首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Gibberellins A1 and A3 are the major physiologically active gibberellins (GAs) present in young fruit of pea (Pisum sativum L.). The relative importance of these GAs in controlling fruit growth and their biosynthetic origins were investigated in cv. Alaska. In addition, the non-13-hydroxylated active GAs, GA4 and GA7, were identified for the first time in young seeds harvested 4 d after anthesis, although they are minor components and are not expected to play major physiological roles. The GA1 content is maximal in seeds and pods at 6 d after anthesis, the time of highest growth-rate of the pod (Garcia-Martinez et al. 1991, Planta 184: 53–60), whereas gibberellic acid (GA3), which is present at high levels in seeds 4–8 d after anthesis, has very low abundance in pods. Gibberellins A19, A20 and A29 are most concentrated in seeds at, or shortly after, anthesis and their abundance declines rapidly with development, concomitant with the sharp increase in GA1 and GA3 content. Application of GA1 or GA3 to the leaf subtending an emasculated flower stimulated parthenocarpic fruit development. Measurement of the GA content of the pods at 4 d after anthesis indicated that only 0.002–0.5% of the applied GA was transported to the fruit, depending on dose. There was a linear relationship between GA1 content and pod weight up to about 2 ng · (g FW)−1, whereas no such correlation existed for GA3 content. The concentration of endogenous GA1 in pods from pollinated ovaries is just sufficient to give the maximum growth response. It is concluded that GA1, but not GA3, controls pod growth in pea; GA3 may be involved in early seed development. The distribution of GAs within the seeds at 4 d post anthesis was also investigated. Most of the GA1, GA8, GA19, GA20 and GA29 was present in the testa, whereas GA3 was distributed equally between testa and endosperm and GA4 was localised mainly in the endosperm. Of the GAs analysed, only GA3 and GA20 were detected in the embryo. Metabolism experiments with intact tissues and cell-free fractions indicated compartmentation of GA biosynthesis within the seed. Using 14C-labelled GA12, GA9, 2,3-didehydroGA9 and GA20 as substrates, the testa was shown to contain 13-hydroxylase and 20-oxidase activities, the endosperm, 3β-hydroxylase and 20-oxidase activities. Both tissues also produced 16,17-dihydrodiols. However, GA1 and GA3 were not obtained as products and it is unlikely that they are formed via the early 13-hydroxylation pathway. [14C]gibberellin A12, applied to the inside surface of pods in situ, was metabolised to GA19, GA20, GA29, GA29-catabolite, GA81 and GA97, but GA1 was not detected. Gibberellin A20 was metabolised by this tissue to GA29 and GA29-catabolite. Received: 23 July 1996 / Accepted: 2 September 1996  相似文献   

2.
3.
The influence of the Na and Le genes in peas on gibberellin (GA) levels and metabolism were examined by gas chromatographic-mass spectrometric analysis of extracts from a range of stem-length genotypes fed with [13C, 3H]GA20. The substrate was metabolised to [13C, 3H]GA1, [13C, 3H]GA8 and [13C, 3H]GA29 in the immature, expanding apical tissue of all genotypes carrying Le. In contrast, [13C, 3H]GA29 and, in one line, [13C, 3H]GA29-catabolite, were the only products detected in plants homozygous for the le gene. These results confirm that the Le gene in peas controls the 3-hydroxylation of GA20 to GA1. Qualitatively the same results were obtained irrespective of the genotype at the Na locus. In all Na lines the [13C, 3H]GA20 metabolites were considerably diluted by endogenous [12C]GAs, implying that the metabolism of [13C, 3H]GA20 mirrored that of endogenous [12C]GA20. In contrast, the [13C, 3H]GA20 metabolites in na lines showed no dilution with [12C]GAs, confirming that the na mutation prevents the production of C19-GAs. Estimates of the levels of endogenous GAs in the apical tissues of Na lines, made from the 12C:13C isotope ratios and the radioactivity recovered in respective metabolites, varied between 7 and 40 ng of each GA per plant in the tissue expanded during the 5 d between treatment with [13C, 3H]GA20 and extraction. No [12C]GA1 and only traces of [12C]GA8 (in one line) were detected in the two Na le lines examined. These results are discussed in relation to recent observations on dwarfism in rice and maize.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

4.
The relationship between shoot growth and [3H]gibberellin A20 (GA20) metabolism was investigated in the GA-deficient genotype of peas, na Le. [17-13C, 3H2]gibberellin A20 was applied to the shoot apex and its metabolic fate examined by gas chromatographic-mass spectrometric analysis of extracts of the shoot and root tissues. As reported before, [13C, 3H2]GA1, [13C, 3H2]GA8 and [13C, 3H2]GA29 constituted the major metabolites of [13C, 3H2]GA20 present in the shoot. None of these GAs showed any dilution by endogenous 12C-material. [13C, 3H2]GA29-catabolite was also a prominent metabolite in the shoot tissue but showed pronounced isotope dilution probably due to carry-over of endogenous [12C]GA29-catabolite from the mature seed. In marked contrast to the shoot tissue, the two major metabolites present in the roots were identified as [13C, 3H2]GA8-catabolite and [13C, 3H2]GA29-catabolite. Both of these compounds showed strong dilution by endogenous 12C-material. Only low levels of [13C, 3H2]GA1, [13C, 3H2]GA8, [13C, 3H2]GA20 and [13C, 3H2]GA29 accumulated in the roots. It is suggested that compartmentation of GA-catabolism may occur in the root tissue in an analogous manner to that shown in the testa of developing seeds. Changes in the levels of [1,3-3H2]GA20 metabolites over 10 d following application of the substrate to the shoot apex of genotype na Le confirmed the accumulation of [3H]GA-catabolites in the root tissues. No evidence was obtained for catabolic loss of [3H]GA20 by complete oxidation or conversion to a methanol-inextractable form. The results indicate that the root system may play an important role in the regulation of biologically active GA levels in the developing shoot of Na genotypes of peas.Abbreviations GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography  相似文献   

5.
V. M. Sponsel 《Planta》1986,168(1):119-129
The stem growth in darkness or in continuous red light of two pea cultivars, Alaska (Le Le, tall) and Progress No. 9 (le le, dwarf), was measured for 13 d. The lengths of the first three internodes in dark-grown seedlings of the two cultivars were similar, substantiating previous literature reports that Progress No. 9 has a tall phenotype in the dark. The biological activity of gibberellin A20 (GA20), which is normally inactive in le le geno-types, was compared in darkness and in red light. Alaska seedlings, regardless of growing conditions, responded to GA20. Dark-grown seedlings of Progress No. 9 also responded to GA20, although red-light-grown seedlings did not. Gibberellin A1 was active in both cultivars, in both darkness and red light. The metabolism of [13C3H]GA20 has also been studied. In dark-grown shoots of Alaska and Progress No. 9 [13C3H]GA20 is converted to [13C3H]GA1, [13C3H]GA8, [13C]GA29, its 2-epimer, and [13C3H]GA29-catabolite. [13C3H] Gibberellin A1 was a minor product which appeared to be rapidly turned over, so that in some feeds only its metabolite, [13C3H]GA8, was detected. However results do indicate that the tall growth habit of Progress No. 9 in the dark, and its ability to respond to GA20 in the dark may be related to its capacity to 3-hydroxylate GA20 to give GA1. In red light the overall metabolism of [13C3H]GA20 was reduced in both cultivars. There is some evidence that 3-hydroxylation of [13C3H]GA20 can occur in red light-grown Alaska seedlings, but no 3-hydroxylated metabolites of [13C3H]GA20 were observed in red light-grown Progress. Thus the dwarf habit of Progress No. 9 in red light and its inability to respond to GA20 may be related, as in other dwarf genotypes, to its inability to 3-hydroxylate GA20 to GA1. However identification and quantification of native GAs in both cultivars showed that red-light-grown Progress does contain native GA1. Thus the inability of red light-grown Progress No. 9 seedlings to respond to, and to 3-hydroxylate, applied GA20 may be due to an effect of red light on uptake and compartmentation of GAs.Abbreviations AMO-1618 2-isopropyl-4-(trimethylammonium chloride)-5-methylphenyl piperidine-1-carboxylate - cv. cultivar - GC-MS gas chromatography-mass spectrometry - GA(n) gibberellin A(n) - HPLC high-pressure liquid chromatography  相似文献   

6.
The gibberellin (GA) content of barley (Hordeum vulgare L.) cv. Triumph was analysed by full scan gas chromatography-mass spectrometry. Developing grain contained several di-, tri-, and tetra-hydroxylated GAs, with the most abundant ones being hydroxylated at C-2, C-3, C-12β, and/or C-18. In contrast, the only GAs to be detected in shoots of 9-day old dark- and light-grown seedlings of Triumph were 13-hydroxylated C19-GAs, namely GA1, GA8, GA20, and GA29, (all of which are components of the early 13-hydroxylation GA biosynthetic pathway) and GA3. Feeds of [13C.3H2GA20, confirmed that GA20 is a precursor of GA1, GA8, and GA29 in barley shoots. From these results it is suggested that stem growth of barley, in common with that of several other mono- and dicotyledons, is controlled by GA,. Homozygous gal and gal lines were obtained after backcrossing to Triumph. These were then compared to Triumph with respect to their GA content and response to applied GAs and GA precursors. Shoots of the homozygous gal gal plants contained ca 6-fold less GA1, than Triumph. These plants responded to all ent-kaurenoids and 13-hydroxylated C20- and C19-GAs tested. It is concluded that the gal locus impairs the GA biosynthetic pathway prior to ent-kaurene, most probably at ent-kaurene synthetase. In contrast, shoots of homozygous gal gal line contained ca 10-fold higher levels of GA, than Triumph, but failed to respond to applied GA, or GA3. The gal locus therefore confers insensitivity to both exogenous and endogenous GAs, possibly by perturbing the reception or transduction of the GA1 signal.  相似文献   

7.
Genetic regulation of gibberellin deactivation in Pisum   总被引:2,自引:0,他引:2  
The regulation of gibberellin (GA) deactivation was examined using the sin (slender) mutation in the garden pea (Pisum sativum L.). This mutation blocks the deactivation of GA20, the precursor of the bioactive GA1. Firstly, crosses were made to combine sin with the GA biosynthesis mutations na, lhi and le-3. The combination sin na produced a novel phenotype, with long (‘slender’) basal internodes and extremely short (‘nana’) upper internodes. In contrast, the double mutant sin lhi was phenotypically dwarf. The mutation sin causes an accumulation of GA20 in maturing seeds, and this was unaffected by na, since the na mutation is not expressed in seeds. In contrast, lhi seeds did not accumulate GA20, since lhi imposes an early block on GA biosynthesis. Secondly, the effects of sin on several steps in GA deactivation were investigated. In maturing seeds, the mutation sin blocks two steps in GA20 metabolism, namely, GA20 to GA29, and GA29 to GA29-catabolite. In the vegetative plant, on the other hand, sin blocked the step GA20 to GA29, but not GA29 to GA29-catabolite; the steps GA20 to GA81 and GA20 to GA1 were also not impaired in this mutant. It is clear that the effects of sin, like those of na, are strongly organ-specific. The presence of separate enzymes for the steps GA20 to GA29 and GA29 to GA29-catabolite was suggested by the observation that GA8 inhibited the latter step, but not the former, and by the inability of GA20 and GA29 to inhibit each other's metabolism. It is suggested that the Sin gene may be a regulatory gene controlling the expression of two structural genes involved in GA deactivation.  相似文献   

8.
Gibberellins (GAs) A17, A19, A20, A29, A44, 2OH-GA44 (tentative) and GA29-catabolite were identified in 21-day-old seeds of Pisum sativum cv. Alaska (tall). These GAs are qualitatively similar to those in the dwarf cultivar Progress No. 9 with the exception of GA19 which does not accumulate in Progress seeds. There was no evidence for the presence of 3-hydroxylated GAs in 21 day-old Alaska seeds. Dark-grown shoots of the cultivar Alaska contein GA1, GA8, GA20, GA29, GA8-catabolite and GA29-catabolite. Dark-grown shoots of the cultivar Progress No.9 contain GA8, GA20, GA29 and GA29-catabolite, and the presence of GA1 was strongly indicated. Quantitation using GAs labelled with stable isotope showed the level of GA1 in dark-grown shoots of the two cultivars to be almost identical, whilst the levels of GA20, GA29 and GA29-catabolite were significantly lower in Alaska than in Progress No. 9. The levels of these GAs in dark-grown shoots were 102- to 103-fold less than the levels in developing seeds. The 2-epimer of GA29 is present in dark-grown-shoot extracts of both cultivars and is not thought to be an artefact.Abbreviations cv cultivar - GAn gibberellin An - GC gas chromatography - GC-MS combined gas chromatographymass spectrometry - HPLC high-pressure liquid chromatography - KRI Kovats retention index - MeTMSi methyl ester trimethylsilyl ether  相似文献   

9.
Tritium-labeled gibberellin A20 ([3H]GA20) was applied via the pedicel to immature pods and seeds of dwarf peas and three harvests were made at days 5, 10, and 23 (mature) after application. Of the five metabolites of [3H]GA20, the three in highest yield were GA29, an α,β-unsaturated ketone, and a compound (B), whose structure was only tentatively assigned. The metabolic sequence GA20 → GA29 → compound B → the ketone was indicated. The amount of [3H]GA29 in both seeds and pods was highest at day 5 and declined to its lowest level at maturity. The amount of the [3H]ketone in the seed increased with time to its highest level at maturity. It is suggested that compound B and the ketone represent the major pathway of catabolism of GA29, a 2β-hydroxylated GA of low biological activity, and that the ketone is not metabolized, or only slowly metabolized, during seed maturation.  相似文献   

10.
Gibberellins A1, A8, A20 and A29 were identified by capillary gas chromatography-mass spectrometry in the pods and seeds from 5-d-old pollinated ovaries of pea (Pisum sativum cv. Alaska). These gibberellins were also identified in 4-d-old non-developing, parthenocarpic and pollinated ovaries. The level of gibberellin A1 within these ovary types was correlated with pod size. Gibberellin A1, applied to emasculated ovaries cultured in vitro, was three to five times more active than gibberellin A20. Using pollinated ovary explants cultured in vitro, the effects of inhibitors of gibberellin biosynthesis on pod growth and seed development were examined. The inhibitors retarded pod growth during the first 7 d after anthesis, and this inhibition was reversed by simultaneous application of gibberellin A3. In contrast, the inhibitors, when supplied to 4-d-old pollinated ovaries for 16 d, had little effect on seed fresh weight although they reduced the levels of endogenous gibberellins A20 and A29 in the enlarging seeds to almost zero. Paclobutrazol, which was one of the inhibitors used, is xylem-mobile and it efficiently reduced the level of seed gibberellins without being taken up into the seed. In intact fruits the pod may therefore be a source of precursors for gibberellin biosynthesis in the seed. Overall, the results indicate that gibberellin A1, present in parthenocarpic and pollinated fruits early in development, regulates pod growth. In contrast the high levels of gibberellins A20 and A29, which accumulate during seed enlargement, appear to be unnecessary for normal seed development or for subsequent germination.Abbreviations GA(a) gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - PFK perfluorokerosene - PVP polyvinylpyrrolidone  相似文献   

11.
The endogenous gibberellins (GAs) from shoots of the GA-insensitive mutant,gai, ofArabidopsis thaliana were analyzed and compared with the GAs from the Landsberg erecta (Ler) line. Twenty GAs were identified in Ler plants by full-scan gas chromatography-mass spectrometry (GC-MS) and Kovats retention indices (KRI's). These GAs are members of the early-13-hydroxylation pathway (GA53, GA44, GA19, GA17, GA20, GA1, GA29, and GA8), the non-3,13-hydroxylation pathway (GA12, GA15, GA24, GA25, GA9, and GA51), and the early-3-hydroxylation pathway (GA37, GA27, GA36, GA13, GA4, and GA34). The same GAs, except GA53, GA44, GA37, and GA29 were detected in thegai mutant by the same methods. In addition, extracts fromgai plants contained GA41 and GA71. Both lines also contained several unknown GAs. In Ler plants these were mainly hydroxy-GA12 derivatives, whereas in thegai mutant hydroxy-GA24, hydroxy-GA25, and hydroxy-GA9 compounds were detected. Quantification of seven GAs by GC-selected ion monitoring (SIM), using internal standards, and comparisons of the ion intensities in the SIM chromatograms of the other thirteen GAs, demonstrated that thegai mutant had reduced levels of all C20-dicarboxylic acids (GA53, GA44, GA19, GA12, GA15, GA24, GA37, GA27, and GA36). In contrast,gai plants had increased levels of C20-tricarboxylic acid GAs (GA17, GA25, and GA41) and of all C19-GAs (GA20, GA1, GA8, GA9, GA51, GA4, GA34, and GA71) except GA29. The 3β-hydroxylated GAs, GA1 and GA4, and their respective 2β-hydroxylated derivatives, GA8 and GA34, were the most abundant GAs found in shoots of thegai mutant. Thus, thegai mutation inArabidopsis results in a phenotype that resembles GA-deficient mutants, is insensitive to both applied and endogenous GAs, and contains low levels of C20-dicarboxylic acid GAs and high levels of C19-GAs. This indicates that theGAI gene controls a step beyond the synthesis of an active GA. Thegai mutant is presumably a GA-receptor mutant or a mutant with a block in the transduction pathway between the receptor and stem elongation. We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA for [13C]GA8, and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility (grant No. DRR00480), for advice with mass spectrometry. This work was supported by a fellowship from the Spanish Ministry of Agriculture (I.N.I.A.) to M.T., by the U.S. Department of Energy under Contract DE-ACO2-76ERO-1338, and by U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

12.
Spray  Clive  Phinney  Bernard O.  Gaskin  Paul  Gilmour  Sarah J.  MacMillan  Jake 《Planta》1984,160(5):464-468
[13C, 3H]Gibberellin A20 (GA20) has been fed to seedlings of normal (tall) and dwarf-5 and dwarf-1 mutants of maize (Zea mays L.). The metabolites from these feeds were identified by combined gas chromatography-mass spectrometry. [13C, 3H]Gibberellin A20 was metabolized to [13C, 3H]GA29-catabolite and [13C, 3H]GA1 by the normal, and to [13C, 3H]GA29 and [13C, 3H]GA1 by the dwarf-5 mutant. In the dwarf-1 mutant, [13C, 3H]GA20 was metabolized to [13C, 3H]GA29 and [13C, 3H]GA29-catabolite; no evidence was found for the metabolism of [13C, 3H]GA20 to [13C, 3H]GA1. [13C, 3H]Gibberellin A8 was not found in any of the feeds. In all feeds no dilution of 13C in recovered [13C, 3H]GA20 was observed. Also in the dwarf-5 mutant, the [13C]label in the metabolites was apparently undiluted by endogenous [13C]GAs. However, dilution of the [13C]label in metabolites from [13C, 3H]GA20 was observed in normal and dwarf-1 seedlings. The results from the feeding studies provide evidence that the dwarf-1 mutation of maize blocks the conversion of GA20 to GA1.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - RP reverse phase  相似文献   

13.
In addition to the previously-reported gibberellins: GA1; GA8, GA20 and GA29 (García-Martínez et al., 1987, Planta 170, 130–137), GA3 and GA19 were identified by combined gas chromatography-mass spectrometry in pods and ovules of 4-d-old pollinated pea (Pisum sativum cv. Alaska) ovaries. Pods contained additionally GA17, GA81 (2-hydroxy GA20) and GA29-catabolite. The concentrations of GA1, GA3, GA8, GA19, GA20 and GA29 were higher in the ovules than in the pod, although, with the exception of GA3, the total content of these GAs in the pod exceeded that in the seeds. About 80% of the GA3 content of the ovary was present in the seeds. The concentrations of GA19 and GA20 in pollinated ovaries remained fairly constant for the first 12 ds after an thesis, after which they increased sharply. In contrast, GA1 and GA3 concentrations were maximal at 7 d and 4–6 d, respectively, after anthesis, at about the time of maximum pod growth rate, and declined thereafter. Emasculated ovaries at anthesis contained GA8, GA19 and GA20 at concentrations comparable with pollinated fruit, but they decreased rapidly. Gibberellins a1 and A3 were present in only trace amounts in emasculated ovaries at any stage. Parthenocarpic fruit, produced by decapitating plants immediately above an emasculated flower, or by treating such flowers with 2,4-dichlorophenoxyacetic acid or GA7, contained GA19 and GA20 at similar concentrations to seeded fruit, but very low amounts of GA1 and GA3 Thus, it appears that the presence of fertilised ovules is necessary for the synthesis of these last two GAs. Mature leaves and leaf diffusates contained GA1, GA8, GA19 and GA20 as determined by combined gas chromatography-mass spectrometry using selected ion monitoring. This provides further evidence that vegetative tissues are a possible alternative source of GAs for fruit-set, particularly in decapitated plants.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - FW fresh weight - GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - KRI Kovats retention index - m/z mass to charge ratio We thank Mr M.J. Lewis for qualitative GC-MS analyses and Ms M.V. Cuthbert (LARS), R. Martinez Pardo and T. Sabater (IATA) for technical assistance. We are also grateful to Professor B.O. Phinney, University of California, Los Angeles, for gifts of [17-13C]GA8 and -GA29 and to Mr Paul Gaskin, University of Bristol, for the mass spectrum of GA29-catabolite and for a sample of GA81 The work in Spain was supported by Dirección General de Investigación Cientifica y Técnica (grant PB87-0402 to J.L.G.-M.). We also acknowledge the British Council and Ministerio de Educacion y Ciencia for travel grants through Accion Integrada Hispano-Britanica 56/142 (J.L.G.-M. and P.H.).  相似文献   

14.
The native gibberellin A5 (GA5), as [1-3H]GA5 (3.2 Ci/mmol) was fed to seed capsules (0.58 μCi/capsule) of Pharbitis nil cv Violet at the 2-week stage of development, and its metabolism in the seeds was investigated after 43 hr. Extractable radioactivity in free GA metabolites was 38%, with 56% in GA glucosyl conjugate-like substances. Only 2.5% of the extractable radioactivity remained as [3H]GA5. Tentative identifications, based on comparisons with authentic standards after sequential chromatography on silica gel partition column → gradient-eluted C18 HPLC → isocratic-eluted C18 HPLC-radiocounting (RC), showed that [3H]GA5 was converted to at least six free GAs, GA1, GA3, GA6, GA8, GA22, GA29, a GA5 methyl ester-like metabolite, and at least twelve GA glucosyl conjugate-like substances, GA5-glucoside (GA5-G), GA5-glucosyl ester (GA5-GE), GA1-O(3)-G, GA1-O(13)-G, GA1-GE, GA3-O(3)-G, GA3-O(13)-G, GA3-GE, GA6-G or GE, GA8-O(2)-G, GA22-G or GE and GA29-O(2)-G. After lower specific activity feeds of [1,2-3H]GA5 (74 mCi/mmol; 0.1 μCi/capsule) at approximately the same stage of development, the presence of GA1, GA3, GA5, GA6, GA8 and GA29 was further confirmed by sequential (after C18 HPLC-RC) capillary gas chromatography-selected ion monitoring (GC-SIM), using six characteristic ions. However, for GA22 only a trace of the parent ion was present at the appropriate retention time.  相似文献   

15.
The role of gibberellins (GAs) during germination and early seedling growth is examined by following the metabolism and transport of radiolabeled GAs in cotyledon, shoot, and root tissues of pea (Pisum sativum L.) using an aseptic culture system. Mature pea seeds have significant endogenous GA20 levels that fall during germination and early seedling growth, a period when the seedling develops the capacity to transport GA20 from the cotyledon to the shoot and root of the seedling. Even though cotyledons at 0–2 days after imbibition have appreciable amounts of GA20, the cotyledons retain the ability to metabolize labeled GA19 to GA20 and express significant levels of PsGA20ox2 message (which encodes a GA biosynthesis enzyme, GA 20-oxidase). The large pool of cotyledonary GA20 likely provides substrate for GA1 synthesis in the cotyledons during germination, as well as for shoots and roots during early seedling growth. The shoots and roots express GA metabolism genes (PsGA3ox genes which encode GA 3-oxidases for synthesis of bioactive GA1, and PsGA2ox genes which encode GA 2-oxidases for deactivation of GAs to GA29 and GA8), and they develop the capacity to metabolize GAs as necessary for seedling establishment. Auxins also show an interesting pattern during early seedling growth, with higher levels of 4-chloro-indole-3-acetic acid (4-Cl-IAA) in mature seeds and higher levels of indole-3-acetic acid (IAA) in young root and shoot tissues. This suggests a changing role for auxins during early seedling development.  相似文献   

16.
17.
18.
The gibberellin (GA) 2-hydroxylases in mature and immature seeds of Pisum sativum have been partially purified and characterised. The enzymes are unstable when stored below pH 7.0 or in the absence of a thiol reagent. The optimum assay pH is between 7.4 and 7.8 and activity is dependent upon the presence of -ketoglutarate, Fe2+ and ascorbate. The 2-hydroxylase activities for GA1, GA4, GA9 and GA20 are chromatographically inseparable and correspond to a protein of Mr 44000. The rate of GA 2-hydroxylation varies according to substrate and some evidence indicates that the 2-hydroxylase activities for GA1 and GA4 and for GA9 and GA20 may reside in different proteins. During pea seed maturation, the specific activity of the enzyme(s) increases dramatically and reaches a maximum at a time when endogenous GA9, GA20, GA29 and GA51 are also at their greatest concentration. This correlation is not the result of substrate induction of enzyme activity. Since the GA 2-hydroxylases operate at maximal rate at low substrate concentrations they are incapable of rapidly 2-hydroxylating excessive quantities of (exogenously applied) GA1 or GA20. On the basis of the kinetic parameters of the GA 2-hydroxylase activities, a generalised model is discussed for the control of the steady-state levels of bioactive hormone under normal physiological conditions.Abbreviations DTE dithioerythritol - EDTA ethylenediaminetetraacetic acid - GAn gibberellin An - HPLC high-performance liquid chromatography - HSS high-speed supernatant - LSS low-speed supernatant - PMSF phenylmethane sulphonyl fluoride  相似文献   

19.
20.
The Ih and lh i alleles have been shown previously to reduce the level of endogenous gibberellin A1 (GA1) in shoots of pea (Pisum sativum L.), resulting in a dwarf phenotype compared with the wild type, cv. Torsdag (Lh). In addition, plants homozygous for the lh i allele have reduced seed yield compared with Lh (tall, wild type) and lh (dwarf) plants. In this paper we show that the lh i mutation is expressed in developing seeds and pods. Comparison of GA levels in young shoots and developing seeds of genotypes lh and lh i demonstrates that the relative severity of the two mutations varies in different tissues. Homozygous h i seeds have reduced GA levels, weigh less, and are less likely to develop to maturity when compared with Lh seeds. However, fertilization of lh i plants with Lh pollen increases seed GA levels, seed weight and seed survival, indicating that an increase in seed GA levels due to the presence of the Lh allele can restore normal seed growth. Pods developing on self-pollinated lh i plants are shorter than pods on Lh (wild type) plants, although this may be an indirect effect of the increased seed abortion of lh i plants. Based on these results we suggest that endogenous GAs play an important role in the development of seeds of P. sativum L.Abbreviations GA(n) gibberellin An We wish to thank Katherine McPherson, Peter Newman, Leigh Johnson and Peter Bobbi for technical assistance, Professor L. Mander (ANU, Canberra) and Professor B.O. Phinney (UCLA, USA) for labelled GA standards, and the Australian Research Council for financial support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号