

20.
BACKGROUND: The mouse anterior visceral endoderm, an extraembryonic tissue, expresses several genes essential for normal development of structures rostral to the anterior limit of the notochord and has been termed the head organizer. This tissue also has heart-inducing activity and expresses mCer1 which, like its Xenopus homolog cerberus, can induce markers of cardiac specification and anterior neural tissue when ectopically expressed. We investigated the relationship between head and heart induction in Xenopus embryos, which lack extraembryonic tissues. RESULTS: We found three regions of gene expression in the Xenopus organizer: deep endoderm, which expressed cerberus; prechordal mesoderm, which showed overlapping but non-identical expression of genes characteristic of the murine head organizer, such as XHex and XANF-1; and leading-edge dorsoanterior endoderm, which expressed both cerberus and a subset of the genes expressed by the prechordal mesoderm. Microsurgical ablation of the cerberus-expressing endoderm decreased the incidence of heart, but not head, formation. Removal of prechordal mesoderm, in contrast, caused deficits of anterior head structures. Finally, although misexpression of cerberus induced ectopic heads, it was unable to induce genes thought to participate in head induction. CONCLUSIONS: In Xenopus, the cerberus-expressing endoderm is required for heart, but not head, inducing activity. Therefore, this tissue is not the topological equivalent of the murine anterior visceral endoderm. We propose that, in Xenopus, cerberus is redundant to other bone morphogenetic protein (BMP) and Wnt antagonists located in prechordal mesoderm for head induction, but may be necessary for heart induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号