首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The ontogeny of the pituitary's responsiveness to synthetic rat corticotropin-releasing hormone (CRH) in the late prenatal and early postnatal periods of rats was studied by a superfusion system using whole pituitaries. A significant increase of immunoreactive beta-endorphin (IR-beta-Ep) secretion in response to 10(-10) M CRH but not to 10(-11) M CRH was observed in pituitaries from the 15th day of gestation, the earliest day that we tested, whereas 10(-11) M CRH stimulated IR-beta-Ep release from the pituitaries of 17.5-day-old fetuses. Dose-related IR-beta-Ep secretions induced by 10(-12) M to 10(-10) M CRH were observed in pituitaries of 19.5- and 21.5-day-old fetuses, and 1-, 3- and 9-day-old newborn pups. CRH stimulated not only IR-beta-Ep and IR-adrenocorticotropic hormone (ACTH) but also IR-alpha-melanocyte-stimulating hormone (IR-alpha-MSH) secretions from fetal pituitaries. The content of IR-CRH in the hypothalamic extract from 15-day-old fetus was 6.6 +/- 3.6 pg/hypothalamus (mean +/- S.E.M.) and it gradually increased to reach 212.7 +/- 20.3 pg/hypothalamus on the 21.5th day of gestation. However, the content of IR-CRH in the hypothalamus dramatically decreased just after birth and then rapidly increased again from the 5th day after birth. These data indicate that the responsiveness of corticotrophs to CRH is already present on the 15th day of gestation, when the content of IR-CRH in the hypothalamus is extremely low and that the amount of hypothalamic IR-CRH dramatically dropped for several days just after birth in rats.  相似文献   

2.
Human phosphoserine 31 corticotropin1-39. Isolation and characterization   总被引:2,自引:0,他引:2  
Two distinct forms of corticotropin1-39 (ACTH) were isolated and purified from an extract of three adult human pituitaries by reversed-phase chromatographic techniques. Structural studies indicated that the more polar form of ACTH was phosphorylated at serine residue 31. Approximately 30% of the ACTH was found in the phosphorylated form. A similar proportion of phosphorylated ACTH was observed in extracts of three pituitaries from human fetuses of 15, 17, and 20 weeks gestation. Phosphorylated and nonphosphorylated human ACTH1-39 were found to be steroidogenically equipotent using both an isolated rat adrenal cell bioassay and a cultured human fetal adrenal cell bioassay.  相似文献   

3.
Summary Monolayer cultures of trypsin-dispersed cells of the rat adenohypophysis were grown for 5 to 54 days. ACTH was localized by immunocytochemistry using an antiserum to synthetic ACTH1–28 prepared in rabbit and sheep anti-goat immunoglobulin coupled with peroxidase. ACTH content of the culture medium was measured by radioimmunoassay.Corticotrophs were found in the cultures and ACTH in the medium at each cultivation time. The corticotrophs retained their essential morphological characteristics. Immunological staining was found in the secretory granules, some tubular or saccular structures, parts of the rough endoplasmic reticulum, and the cytoplasmic matrix. Immature secretory granules in the Golgi apparatus as well as some Golgi elements showed different degrees of immunoreactivity. In agreement with the high ACTH content of the culture medium the number, size and shape of the secretory granules, the active Golgi apparatus, the high amount of extragranular ACTH as well as pictures suggesting granule extrusion claim for a high ACTH synthesis and transport (and low ACTH storage) in the cultured corticotrophs.  相似文献   

4.
Cultured cells from adult rat anterior pituitaries or intermediate lobes were treated with the proteinase inhibitor tripeptide aldehydes BOC-DPhe-Pro-Arg-H (Boc-fPRH) and DPhe-Pro-Arg-H (fPRH), ovine corticotropin-releasing factor (oCRF), and bromocriptine. One millimolar fPRH stimulated basal, and slightly enhanced oCRF-induced ACTH release by melanotrophs in short-term experiments. The basal release of alpha-MSH was also stimulated by the drug. In long-term experiments, fPRH elevated markedly both the release and the intracellular level of ACTH; BOC-fPRH caused an increased alpha-MSH release. Tritiated fPRH had no preference for POMC-producing cells and BOC-fPRH or fPRH were harmless to the cell morphology. In anterior pituitary cell cultures, fPRH diminished slightly basal and oCRF-induced ACTH release. Bromocriptine was ineffective on corticotrophs, however, in melanotrophs it inhibited ACTH release markedly with or without fPRH in the medium. The dissimilar responsiveness of the corticotrophs and melanotrophs to the peptide aldehydes may be interpreted in terms of their differing membrane receptors or intracellular mechanism of stimulus-secretion coupling.  相似文献   

5.
Levels of immunoreactive pro-opiomelanocortin (POMC) peptides (N- and C-terminal ACTH, N- and C-terminal LPH and α-MSH) have been measured in pituitary extracts from human fetuses of 12–22 weeks gestation. The levels of ACTH were 30–200 times higher than α-MSH in all fetuses studied. Sephadex G-75 and G-25 chromatography of 8 extracts showed peaks of 34 kilodaltons (K) POMC, 22K ACTH, β-LPH, γ-LPH, β-endorphin, approximately 8K ACTH, 1–39 ACTH, α-MSH and CLIP. The 8K and 22K forms of ACTH are both partly glycosylated.In vitro culture of pituitaries from 2 fetuses (22 and 26 weeks gestation) gave a detectable basal output of ACTH but not of α-MSH. Stimulation of these pituitary cells with human fetal and rat hypothalamic extracts and with synthetic ovine CRF-41 produced a significant increase in ACTH release, and either small or undetectable amounts of α-MSH.These results demonstrate the presence of POMC-related peptides in early gestation human fetal pituitaries and suggest that ACTH, and not α-MSH, is the major corticotrophic hormone at this stage of gestation.  相似文献   

6.
Summary Cultured cells from adult rat anterior pituitaries or intermediate lobes were treated with the proteinase inhibitor tripeptide aldehydes BOC-DPhe-Pro-Arg-H (Boc-tPRH) and DPhe-Pro-Arg-H (fPRH), ovine corticotropin-releasing factor (oCRF), and bromocriptine. One millimolar fPRH stimulated basal, and slightly enhanced oCRF-induced ACTH release by melanotrophs in short-term experiments. The basal release of alpha-MSH was also stimulated by the drug. In long-term experiments, fPRH elevated markedly both the release and the intracellular level of ACTH; BOC-fPRH caused an increased alpha-MSH release. Tritiated fPRH had no preference for POMC-producing cells and BOC-fPRH or fPRH were harmless to the cell morphology. In anterior pituitary cell cultures, fPRH diminished slightly basal and oCRF-induced ACTH release. Bromocriptine was ineffective on corticotrophs, however, in melanotrophs it inhibited ACTH release markedly with or without fPRH in the medium. The dissimilar responsiveness of the corticotrophs and melanotrophs to the peptide aldehydes may be interpreted in terms of their differing membrane receptors or intracellular mechanism of stimulus-secretion coupling.In honour of Prof. P. van Duijn  相似文献   

7.
Oncofetal aspects of ACTH and pro-opiomelanocortin (POMC)-derived peptides were studied immunohistochemically at the light and electron microscopic level in human fetal pituitary glands, pituitary adenomas, and small-cell carcinoma of the lung. ACTH, beta-endorphin, and gamma-MSH were localized in the same cells of both fetal and adult pituitary, as well as in the above-mentioned neoplastic tissues. However, alpha-MSH was observed only in the early fetal pituitary, its concentration decreasing with advancing gestational age. The adult pituitary contained only a few alpha-MSH-positive cells. By immunoelectron microscopy, ACTH in the adult pituitary was localized exclusively in the secretory granules. In fetal pituitary at 9 weeks' gestation, ACTH was localized in the perinuclear spaces (PNS), cisternae of rough endoplasmic reticulum (RER), Golgi saccules, and secretory granules. The staining pattern of ACTH in these organelles varied from cell to cell. In fetal pituitaries of greater gestational ages, ACTH was localized in secretory granules. The pituitary adenomas mimicked the staining characteristics of the adult pituitary, i.e., negative or only very occasional alpha-MSH staining and localization of ACTH in the secretory granules. The ectopic ACTH-producing tumors showed a staining pattern similar to that of the early fetal pituitary, i.e., positive staining for alpha-MSH and the presence of ACTH in PNS and cisternae of RER.  相似文献   

8.
Primary cell cultures were prepared from fetal, neonatal and adult rat pituitaries and evaluated for their ability to secrete growth hormone (GH) in response to growth hormone-releasing factor (GRF). Pituitary cells prepared from fetuses at days 19 and 21 of gestation, neonatal animals at the day of birth (day 0) or the following day (day 1) and peripubertal male rats showed full dose response curves to GRF with maximal GH release when stimulated with 1 X 10(-10) M rat GRF. At this concentration of GRF, the amount of GH released was not different from that elicited by activation of adenylate cyclase with 1 X 10(-5) M forskolin. In contradistinction, a preparation of cells from fetuses at day 18 of gestation did not show the same release of GH when challenged with 1 X 10(-10) M GRF and forskolin (0.057 +/- 0.001, compared to 0.076 +/- 0.003 micrograms/10(5) cells per 4.5 h), although the cells clearly responded to both secretagogues (basal levels of GH, 0.029 +/- 0.002 micrograms/10(5) cells per 4.5 h). While cells prepared from fetuses at day 21 of gestation or from animals after birth released 5-10% of their total cellular GH content, those prepared from 18- and 19-day fetuses released as much as 40% of their total GH suggesting there is a maturation of intracellular GH processing that occurs late in gestation. The results show that, in late pregnancy, the rat fetal pituitary is highly responsive to growth hormone-releasing factor and suggest that this peptide participates in regulating GH levels during the perinatal period.  相似文献   

9.
Summary Adenohypophysial primordia of rat embryos at 13 to 15 days gestation were cultured in Parker 199 synthetic medium for 2 to 11 days. At the end of the culture period their fine structure and the presence of immunoreactive trophic hormones using the peroxidase-labeled antibody technique were investigated. The degree of differentiation in the glands depends largely on the age of the embryos furnishing the explants. Cultured pituitaries explanted on the 13th day of gestation contain only ACTH-positive cells and about 15% of the cells are granular. The granules are 50–100 nm in diameter in some cells, while in other cells they range from 50 to 200 nm. In cultivated adenohypophysial primordia of embryos on the 15th day of intrauterine life ACTH, prolactin, LH and TSH cells are evident, but only the same two kinds of granular cells can be observed with the electron microscope. The extent of cytodifferentiation in the glands explanted on the 14th day of gestation is intermediate between the two other groups. The data suggest that the fetal rat pituitary has the capacity of self-differentiation but to a lesser extent than that of the in situ hypophysis.Dedicated to Professor W. Bargmann on the occasion of his 70th birthday  相似文献   

10.
The two fundamental parameters of corticotropin (ACTH) secretion are the number of secreting corticotropes and the amount of ACTH secreted by each cell. We have measured these parameters in rat corticotropes in response to increasing concentrations of corticotropin-releasing factor (CRF) or arginine vasopressin (AVP). Increasing concentrations of AVP stimulated more corticotropes to secrete, while the amount of ACTH each cell secreted remained relatively fixed (nongraded secretory response). Conversely, increasing concentrations of CRF stimulated more ACTH secretion per cell (graded secretory response), while the number of secretory cells remained relatively constant. When viewed from the perspective of a single corticotrope, it was clear that CRF and AVP induced completely distinct specific responses. We have previously shown, and provide further evidence here, that secretory responses to CRF or AVP occur in the same cell. It is therefore apparent that a single corticotrope is able to generate either a graded, or a nongraded secretory response. We have also considered the potential intracellular changes that must direct graded or nongraded secretion. It is generally accepted that CRF stimulates activation of adenylate cyclase, whereas AVP activates phosphoinositidase in pituitary corticotropes. Our findings, and others surveyed here, suggest that the activation of adenylate cyclase results in graded secretion, while the activation of phosphoinositidase induces the nongraded secretion. Graded or nongraded secretion may therefore be linked to specific second messengers. It is hypothesized that the inositol 1,4,5-trisphosphate-mediated release of an intracellular Ca2+ store constitutes a mechanism whereby phosphoinositidase-coupled hormones set in motion the nongraded secretory response. These findings suggest novel functions for individual second messengers.  相似文献   

11.
Adenohypophysial primordia were isolated in rat fetuses from day 12.5 to day 15.5 of gestation. The organ culture employed for maintenance of the primordia was made up according to Watanabe et al. (1973). The fixation of primordia in Bouin Hollande's solution was performed after 9, 8, 7 or 6 days of culture when the normal duration of pregnancy was achieved. The cultivated primordia were immunologically studied using different antisera: anti-alpha(17-39)ACTH, anti-beta(1-24)ACTH, anti-beta-LPH, anti-alpha and anti-beta-endorphins, with immunoperoxidase or immunofluorescence techniques, including control experiments of the specificity of the antisera. A similar study was performed on pituitaries removed from normal rat fetuses from day 16.5 of gestation and each day up to birth, and fixated immediately. In vivo the first cells reacting with all the antisera used in this study were observed on day 16.5 of gestation; their number increased during gestation (Fig. 1 A, B and C). Immunoreactive cells with the different antisera could be detected in primordia isolated on day 12.5 of gestation after 9 days of culture. Numerous groups of cells were observed in primordia of older fetuses (Fig. 2 A and B). These data indicate that the corticotropic cells in rat fetuses could start to be differentiated without stimuli from the hypothalamus since primordia were isolated before the appearance of this cell type in normal rat fetuses and before the differentiation of the hypothalamus. The presence of ACTH and other peptides such as beta-LPH or beta-endorphin would support the hypothesis of a common precursor in this cell type existing early in gestation. Similar results were obtained in human fetuses.  相似文献   

12.
The pituitaries of transgenic mice that express a metallothionein-somatostatin fusion gene contain high concentrations of somatostatin-14 exclusively in the gonadotrophic cells. The purpose of this study was to determine whether somatostatin expressed from the foreign fusion gene enters the normal secretory pathway within these cells. Immuno-gold labeling of serial thin sections localized somatostatin to the secretory granules of gonadotropin-producing cells. The gonadotroph-specific hypophysiotropic factor, luteinizing hormone-releasing hormone caused a dose-dependent secretion of somatostatin when applied to primary pituitary cultures from these mice. Growth hormone-releasing hormone, thyrotropin-releasing hormone, corticotropin releasing factor, and dopamine did not affect somatostatin secretion. These experiments demonstrate that a neurosecretory peptide encoded by a foreign gene can enter the regulated secretory pathway of pituitary cells from transgenic mice.  相似文献   

13.
Radioimmunoassay was used to determine ACTH secretion by cultured hypophyses of human fetuses from the 6th to the 30th week of intrauterine life and their responsiveness to hypothalamic extracts obtained from adult animals. CRF-like activity in the human hypothalamus was measured within the 6th to the 32nd week of prenatal development from changes in ACTH release by cultured cells of the adult rat hypophysis. It was established that starting from weeks 6-7 of embryogenesis, the human fetal hypophysis is capable of synthesizing and secreting immuno-reactive ACTH in vitro. The human fetus hypothalamus of the first trimester of gestation contained no CRF-like substance. The fetus hypothalamus of the second and third trimesters of pregnancy manifested a considerable amount of CRF-like substance. It is suggested that CRF appears at the end of the first trimester of pregnancy.  相似文献   

14.
Six groups of adrenal glands from 17-day fetal rats were explanted to organ culture for 2 days. In one group, adrenal gland was cultured alone, and in the remaining five groups adrenal gland was cultured with pituitaries from fetuses ranging in age from 14 to 18 days. In each of the groups, half of the cultures had corticotropin-releasing factor (CRF) added to the medium. A histometric parameter utilized the size of adrenocortical cells as an indicator of sensitivity of the pituitary-adrenal system. When 17-day adrenal gland was cultured alone, addition of CRF did not cause any enlargement of cortical cells. When the adrenal gland was cultured with two 14-day pituitaries, cortical cells were enlarged. Addition of CRF to this culture induced no further change. With two 15-day pituitaries in the presence of CRF, cortical cells were slightly larger than those in the absence of CRF. With 16- to 18-day pituitaries, a marked hypertrophy of cortical cells was induced, and the addition of CRF caused further acceleration in their enlargement. These results suggest that, in organ culture, 14-day pituitary can release some adrenocorticotropic hormone (ACTH) with or without additional CRF. Older pituitaries (16- to 18-day) can apparently release an amount of ACTH in the presence of CRF that is greater than their own spontaneous ACTH secretion.  相似文献   

15.
A comparative study of adrenal morphology between normal fetuses and those with anencephaly or congenital adrenal hyperplasia (CAH) was performed in order to examine the hypothesis that fetal adrenal mass and structure are adrenocorticotrophin (ACTH)-dependent throughout gestation. Combined adrenal weight in 102 normal fetuses was used to establish a reference range for the gestational ages of 15-27 weeks. During this period, mean adrenal weight showed a 6-fold linear increase. In 38 anencephalic fetuses of similar gestation age, adrenal weight was below the normal range and did not show a rise. Three fetuses with CAH (18, 22 and 30 weeks gestation) had adrenal weights considerably above the normal range. Adrenal cortical thickness was significantly increased in CAH fetuses, largely as a consequence of cell hypertrophy, whereas decreased cortical thickness in the anencephalic group represented cellular hypoplasia. Conspicuous secretory granules in the cytoplasm was the electron-micrographic feature of the adrenal gland in the 22-week fetus with CAH. These observations are consistent with close dependency of fetal adrenal growth and development upon fetal pituitary function from an early age, mediated primarily through ACTH.  相似文献   

16.
Monolayer cultures of anterior pituitary cells from male or female pigs of 60, 80, 105 days of fetal life or of 60, 160 and 250 days of post-natal life were prepared and treated with LHRH (1 pM to 10 nM). Dose-related increases of LH were first seen at 80 days of gestation in both sexes, while only female fetuses responded to maximal LHRH at 60 days. Basal and stimulated LH release doubled in cultures from 105-day-old fetuses when compared with those at 80 days. Compared to late fetal stages LH release was 20- to 30-fold higher in cell cultures from 60-day-old (post-natal) donors without further change during the post-natal period. In all pre- and post-natal age groups basal and maximal LH release of pituitary cells from males was lower than that of females. FSH stimulation started in male and female cells at 80 days of gestation only at LHRH concentrations exceeding or equal to 0.1 nM. By 105 days FSH secretion was dose-related and pituitary cells of females responded with higher FSH values than did those of males. In general, post-natal cells released much higher amounts of FSH than did prenatal cells. Basal and maximal release of FSH decreased during post-natal development in both sexes. Basal as well as maximal FSH release of cultures from female donors was higher than that found in cultures from male donors. Determination of total LH and FSH content in fetal pituitary cell cultures indicated that the developmental increase in gonadotrophin release potential is a function of the total gonadotrophin content in vitro. We conclude that (1) the in-vitro release of gonadotrophins to LHRH is dose-, age- and sex-dependent; (2) in the female fetal pig LH responsiveness develops earlier than FSH responsiveness; (3) apparently, these maturational changes mainly reflect alterations in pituitary gonadotrophin content; and (4) there is no simple relationship between in-vitro release and circulating gonadotrophins.  相似文献   

17.
Although it has been recognized for over a decade that hypothalamic-pituitary disconnection (HPD) in fetal sheep prevents the late gestation rise in plasma cortisol concentrations, the underlying mechanisms remain unclear. We hypothesized that reductions in adrenal responsiveness and ACTH receptor (ACTH-R) expression may be mediating factors. HPD or sham surgery was performed at 120 days of gestation, and catheters were placed for blood sampling. At approximately 138 days of gestation, fetuses were killed, and adrenals were removed for cell culture and analyses of ACTH-R mRNA and protein. After 48 h, adrenocortical cells were stimulated with ACTH for 2 h, and the medium was collected for cortisol measurement. The same cells were incubated overnight with medium or medium containing ACTH or forskolin (FSK), followed by ACTH stimulation (as above) and cortisol and cellular ACTH-R mRNA analyses. HPD prevented the late gestation increase in plasma cortisol and bioactive ACTH and reduced adrenal ACTH-R mRNA and protein levels by over 35%. HPD cells secreted significantly less cortisol than sham cells (3.2 +/- 1.2 vs. 47.3 +/- 11.1 ng.ml(-1).2 h(-1)) after the initial ACTH stimulation. Overnight incubation of HPD cells with ACTH or FSK restored cortisol responses to acute stimulation to levels seen in sham cells initially. ACTH-R mRNA levels in cells isolated from HPD fetuses were decreased by over 60%, whereas overnight incubation with ACTH or FSK increased levels by approximately twofold. Our findings indicate that the absence of the cortisol surge in HPD fetuses is a consequence, at least in part, of decreased ACTH-R expression and adrenal responsiveness.  相似文献   

18.
Anterior pituitaries from normal rats were enzymatically dispersed and placed into monolayer cell culture in order to determine if and how angiotensin II (Ang II) mediates the in vitro release of ACTH and other pituitary hormones. Ang II stimulated ACTH secretion in a time dependent fashion. This release occurred at physiologic concentrations of Ang II and was linearly correlated with the log dose of Ang II. One hour pretreatment of the cells with cycloheximide, a inhibitor of protein synthesis, significantly decreased the cellular ACTH secretory response to Ang II. Ang 11 did not mediate the release of LH nor of ADH, a proposed stimulator of ACTH secretion.  相似文献   

19.
B Gumbiner  R B Kelly 《Cell》1982,28(1):51-59
The pituitary cell line, AtT-20, synthesizes adrenocorticotropic hormone (ACTH) as a glycoprotein precursor that is cleaved into mature hormones during packaging into secretory granules. The cells also produce an endogenous leukemia virus (MuLV) that is glycosylated after translation similar to the glycosylation of the ACTH precursor. Our evidence suggests that the envelope glycoprotein and some precursor ACTH get to the cell surface in a vesicle different from the mature ACTH secretory granule. Viral glycoproteins and ACTH precursor are released from the cells much sooner after synthesis than mature ACTH. Isolated secretory granules do not contain significant amounts of the envelope glycoprotein or ACTH precursor. Exposing cells to 8Br-cAMP stimulates release of mature ACTH four to five fold, but has little effect on the release of the ACTH precursor or the viral glycoproteins. We propose that the viral glycoproteins and some of the ACTH precursor are transported by a constitutive pathway, while mature ACTH is stored in secretory granules where its release is enhanced by stimulation.  相似文献   

20.
Secondary stressors in long-term hypoxic (LTH) fetal sheep lead to altered function of the hypothalamic-pituitary-adrenal axis. Although ACTH is considered the primary mediator of glucocorticoid production in fetal sheep, proopiomelanocortin (POMC) and 22-kDa pro-ACTH (22-kDa ACTH) have been implicated in the regulation of cortisol production in the ovine fetus. This study was designed to determine whether POMC expression and processing are altered after LTH. Pregnant ewes were maintained at high altitude (3,820 m) from day 30 of gestation to near term, when the animals were transported to the laboratory. Reduced Po2 was maintained by nitrogen infusion through a maternal tracheal catheter. On days 139-141, fetal anterior pituitaries were collected from normoxic control and LTH fetuses. We measured POMC and corticotrophin-releasing factor type 1 receptor (CRF1-R) mRNA using quantitative real-time PCR, and we used Western blot analysis for quantitation of ACTH, ACTH precursor, and CRF1-R proteins. We measured plasma ACTH1-39 using a two-site immunoradiometric assay specific for ACTH1-39. Plasma ACTH precursors were measured by ELISA. Anterior pituitary POMC mRNA levels were not different between groups, whereas CRF1-R levels were significantly higher in the LTH anterior pituitaries compared with control (P<0.05). In contrast, protein levels of POMC, CRF1-R, 22-kDa ACTH, and ACTH1-39 were significantly lower in the LTH group. Plasma concentrations of both ACTH precursors and ACTH1-39 were significantly elevated in LTH fetuses, whereas the ratio of plasma precursors to ACTH was significantly lower. We conclude that LTH results in enhanced POMC processing and/or release to ACTH and increased hypothalamic drive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号