首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A mathematical model of drug tolerance and its underlying theory is presented. The model extends a first approach, published previously. The model is essentially more complex than the generally used model of homeostasis, which is demonstrated to fail in describing tolerance development to repeated drug administrations. The model assumes the development of tolerance to a repeatedly administered drug to be the result of a regulated adaptive process. The oral detection and analysis of exogenous substances is proposed to be the primary stimulus for the mechanism of drug tolerance. Anticipation and environmental cues are in the model considered secondary stimuli, becoming primary only in dependence and addiction or when the drug administration bypasses the natural-oral-route, as is the case when drugs are administered intravenously. The model considers adaptation to the effect of a drug and adaptation to the interval between drug taking autonomous tolerance processes. Simulations with the mathematical model demonstrate the model's behavior to be consistent with important characteristics of the development of tolerance to repeatedly administered drugs: the gradual decrease in drug effect when tolerance develops, the high sensitivity to small changes in drug dose, the rebound phenomenon and the large reactions following withdrawal in dependence. The mathematical model verifies the proposed theory and provides a basis for the implementation of mathematical models of specific physiological processes. In addition, it establishes a relation between the drug dose at any moment, and the resulting drug effect and relates the magnitude of the reactions following withdrawal to the rate of tolerance and other parameters involved in the tolerance process. The present paper analyses the concept behind the model. The next paper discusses the mathematical model.  相似文献   

2.
Opiate drugs such as morphine and heroin are among the most effective analgesics known. Prolonged or repeated administration of opiates produces adaptive changes in the nervous system that lead to reduced drug potency or efficacy (tolerance), as well as physiological withdrawal symptoms and behavioral manifestations such as craving when drug use is terminated (dependence). These adaptations limit the therapeutic utility of opiate drugs, particularly in the treatment of chronically painful conditions, and are thought to contribute to the highly addictive nature of opiates. For many years it has been proposed that physiological tolerance to opiate drugs is associated with a modification of the number or functional activity of opioid receptors in specific neurons. We now understand certain mechanisms of opioid receptor desensitization and endocytosis in considerable detail. However, the functional roles that these mechanisms play in the complex physiological adaptation of the intact nervous system to opiates are only beginning to be explored.  相似文献   

3.
Reinforcement processes in opiate addiction: A homeostatic model   总被引:4,自引:0,他引:4  
The development of tolerance and dependence has traditionally been considered an integral aspect of the drug addiction process, and opiate dependence has been studied extensively as a model system in this regard. However, recent emphasis on the positive reinforcing properties of drugs has led to the suggestion that tolerance, dependence, and withdrawal may be of secondary or even negligible importance in motivating compulsive drug use. The current article argues for an integrated view of addiction in the form of a homeostatic neuroadaptation model which emphasizes the motivational significance of both the positive affective state produced by opiates and the negative affective state characteristic of drug withdrawal. The model is supported by evidence at both the behavioral and neural systems levels of analysis. Understanding the important distinction between somatic and affective components of opiate withdrawal is key to recognizing the factors which contribute to the motivational significance of opiate dependence and withdrawal. In addition, the critical role of conditioning processes in the maintenance of compulsive drug use and relapse after periods of abstention is discussed. Finally, it is argued that both the positive reinforcement produced by acute administration of a drug and the negative affective state produced by withdrawal are common to multiple classes of abused drugs, suggesting that an understanding of homeostatic neuroadaptation within motivational systems provides a key to the etiology, treatment and prevention of drug addiction. Special issue dedicated to Dr. Eric J. Simon.  相似文献   

4.

The development of tolerance and drug dependence limit the clinical application of opioids for the treatment of severe pain. Glucocorticoid receptors (GRs) are among molecular substrates involved in these processes. Most studies focus on the role of neuronal GR, while the involvement of GR on glial cells is not fully understood. To address this issue, we used a transgenic model of conditional GR knockout mice, targeted to connexin 30-expressing astrocytes, treated with repeated doses of morphine. We observed no difference between control mice and astrocytic GR knockouts in the development of antinociceptive tolerance. Nevertheless, when animals were subjected to precipitated withdrawal, knockouts presented some attenuated symptoms, including jumping. Taken together, our data suggest that hippocampal and spinal astrocytic GRs appear to be involved in opioid withdrawal, and drugs targeting the GR may relieve some symptoms of morphine withdrawal without influencing its antinociceptive properties.

  相似文献   

5.
6.
Prolonged opioid treatment leads to a comprehensive cellular adaptation mediated by opioid receptors, a basis to understand the development of opioid tolerance and dependence. However, the molecular mechanisms underlying opioid-induced cellular adaptation remain obscure. Recent advances in opioid receptor trafficking and signaling in cells have extensively increased our insight into the network of intracellular signal integration. This review focuses on those important intracellular biochemical processes that play critical roles in the development of opioid tolerance and dependence after opioid receptor activation, and tries to explain what happens after opioid receptor activation, and how the cellular adaptation develops from cell membrane to nucleus. Decades of research have delineated a network on opioid receptor trafficking and signaling, but the challenge remains to explain opioid tolerance and dependence from a single cellular signal network.  相似文献   

7.
S P Sivam  I K Ho 《Life sciences》1985,37(3):199-208
Drugs affecting various steps of GABA transmission exhibit analgesia in a variety of experimental models in animals; this analgesic response generally requires high doses of the drugs and does not appear to be opiate-like since the GABAergic analgesia is naloxone-insensitive and lacks dependence liability. The outcome of the analgesia response is variable when opiate and GABAergic drugs are administered together; however, directly acting GABA receptor stimulants and GABA-transaminase inhibitors generally enhance the analgesic effect of opiates. The development of newer GABAergic drugs with greater potency and specificity may offer an alternative to opiate analgesics. The results obtained over the years, on the possible involvement of the GABA system in morphine tolerance and dependence are equivocal. Studies on region-specific changes in opiate-GABA interaction as well as opiate-GABA-benzodiazepine interaction are needed to further elucidate the role of GABA on opiate system.  相似文献   

8.
P-glycoprotein (P-gp) is an efflux transporter that regulates bioavailability of orally administered drugs at the intestinal epithelium. To develop an in vitro experimental model that mimics P-gp-mediated intestinal drug transport in vivo, we employed normal intestinal epithelium three-dimensionally cultured. Physiological expression of P-gp mRNA and the expression of its protein at the apical membrane were observed in the small intestinal epithelium grown as cystic organoids. Rhodamine123 (Rh123), a substrate for P-gp, was actively transported in the basoapical direction and accumulated in the luminal space, while the epithelial integrity was kept intact. Furthermore, we were able to monitor the whole process of Rh123 transport and its inhibition by verapamil in real-time, from which kinetic parameters for Rh123 transport could be estimated by a mathematical modeling. The method here described to evaluate the dynamics of P-gp-mediated transport in primary intestinal epithelial cells would be instrumental in investigating the physiological function of P-gp and its inhibitors/inducers in vitro.  相似文献   

9.
Using published in vitro data on the dependence of the percentage of apoptosis induced by the anti-cancer drug topotecan in a leukaemia cell line on the concentration of added caffeine, and a general model of competitive binding in a system containing two aromatic drugs and DNA, it has been shown to be possible to quantify the relative change in the biological effect just using a set of component concentrations and equilibrium constants of the complexation of the drugs. It is also proposed that a general model of competitive binding and parameterization of that model may potentially be applied to any system of DNA-targeting aromatic drugs under in vitro conditions. The main reasons underpinning the proposal are the general feature of the complexation of aromatic drugs with DNA and their interaction in physiological media via hetero-association.  相似文献   

10.
Drug discovery today is a complex, expensive, and time-consuming process with high attrition rate. A more systematic approach is needed to combine innovative approaches in order to lead to more effective and efficient drug development. This article provides systematic mathematical analysis and dynamical modeling of drug effect under gene regulatory network contexts. A hybrid systems model, which merges together discrete and continuous dynamics into a single dynamical model, is proposed to study dynamics of the underlying regulatory network under drug perturbations. The major goal is to understand how the system changes when perturbed by drugs and give suggestions for better therapeutic interventions. A realistic periodic drug intake scenario is considered, drug pharmacokinetics and pharmacodynamics information being taken into account in the proposed hybrid systems model. Simulations are performed using MATLAB/SIMULINK to corroborate the analytical results.  相似文献   

11.
People take addictive drugs to elevate mood, but with repeated use these drugs produce serious unwanted effects, which can include tolerance to some drug effects, sensitization to others, and an adapted state - dependence - which sets the stage for withdrawal symptoms when drug use stops. The most serious consequence of repetitive drug taking, however, is addiction: a persistent state in which compulsive drug use escapes control, even when serious negative consequences ensue. Addiction is characterized by a long-lasting risk of relapse, which is often initiated by exposure to drug-related cues. Substantial progress has been made in understanding the molecular and cellular mechanisms of tolerance, dependence and withdrawal, but as yet we understand little of the neural substrates of compulsive drug use and its remarkable persistence. Here we review evidence for the possibility that compulsion and its persistence are based on a pathological usurpation of molecular mechanisms that are normally involved in memory.  相似文献   

12.
Studies using core temperature (T(c)) have contributed greatly to theoretical explanations of drug tolerance and its relationship to key features of addiction, including dependence, withdrawal, and relapse. Many theoretical accounts of tolerance propose that a given drug-induced psychobiological disturbance elicits opponent responses that contribute to tolerance development. This proposal and its theoretical extensions (e.g., conditioning as a mechanism of chronic tolerance) have been inferred from dependent variables, such as T(c), which represent the summation of multiple underlying determinants. Direct measurements of determinants could increase the understanding of opponent processes in tolerance, dependence, and withdrawal. The proximal determinants of T(c) are metabolic heat production (HP) and heat loss (HL). We developed a novel system for simultaneously quantifying HP (indirect calorimetry), HL (direct gradient layer calorimetry), and T(c) (telemetry) during steady-state administrations of nitrous oxide (N(2)O), an inhalant with abuse potential that has been previously used to study acute and chronic tolerance development to its hypothermia-inducing property. Rats were administered 60% N(2)O (n = 18) or placebo gas (n = 16) for 5 h after a 2-h placebo baseline exposure. On average, N(2)O rapidly but transiently lowered HP and increased HL, each by approximately 16% (P < 0.001). On average, rats reestablished and maintained thermal equilibrium (HP = HL) at a hypothermic T(c) (-1.6 degrees C). However, some rats entered positive heat balance (HP > HL) after becoming hypothermic such that acute tolerance developed, i.e., T(c) rose despite continued drug administration. This work is the first to directly quantify the thermal determinants of T(c) during administration of a drug of abuse and establishes a new paradigm for studying opponent processes involved in acute and chronic hypothermic tolerance development.  相似文献   

13.
Plants adapted to special soil types are ideal for investigating evolutionary processes, including maintenance of intraspecific variation, adaptation, reproductive isolation, ecotypic differentiation, and the tempo and mode of speciation. Common garden and reciprocal transplant approaches show that both local adaptation and phenotypic plasticity contribute to edaphic (soil-related) specialization. Edaphic specialists evolve rapidly and repeatedly in some lineages, offering opportunities to investigate parallel evolution, a process less commonly documented in plants than in animals. Adaptations to soil features are often under the control of major genes and they frequently have direct or indirect effects on genes that contribute to reproductive isolation. Both reduced competitiveness and greater susceptibility to herbivory have been documented among some edaphic specialists when grown in ‘normal’ soils, suggesting that a high physiological cost of tolerance may result in strong divergent selection across soil boundaries. Interactions with microbes, herbivores, and pollinators influence soil specialization either by directly enhancing tolerance to extremes in soil conditions or by reducing gene flow between divergent populations. Climate change may further restrict the distribution of edaphic specialists due to increased competition from other taxa or, expand their ranges, if preadaptations to drought or other abiotic stressors render them more competitive under a novel climate.  相似文献   

14.
The design of selective drugs and combinatorial drug treatments are two of the main focuses in modern pharmacology. In this study we use a mathematical model of chimeric ligand-receptor interaction to show that the combination of selective drugs is synergistic in nature, providing a way to gain optimal selective potential at reduced doses compared to the same drugs when applied individually. We use a cell population model of proliferating cells expressing two different amounts of a target protein to show that both selectivity and synergism are robust against variability and heritability in the cell population. The reduction in the total drug administered due to the synergistic performance of the selective drugs can potentially result in reduced toxicity and off-target interactions, providing a mechanism to improve the treatment of cell-based diseases caused by aberrant gene overexpression, such as cancer and diabetes.  相似文献   

15.
At the beginning the term "tolerance" determinations, given in different source of literature, have been considered. Further, the history of conditioned of tolerance and abuse creation from psycho-active drugs have been discussed. The hart of the article contains the critical points of the current representation of neurophysiological theory in the field of behavior, interaction mechanisms between live systems and drugs. The point of view, dominating in pharmacology science that tolerance is the direct result of drug substances intervention into the organism, has been opposed. Separation of primary and secondary physiological effects of drugs, allowed to the authors to conclude that the dominant role belongs to the state living system and to the presence of necessities during the motivation creations for the second drug use and to the tolerance changing.  相似文献   

16.
17.
In this paper the disturbing effect of drugs upon regulation in the organism is argued to be an important factor in the total drug effect. It is made plausible that the decrease of the drug effect after prolonged or repeated administration of the drug is caused by the adaptation of the involved regulations to the presence of the drug, the adaptive process being selective for the drug in question. A model based on these assumptions is developed taking into account the specific behaviour of regulated processes. The functioning of the model is investigated by means of computer simulations. The behaviour of the model appears to be well in accordance with the phenomenon of drug tolerance as described in literature.  相似文献   

18.
19.
Freeze tolerance – the ability to survive internal ice formation – has evolved repeatedly in insects, facilitating survival in environments with low temperatures and/or high risk of freezing. Surviving internal ice formation poses several challenges because freezing can cause cellular dehydration and mechanical damage, and restricts the opportunity to metabolise and respond to environmental challenges. While freeze‐tolerant insects accumulate many potentially protective molecules, there is no apparent ‘magic bullet’ – a molecule or class of molecules that appears to be necessary or sufficient to support this cold‐tolerance strategy. In addition, the mechanisms underlying freeze tolerance have been minimally explored. Herein, we frame freeze tolerance as the ability to survive a process: freeze‐tolerant insects must withstand the challenges associated with cooling (low temperatures), freezing (internal ice formation), and thawing. To do so, we hypothesise that freeze‐tolerant insects control the quality and quantity of ice, prevent or repair damage to cells and macromolecules, manage biochemical processes while frozen/thawing, and restore physiological processes post‐thaw. Many of the molecules that can facilitate freeze tolerance are also accumulated by other cold‐ and desiccation‐tolerant insects. We suggest that, when freezing offered a physiological advantage, freeze tolerance evolved in insects that were already adapted to low temperatures or desiccation, or in insects that could withstand small amounts of internal ice formation. Although freeze tolerance is a complex cold‐tolerance strategy that has evolved multiple times, we suggest that a process‐focused approach (in combination with appropriate techniques and model organisms) will facilitate hypothesis‐driven research to understand better how insects survive internal ice formation.  相似文献   

20.
R I Dafters  P Taggart 《Life sciences》1990,47(23):2155-2161
The thermic and kinetic effects of a low dose of morphine sulphate (5mg/kg) were monitored using a remote biotelemetric procedure. Drug and control (saline) injections were administered at two times of day, during the high and low phases of the circadian temperature/activity cycle respectively. Standard measures of the responses revealed that the effect of a dose of morphine differs significantly according to the phase of the circadian rhythm in which it is administered. In contrast to previous studies employing standard stress-inducing rectal probing techniques of temperature measurement, the direction and time-course of thermic and kinetic responses were uncorrelated. The implications for research on physiological and behavioral drug effects and for theories of drug tolerance/dependence are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号