首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the l-arginine (l-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of l-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each l-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreas were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-κB) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of l-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-κB activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-κB activation and to promote acinar cell proliferation.  相似文献   

2.
Acute pancreatitis (AP) is an inflammatory disease involving acinar cell injury and rapid production and release of inflammatory cytokines, which play a dominant role in local pancreatic inflammation and systemic complications. 2',4',6'-Tris (methoxymethoxy) chalcone (TMMC), a synthetic chalcone derivative, displays potent anti-inflammatory effects. Therefore, we aimed to investigate whether TMMC might affect the severity of AP and pancreatitis-associated lung injury in mice. We used the cerulein hyperstimulation model of AP. Severity of pancreatitis was determined in cerulein-injected mice by histological analysis and neutrophil sequestration. The pretreatment of mice with TMMC reduced the severity of AP and pancreatitis-associated lung injury and inhibited several biochemical parameters (activity of amylase, lipase, trypsin, trypsinogen, and myeloperoxidase and production of proinflammatory cytokines). In addition, TMMC inhibited pancreatic acinar cell death and production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 by inhibiting NF-κB and extracellular signal-regulated protein kinase 1/2 (ERK1/2) activation. Neutralizing antibodies for TNF-α, IL-1β, and IL-6 inhibited cerulein-induced cell death in isolated pancreatic acinar cells. Moreover, pharmacological blockade of NF-κB/ERK1/2 reduced acinar cell death and production of TNF-α, IL-1β, and IL-6 in isolated pancreatic acinar cells. In addition, posttreatment of mice with TMMC showed reduced severity of AP and lung injury. Our results suggest that TMMC may reduce the complications associated with pancreatitis.  相似文献   

3.
4.
Recent evidence suggests that neutrophil extracellular traps (NETs) play an important role in the development of acute pancreatitis (AP). Herein, we examined the role of peptidylarginine deiminase (PAD), which has been shown to regulate NET formation, in severe AP. AP was induced by retrograde of taurocholate infusion into pancreatic duct in C57BL/6 mice. PAD was pharmacologically inhibited using Cl-amidine, a pan-PAD inhibitor. Pancreata were collected, and histones, citrullinated histone 3, chemokines, myeloperoxidase, and NETs were quantified. Chemokines, matrix metalloproteinase-9 (MMP-9), interleukin-6 (IL-6), and DNA-histone complexes were determined in plasma samples. Infusion of taurocholate induced formation of NETs in pancreatic tissues of mice. Pretreatment with Cl-amidine markedly reduced the NET formation in the inflamed pancreas. Moreover, inhibition of PAD decreased the levels of blood amylase as well as edema, acinar cell necrosis, hemorrhage, and neutrophil infiltration in the pancreas of animals with AP. Administration of Cl-amidine attenuated the myeloperoxidase levels in the pancreas and lung of mice exposed to taurocholate. In addition, Cl-amidine decreased pancreatic levels of CXC chemokines, plasma levels of IL-6, and MMP-9 in mice with severe AP. This study shows that Cl-amidine is a potent inhibitor of NET formation in severe AP. Also, our results suggest that PAD regulates pathological inflammation and tissue damage in the inflamed pancreas. Thus, targeting PAD might be a useful strategy to treat patients with severe AP.  相似文献   

5.
Acute pancreatitis (AP) is a common inflammatory disease mediated by damage to acinar cells and subsequent pancreatic inflammation with infiltration of leukocytes. The neuronal guidance protein, netrin-1, has been shown to control leukocyte trafficking and modulate inflammatory responses in several inflammation-based diseases. The present study was aimed toward investigating the effects of netrin-1 in an in vivo model of AP in mice. AP was induced in C57BL/6 mice by administration of two intraperitoneal injections of L-Arginine (4 g/kg). Mice were treated with recombinant mouse netrin-1 at a dose of 1 µg/mouse or vehicle (0.1% BSA) intravenously through the tail vein immediately after the second injection of L-Arginine, and every 24 h thereafter. Mice were sacrificed at several time intervals from 0 to 96 h after the induction of pancreatitis. Blood and tissue samples of pancreas and lung were collected and processed to determine the severity of pancreatitis biochemically and histologically. Immunohistochemical staining demonstrated that netrin-1 was mainly expressed in the islet cells of the normal pancreas and the AP model pancreas, and the pancreatic expression of netrin-1 was down-regulated at both the mRNA and protein levels during the course of AP. Exogenous netrin-1 administration significantly reduced plasma amylase levels, myeloperoxidase activity, pro-inflammatory cytokine production, and pancreas and lung tissue damages. Furthermore, netrin-1 administration did not cause significant inhibition of nuclear factor-kappa B activation in the pancreas of L-Arginine-induced AP. In conclusion, our novel data suggest that netrin-1 is capable of improving damage of pancreas and lung, and exerting anti-inflammatory effects in mice with severe acute pancreatitis. Thus, our results indicate that netrin-1 may constitute a novel target in the management of AP.  相似文献   

6.
Depletion of pancreatic intracellular polyamine pools has been observed in acute pancreatitis both in the animal models and in humans. In this study, the wild-type mice, polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase overexpressing (SSAT mice) and SSAT-deficient mice were used to characterize the new zinc-induced acute pancreatitis mouse model and study the role of polyamines and polyamine catabolism in this model. Intraperitoneal zinc injection induced acute necrotizing pancreatitis in wild-type mice as well as in SSAT-overexpressing and SSAT-deficient mice. Serum α-amylase activity was significantly increased in all zinc-treated mice compared with the untreated controls. However, the α-amylase activities in SSAT mice were constantly lower than those in the other groups. Histopathological examination of pancreatic tissue revealed edema, acinar cell necrosis and necrotizing inflammation, typical for acute pancreatitis. Compared with the other zinc-treated mice less damage according to the histopathological analysis was observed in the pancreatic tissue of SSAT mice. Levels of intracellular spermidine, and occasionally spermine, were significantly decreased in pancreases of all zinc-treated animals and SSAT enzyme activity was enhanced both in wild-type and SSAT mice. Interestingly, a spermine analog, N(1), N(11)-diethylnorspermine (DENSpm), enhanced the proliferation of pancreatic cells and reduced the severity of zinc-induced pancreatitis in wild-type mice. The results show that in mice a single intraperitoneal zinc injection causes acute necrotizing pancreatitis accompanied by decrease of intracellular polyamine pools. The study supports the important role of polyamines for the integrity and function of the pancreas. In addition, the study suggests that whole body overexpression of SSAT obtained in SSAT mice reduces inflammatory pancreatic cell injury.  相似文献   

7.
Acinar cells in acute pancreatitis (AP) die through apoptosis and necrosis, the impacts of which are quite different. Early clinical interference strategies on preventing the progress of AP to severe acute pancreatitis (SAP) are the elimination of inflammation response and inhibition of necrosis. Muscarinic acetylcholine receptor M3 was encoded by Chrm3 gene. It is one of the best-characterized receptors of pancreatic β cells and regulates insulin secretion, but its function in AP remains unclear. In this study, we explored the function of Chrm3 gene in the regulation of cell death in l -arginine-induced SAP animal models. We found that Chrm3 was upregulated in pancreatitis, and we further confirmed the localization of Chrm3 resided in both pancreatic islets and acinar cell membranes. The reduction of Chrm3 decreased the pathological lesion of SAP and reduced amylase activities in serum. Consistently, Chrm3 can suppress acinar cells necrosis markedly, but has no effect on regulating apoptosis after l -arginine treatment. It was shown that Chrm3 attenuated acinar cells necrosis at least in part by stabilizing caspase-8. Thus, this study indicates that Chrm3 is critical participants in SAP, and regulation of Chrm3 expression might be a useful therapeutic strategy for preventing pathologic necrosis.  相似文献   

8.
Acute pancreatitis (AP) is an inflammatory disease characterized by tissue edema, necrosis and hemorrhage. The mortality rate associated with this disease is particularly high when the inflammation has become systemic. Recently, activation of the pancreatic renin-angiotensin system (RAS) was shown to play a role in AP. The present study investigated whether administering an AT1 receptor antagonist decreases the severity of AP and pancreatitis-induced systemic inflammation, particularly pulmonary injury. Rats with AP-associated lung injury were induced by multiple doses of caerulein, which was demonstrated in the previous studies. Three injections of losartan (200 microg/ kg/h) were given 30 min prior to the first injection of caerulein. The results demonstrated that caerulein injections resulted in significant increases in pancreatic and pulmonary myeloperoxidase (MPO) activities, and losartan treatment attenuates these effects. Lung microvascular permeability was also significantly improved by losartan treatment. Losartan prevented caerulein-induced pancreatic and pulmonary morphological alterations, but not elevations in serum alpha-amylase or pancreas/body weight ratio. These data indicate that losartan treatment can attenuate pancreatic and lung injury. Thus, the implication is that a blockade of AT1 receptors may have a clinical application for the treatment of AP and, perhaps more importantly, subsequent pulmonary complications.  相似文献   

9.
Acinar cells in pancreatitis die through apoptosis and necrosis, the roles of which are different. The severity of experimental pancreatitis correlates directly with the extent of necrosis and inversely, with apoptosis. Apoptosis is mediated by the release of cytochrome c into the cytosol followed by caspase activation, whereas necrosis is associated with the mitochondrial membrane potential (ΔΨm) loss leading to ATP depletion. Here, we investigate the role of Bcl-2 proteins in apoptosis and necrosis in pancreatitis. We found up-regulation of prosurvival Bcl-2 proteins in pancreas in various experimental models of acute pancreatitis, most pronounced for Bcl-xL. This up-regulation translated into increased levels of Bcl-xL and Bcl-2 in pancreatic mitochondria. Bcl-xL/Bcl-2 inhibitors induced ΔΨm loss and cytochrome c release in isolated mitochondria. Corroborating the results on mitochondria, Bcl-xL/Bcl-2 inhibitors induced ΔΨm loss, ATP depletion and necrosis in pancreatic acinar cells, both untreated and hyperstimulated with CCK-8 (in vitro pancreatitis model). Together Bcl-xL/Bcl-2 inhibitors and CCK induced more necrosis than either treatment alone. Bcl-xL/Bcl-2 inhibitors also stimulated cytochrome c release in acinar cells leading to caspase-3 activation and apoptosis. However, different from their effect on pronecrotic signals, the stimulation by Bcl-xL/Bcl-2 inhibitors of apoptotic responses was less in CCK-treated than control cells. Therefore, Bcl-xL/Bcl-2 inhibitors potentiated CCK-induced necrosis but not apoptosis. Correspondingly, transfection with Bcl-xL siRNA stimulated necrosis but not apoptosis in the in vitro pancreatitis model. Further, in animal models of pancreatitis Bcl-xL up-regulation inversely correlated with necrosis, but not apoptosis. Results indicate that Bcl-xL and Bcl-2 protect acinar cells from necrosis in pancreatitis by stabilizing mitochondria against death signals. We conclude that Bcl-xL/Bcl-2 inhibition would aggravate acute pancreatitis, whereas Bcl-xL/Bcl-2 up-regulation presents a strategy to prevent or attenuate necrosis in pancreatitis.  相似文献   

10.

Introduction

Telomere shortening is a cell-intrinsic mechanism that limits cell proliferation by induction of DNA damage responses resulting either in apoptosis or cellular senescence. Shortening of telomeres has been shown to occur during human aging and in chronic diseases that accelerate cell turnover, such as chronic hepatitis. Telomere shortening can limit organ homeostasis and regeneration in response to injury. Whether the same holds true for pancreas regeneration in response to injury is not known.

Methods

In the present study, pancreatic regeneration after acute cerulein-induced pancreatitis was studied in late generation telomerase knockout mice with short telomeres compared to telomerase wild-type mice with long telomeres.

Results

Late generation telomerase knockout mice exhibited impaired exocrine pancreatic regeneration after acute pancreatitis as seen by persistence of metaplastic acinar cells and markedly reduced proliferation. The expression levels of p53 and p21 were not significantly increased in regenerating pancreas of late generation telomerase knockout mice compared to wild-type mice.

Conclusion

Our results indicate that pancreatic regeneration is limited in the context of telomere dysfunction without evidence for p53 checkpoint activation.  相似文献   

11.
Acute pancreatitis (AP) is associated with significant morbidity and mortality; however, there is no specific treatment for this disease. A novel salivary tripeptide analog, feG, reduces inflammation in several different animal models of inflammation. The aims of this study were to determine whether feG reduced the severity of AP and modifies the expression of pancreatic ICAM-1 mRNA during AP in a mouse model. AP was induced in mice by hourly (x12) intraperitoneal injections of caerulein. A single dose of feG (100 microg/kg) was coadministered with caerulein either at time 0 h (prophylactic) or 3 h after AP induction (therapeutic). Plasma amylase and pancreatic MPO activities and pancreatic ICAM-1 mRNA expression (by RT-PCR) were measured. Pancreatic sections were histologically assessed for abnormal acinar cells and interstitial space. AP induction produced a sevenfold increase in plasma amylase, a tenfold increase in pancreatic MPO activity, and a threefold increase in interstitial space, and 90% of the acinar cells were abnormal. Prophylactic treatment with feG reduced the AP-induced plasma amylase activity by 45%, pancreatic MPO by 80%, the proportion of abnormal acinar cells by 30%, and interstitial space by 40%. Therapeutic treatment with feG significantly reduced the AP-induced abnormal acinar cells by 10% and the interstitial space by 20%. Pancreatic ICAM-1 mRNA expression was upregulated in AP and was reduced by 50% with prophylactic and therapeutic treatment with feG. We conclude that feG ameliorates experimental AP acting at least in part by modulating ICAM-1 expression in the pancreas.  相似文献   

12.
13.
14.
The role of pancreatic acinar cells in initiating necro-inflammatory responses during the early onset of alcoholic acute pancreatitis (AP) has not been fully evaluated. We investigated the ability of acinar cells to generate pro- and anti-inflammatory mediators, including inflammasome-associated IL-18/caspase-1, and evaluated acinar cell necrosis in an animal model of AP and human samples. Rats were fed either an ethanol-containing or control diet for 14 weeks and killed 3 or 24 h after a single lipopolysaccharide (LPS) injection. Inflammasome components and necro-inflammation were evaluated in acinar cells by immunofluorescence (IF), histology, and biochemical approaches. Alcohol exposure enhanced acinar cell-specific production of TNFα, IL-6, MCP-1 and IL-10, as early as 3 h after LPS, whereas IL-18 and caspase-1 were evident 24 h later. Alcohol enhanced LPS-induced TNFα expression, whereas blockade of LPS signaling diminished TNFα production in vitro, indicating that the response of pancreatic acinar cells to LPS is similar to that of immune cells. Similar results were observed from acinar cells in samples from patients with acute/recurrent pancreatitis. Although morphologic examination of sub-clinical AP showed no visible signs of necrosis, early loss of pancreatic HMGB1 and increased systemic levels of HMGB1 and LDH were observed, indicating that this strong systemic inflammatory response is associated with little pancreatic necrosis. These results suggest that TLR-4-positive acinar cells respond to LPS by activating the inflammasome and producing pro- and anti-inflammatory mediators during the development of mild, sub-clinical AP, and that these effects are exacerbated by alcohol injury.  相似文献   

15.
大鼠急性坏死型胰腺炎病理特征评定方法的研究   总被引:24,自引:1,他引:23  
目的 以大鼠胆源性胰腺炎模型为对象 ,比较国外相关的评分标准 ,探讨这一实验模型合理、准确的病理学评定方法。方法  4 8只SD大鼠分善宁 (16只 )、对照 (2 1只 )和假手术 (11只 )不同处理组 ,胰胆管内注射牛磺胆酸钠诱发大鼠急性坏死型胰腺炎 ,参照Schmidt等普通病理学评分标准并加以改进 ,结合电镜超微结构观察等 ,评定不同标准的病理组织学评分的准确性。结果 急性坏死型胰腺炎大鼠解剖时见大量红色腹腔渗液 ,最多者达体重的 6 % ;光镜下见胰腺组织明显出血、腺细胞坏死 ;小叶破坏 ,结构紊乱 ,小叶间隔大量红细胞 ;肝脏、心脏、肺和肾脏也出现组织充血、出血等。不同处理组的 4项组织学评分标准显示Schmidt方法不能显示组间出血的严重程度 ,炎症、水肿、坏死 3项过于繁冗。以高倍镜下间隔红细胞数平均值和分级评分比较 ,组间出血显示显著性差异。结论  1)腹腔大量红色渗液、胰腺组织出血坏死、微血管内微血栓形成和胰外多器官损伤等是这一模型的特征 ;2 )在简化Schmidt评分标准中水肿、坏死、炎症等 3项和出血指标以及间隔红细胞数和分级统计的基础上 ,作者提出新的标准 ,以更为准确合理地评定大鼠急性坏死型胰腺炎的病理组织学特征。  相似文献   

16.
17.
Although oxygen free radicals (OFR) are considered to be one of the pathophysiological mechanisms involved in acute pancreatitis (AP), the contribution of acinar cells to their production is not well established. The aim of the present study was to determine the effect of N-acetylcysteine (NAC) in the course of AP induced by pancreatic duct obstruction (PDO) in rats, directly analysing by flow cytometry the quantity of OFR generated in acinar cells. NAC (50 mg/kg) was administered 1 h before and 1 h after PDO. Measurements by flow cytometry of OFR generated in acinar cells were taken at different PDO times over 24 h, using dihydrorhodamine-123 as fluorescent dye. Histological studies of pancreas and measurements of neutrophil infiltration in the pancreas, pancreatic glutathione (GSH), malondialdehyde (MDA) levels, plasma amylase activity and hemoconcentration were carried out in order to assess the severity of AP at different stages. NAC effectively blunted GSH depletion at early AP stages and prevented OFR generation found in acinar cells as a consequence of AP induced by PDO. This attenuation of the redox state impairment reduced cellular oxidative damage, as reflected by less severe pancreatic lesions, normal pancreatic MDA levels, as well as diminished neutrophil infiltration in pancreas. Hyperamylasemia and hemoconcentration following AP induction were ameliorated by NAC administration at early stages, when oxidative stress seems to be critical in the development of pancreatitis. In conclusion, NAC reinforces the antioxidant defences in acinar cells, preventing OFR generation therefore attenuating oxidative damage and subsequently reducing the severity of PDO-induced AP at early stages of the disease.  相似文献   

18.
Oxygen free radicals (OFR) are produced in the course of acute pancreatitis (AP). In addition to injurious oxidative effects, they are also involved in the regulation of cell growth. The aim of the present study was to examine the relationship between the effectiveness of N-acetyl-l-cysteine (NAC) to prevent the generation of OFR and the changes in the cell-cycle pattern of acinar cells in the course of AP induced in rats by pancreatic duct obstruction (PDO). NAC (50 mg/kg) was administered 1 h before and 1 h after PDO. Flow-cytometric measurement of OFR generation in acinar cells was carried out using dihydrorhodamine as fluorescent dye. Plasma amylase activity, pancreatic glutathione (GSH) content and TNF-alpha plasma levels were also measured. The distribution of acinar cells throughout the different cell-cycle phases was analysed at different AP stages by flow cytometry using propidium iodide staining. NAC administration reduced the depletion of pancreatic GSH content and prevented OFR generation in acinar cells of rats with PDO-induced acute pancreatitis. As a result, AP became less severe as reflected by the significant improvement of hyper-amylasaemia and maintenance of plasma TNF-alpha levels at values not significantly different from controls were found. NAC administration inhibited progression of cell-cycle phases, maintaining acinar cells in quiescent state at early PDO times. The protection from oxidative damage by NAC treatment during early AP, allows the pancreatic cell to enter S-phase actively at later stages, thereby allowing acinar cells to proliferate and preventing the pancreatic atrophy provoked by PDO-induced AP. The results provide evidence that OFR play a critical role in the progression of acinar cell-cycle phases. Prevention of OFR generation of acinar cells in rats with PDO-induced AP through NAC treatment, not only protects pancreas from oxidative damage but also promotes beneficial changes in the cell cycle progression which reduce the risk of pancreatic atrophy.  相似文献   

19.
目的:研究L-精氨酸和雨蛙素分别诱导SD大鼠急性胰腺炎(AP)模型的差异,为进一步研究急性胰腺炎提供可靠模型。方法:L-精氨酸采用3次腹腔注射,间隔1 h,雨蛙素采用7次腹腔注射,间隔1 h诱导急性胰腺炎模型。碘-淀粉比色法检测血清淀粉酶水平,血清脂肪酶测定试剂盒检测脂肪酶活性,胰腺组织切片观察组织的破坏情况,TUNEL法检测腺泡细胞凋亡。结果:①L-精氨酸诱导的大鼠模型血清淀粉酶和脂肪酶水平在诱导成功后6 h即显著升高,蛙皮素诱导的大鼠模型在12 h显著升高,与正常对照组比较均有统计学差异(P<0.05),提示急性胰腺炎建模成功。②L-精氨酸诱导的模型中胰腺组织结构破坏,有大片出血坏死灶、大量炎细胞浸润;而蛙皮素诱导的模型组织腺泡、间质水肿,炎性细胞浸润,少量散在出血坏死灶,血管变化常不明显,渗液清亮。结论:L-精氨酸和雨蛙素均能诱导SD大鼠急性胰腺炎模型,L-精氨酸诱导重症急性胰腺炎,雨蛙素诱导轻型急性胰腺炎,是研究急性胰腺炎的良好模型。  相似文献   

20.
Reactive oxygen species (ROS) have been implicated in the pathogenesis of acute pancreatitis (AP) for many years but experimental evidence is still limited. Uncoupling protein 2 (UCP2)-deficient mice are an accepted model of age-related oxidative stress. Here, we have analysed how UCP2 deficiency affects the severity of experimental AP in young and older mice (3 and 12 months old, respectively) triggered by up to 7 injections of the secretagogue cerulein (50 μg/kg body weight) at hourly intervals. Disease severity was assessed at time points from 3 hours to 7 days based on pancreatic histopathology, serum levels of alpha-amylase, intrapancreatic trypsin activation and levels of myeloperoxidase (MPO) in lung and pancreatic tissue. Furthermore, in vitro studies with pancreatic acini were performed. At an age of 3 months, UCP2-/- mice and wild-type (WT) C57BL/6 mice were virtually indistinguishable with respect to disease severity. In contrast, 12 months old UCP2-/- mice developed a more severe pancreatic damage than WT mice at late time points after the induction of AP (24 h and 7 days, respectively), suggesting retarded regeneration. Furthermore, a higher peak level of alpha-amylase activity and gradually increased MPO levels in pancreatic and lung tissue were observed in UCP2-/- mice. Interestingly, intrapancreatic trypsin activities (in vivo studies) and intraacinar trypsin and elastase activation in response to cerulein treatment (in vitro studies) were not enhanced but even diminished in the knockout strain. Finally, UCP2-/- mice displayed a diminished ratio of reduced and oxidized glutathione in serum but no increased ROS levels in pancreatic acini. Together, our data indicate an aggravating effect of UCP2 deficiency on the severity of experimental AP in older but not in young mice. We suggest that increased severity of AP in 12 months old UCP2-/- is caused by an imbalanced inflammatory response but is unrelated to acinar cell functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号