首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The alpha-L-arabinofuranosidase D3 from Thermobacillus xylanilyticus is an arabinoxylan-debranching enzyme which belongs to family 51 of the glycosyl hydrolase classification. Previous studies have indicated that members of this family are retaining enzymes and may form part of the 4/7 superfamily of glycosyl hydrolases. To investigate the active site of alpha-L-arabinofuranosidase D3, we have used sequence alignment, site-directed mutagenesis and kinetic analyses. Likewise, we have shown that Glu(28), Glu(176) and Glu(298) are important for catalytic activity. Kinetic data obtained for the mutant Glu(176)-->Gln, combined with the results of chemical rescue using the mutant Glu(176)-->Ala, have shown that Glu(176) is the acid-base residue. Moreover, NMR analysis of the arabinosyl-azide adduct, which was produced by chemical rescue of the mutant Glu(176)-->Ala, indicated that alpha-L-arabinofuranosidase D3 hydrolyses glycosidic bonds with retention of the anomeric configuration. The results of similar chemical rescue studies using other mutant enzymes suggest that Glu(298) might be the catalytic nucleophile and that Glu(28) is a third member of a catalytic triad which may be responsible for modulating the ionization state of the acid-base and implicated in substrate fixation. Overall, these findings support the hypothesis that alpha-L-arabinofuranosidase D3 belongs to the 4/7 superfamily and provide the first experimental evidence concerning the catalytic apparatus of a family 51 arabinofuranosidase.  相似文献   

2.
Recently, we defined the nitrilase superfamily as consisting of 12 families of amidases, N-acyltransferases and presumptive amidases, in addition to the family of plant and bacterial nitrilases for which the superfamily was named. A novel Glu-Lys-Cys catalytic triad, found at the crystallographically defined Nit active site of worm NitFhit, was postulated to constitute the catalytic residues for all members of the superfamily. Recent experimental results confirm the essentiality of the catalytic triad residues and specify the biochemical functions of additional branches and sub-branches of the nitrilase superfamily.  相似文献   

3.
The nitrilase superfamily is a large and diverse superfamily of enzymes that catalyse the cleavage of various types of carbon-nitrogen bonds using a Cys-Glu-Lys catalytic triad. Thermoactive nitrilase from Pyrococcus abyssi (PaNit) hydrolyses small aliphatic nitriles like fumaro- and malononitryl. Yet, the biological role of this enzyme is unknown. We have analysed several crystal structures of PaNit: without ligands, with an acetate ion bound in the active site and with a bromide ion in the active site. In addition, docking calculations have been performed for fumaro- and malononitriles. The structures provide a proof for specific binding of the carboxylate ion and a general affinity for negatively changed ligands. The role of residues in the active site is considered and an enzymatic reaction mechanism is proposed in which Cys146 acts as the nucleophile, Glu42 as the general base, Lys113/Glu42 as the general acid, WatA as the hydrolytic water and Nζ_Lys113 and N_Phe147 form the oxyanion hole.  相似文献   

4.
The purpose of this study was to investigate the site-selective binding of erlotinib hydrochloride (ET), a targeted anticancer drug, to bovine serum albumin (BSA) through 1H NMR, spectroscopic, thermodynamic, and molecular modeling methods. The fluorescence quenching of BSA by ET was a result of the formation of BSA–ET complex with high binding affinity. The site marker competition study combined with isothermal titration calorimetry experiment revealed that ET binds to site II of BSA mainly through hydrogen bond and van der Waals force. Molecular docking was further applied to define the specific binding site of ET to BSA. The conformation of BSA was changed in the presence of ET, revealed by synchronous fluorescence, circular dichroism, and three-dimensional fluorescence spectroscopy results. Further, NMR analysis of the complex revealed that the binding capacity contributed by the aromatic protons in the binding site of BSA might be greater than the aliphatic protons.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:26  相似文献   

5.
BACKGROUND: The complex polysaccharide rhamnogalacturonan constitutes a major part of the hairy region of pectin. It can have different types of carbohydrate sidechains attached to the rhamnose residues in the backbone of alternating rhamnose and galacturonic acid residues; the galacturonic acid residues can be methylated or acetylated. Aspergillus aculeatus produces enzymes that are able to perform a synergistic degradation of rhamnogalacturonan. The deacetylation of the backbone by rhamnogalacturonan acetylesterase (RGAE) is an essential prerequisite for the subsequent action of the enzymes that cleave the glycosidic bonds. RESULTS: The structure of RGAE has been determined at 1.55 A resolution. RGAE folds into an alpha/beta/alpha structure. The active site of RGAE is an open cleft containing a serine-histidine-aspartic acid catalytic triad. The position of the three residues relative to the central parallel beta sheet and the lack of the nucleophilic elbow motif found in structures possessing the alpha/beta hydrolase fold show that RGAE does not belong to the alpha/beta hydrolase family. CONCLUSIONS: Structural and sequence comparisons have revealed that, despite very low sequence similarities, RGAE is related to seven other proteins. They are all members of a new hydrolase family, the SGNH-hydrolase family, which includes the carbohydrate esterase family 12 as a distinct subfamily. The SGNH-hydrolase family is characterised by having four conserved blocks of residues, each with one completely conserved residue; serine, glycine, asparagine and histidine, respectively. Each of the four residues plays a role in the catalytic function.  相似文献   

6.
DNA conformation in complex with proteins is far from its canonical B-form. The affinity of complex formation and structure of DNA depend on its attachment configuration and sequence. In this article, we develop a mechanical model to address the problem of DNA structure and energy under deformation. DNA in nucleosome core particle is described as an example. The structure and energy of nucleosomal DNA is calculated based on its sequence and positioning state. The inferred structure has remarkable similarity with X-ray data. Although there is no sequence-specific interaction of bases and the histone core, we found considerable sequence dependency for the nucleosomal DNA positioning. The affinity of nucleosome formation for several sequences is examined and the differences are compatible with observations. We argue that structural energy determines the natural state of nucleosomal DNA and is the main reason for affinity differences in vitro. This theory can be utilized for the DNA structure and energy determination in protein–DNA complexes in general.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:17  相似文献   

7.
Dihydropteroate synthase (DHPS) is essential for the folic acid biosynthetic pathway in prokaryotes; the mutation forms for DHPS are found to be relative to the urgent drug resistance problems. In our study, the Bacillus anthracis DHPS (BaDHPS) was selected for molecular dynamics and binding free energy studies to investigate the biochemistry behaviors of the wild-type and mutation form BaDHPS proteins (D184N and K220Q). It is found that the conformational change of the ligand dihydropteroate sulfathiazole binding site in mutation D184N and K220Q systems is mainly attributed from the Loop 1, Loop 2, and Loop 7 regions, and the binding free energy of these mutation systems is lower than that of the wild-type system. Additionally, some important hydrogen bonds of the mutation systems are disrupted during the simulations. But the shortening of the distance between residue Thr67 and the ligand would cause significant change of the binding pose in the K220Q system. These studies of DHPS family will be helpful for further drug resistance investigations.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:24  相似文献   

8.
The nitrilase superfamily consists of thiol enzymes involved in natural product biosynthesis and post-translational modification in plants, animals, fungi and certain prokaryotes. On the basis of sequence similarity and the presence of additional domains, the superfamily can be classified into 13 branches, nine of which have known or deduced specificity for specific nitrile- or amide-hydrolysis or amide-condensation reactions. Genetic and biochemical analysis of the family members and their associated domains assists in predicting the localization, specificity and cell biology of hundreds of uncharacterized protein sequences.  相似文献   

9.
Pace HC  Brenner C 《Genome biology》2001,2(1):REVIEWS0001-9
The nitrilase superfamily consists of thiol enzymes involved in natural product biosynthesis and post-translational modification in plants, animals, fungi and certain prokaryotes. On the basis of sequence similarity and the presence of additional domains, the superfamily can be classified into 13 branches, nine of which have known or deduced specificity for specific nitrile- or amide-hydrolysis or amide-condensation reactions. Genetic and biochemical analysis of the family members and their associated domains assists in predicting the localization, specificity and cell biology of hundreds of uncharacterized protein sequences.  相似文献   

10.
Insulin-degrading enzyme (IDE) gene is one of the type 2 diabetes mellitus susceptibility genes specific to the Han Chinese population. IDE, a zinc-metalloendopeptidase, is a potential target for controlling insulin degradation. Potential lead compounds for IDE inhibition were identified from traditional Chinese medicine (TCM) through virtual screening and evaluation of their pharmacokinetic properties of absorption, distribution, metabolism, excretion, and toxicity. Molecular dynamics (MD) simulation was performed to validate the stability of complexes from docking simulation. The top three TCM compounds, dihydrocaffeic acid, isopraeroside IV, and scopolin, formed stable H–bond interactions with key residue Asn139, and were linked to active pocket residues His108, His112, and Glu189 through zinc. Torsion angle trajectories also indicated some stable interactions for each ligand with IDE. Molecular level analysis revealed that the TCM candidates might affect IDE through competitive binding to the active site and steric hindrance. Structural feature analysis reveals that high amounts of hydroxyl groups and carboxylic moieties contribute to anchor the ligand within the complex. Hence, we suggest the top three TCM compounds as potential inhibitor leads against IDE protein to control insulin degradation for type 2 diabetes mellitus.

An animated interactive 3D complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:29  相似文献   

11.
Shaw E  McCue LA  Lawrence CE  Dordick JS 《Proteins》2002,47(2):163-168
The alpha/beta hydrolases constitute a large protein superfamily that mainly consists of enzymes that catalyze a diverse range of reactions. These proteins exhibit the alpha/beta hydrolase fold, the essential features of which have recently been delineated: the presence of at least five parallel beta-strands, a catalytic triad in a specific order (nucleophile-acid-histidine), and a nucleophilic elbow. Because of the difficulties experimentally in identifying protein structures, we have used a Bayesian computational algorithm (PROBE) to identify the members of this superfamily based on distant sequence relationships. We found that the presence of five sequence motifs, which contain residues important for substrate binding and stabilization of the fold, are required for membership in this superfamily. The superfamily consists of at least 909 members, including the N-myc downstream regulated proteins, which are believed to be involved in cell differentiation. Unlike most of the other superfamily members, the N-myc downstream regulated proteins have never been proposed to possess the alpha/beta hydrolase fold and do not appear to be hydrolases.  相似文献   

12.
The haloacid dehalogenase (HAD) superfamily is a large family of proteins dominated by phosphotransferases. Thirty-three sequence families within the HAD superfamily (HADSF) have been identified to assist in function assignment. One such family includes the enzyme phosphoacetaldehyde hydrolase (phosphonatase). Phosphonatase possesses the conserved Rossmanniod core domain and a C1-type cap domain. Other members of this family do not possess a cap domain and because the cap domain of phosphonatase plays an important role in active site desolvation and catalysis, the function of the capless family members must be unique. A representative of the capless subfamily, PSPTO_2114, from the plant pathogen Pseudomonas syringae, was targeted for catalytic activity and structure analyses. The X-ray structure of PSPTO_2114 reveals a capless homodimer that conserves some but not all of the intersubunit contacts contributed by the core domains of the phosphonatase homodimer. The region of the PSPTO_2114 that corresponds to the catalytic scaffold of phosphonatase (and other HAD phosphotransfereases) positions amino acid residues that are ill suited for Mg+2 cofactor binding and mediation of phosphoryl group transfer between donor and acceptor substrates. The absence of phosphotransferase activity in PSPTO_2114 was confirmed by kinetic assays. To explore PSPTO_2114 function, the conservation of sequence motifs extending outside of the HADSF catalytic scaffold was examined. The stringently conserved residues among PSPTO_2114 homologs were mapped onto the PSPTO_2114 three-dimensional structure to identify a surface region unique to the family members that do not possess a cap domain. The hypothesis that this region is used in protein-protein recognition is explored to define, for the first time, HADSF proteins which have acquired a function other than that of a catalyst.  相似文献   

13.
The haloacid dehalogenase (HAD) superfamily includes a variety of enzymes that catalyze the cleavage of substrate C-Cl, P-C, and P-OP bonds via nucleophilic substitution pathways. All members possess the alpha/beta core domain, and many also possess a small cap domain. The active site of the core domain is formed by four loops (corresponding to sequence motifs 1-4), which position substrate and cofactor-binding residues as well as the catalytic groups that mediate the "core" chemistry. The cap domain is responsible for the diversification of chemistry within the family. A tight beta-turn in the helix-loop-helix motif of the cap domain contains a stringently conserved Gly (within sequence motif 5), flanked by residues whose side chains contribute to the catalytic site formed at the domain-domain interface. To define the role of the conserved Gly in the structure and function of the cap domain loop of the HAD superfamily members phosphonoacetaldehyde hydrolase and beta-phosphoglucomutase, the Gly was mutated to Pro, Val, or Ala. The catalytic activity was severely reduced in each mutant. To examine the impact of Gly substitution on loop 5 conformation, the X-ray crystal structure of the Gly50Pro phosphonoacetaldehyde hydrolase mutant was determined. The altered backbone conformation at position 50 had a dramatic effect on the spatial disposition of the side chains of neighboring residues. Lys53, the Schiff Base forming lysine, had rotated out of the catalytic site and the side chain of Leu52 had moved to fill its place. On the basis of these studies, it was concluded that the flexibility afforded by the conserved Gly is critical to the function of loop 5 and that it is a marker by which the cap domain substrate specificity loop can be identified within the amino acid sequence of HAD family members.  相似文献   

14.
Fusarium solani causes a wide variety of diseases in plants. Polyamine biosynthesis is responsible for the growth and pathogenicity of the fungus. The initial step of this pathway involves the decarboxylation of ornithine to putrescine, and is catalyzed by the enzyme ornithine decarboxylase (ODC). Inhibiting this process may be a promising approach for the management of fungal disease in various crops. Therefore, there is a need to develop inhibitors of ODC that have higher binding capacity than ornithine. Fifteen peptides were designed and modeled based on physicochemical properties of residues in the active site of ODC. The peptide GLIWGNGPF showed the highest dock score. It is assumed that the de novo design of peptides could be a potential approach to inhibit polyamine biosynthesis. Molecular dynamics studies make an important contribution to understanding the effect of the binding of peptides and the stability of an ODC-peptide complex system.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:8.  相似文献   

15.
The l-rhamnonate dehydratase (RhamD) function was assigned to a previously uncharacterized family in the mechanistically diverse enolase superfamily that is encoded by the genome of Escherichia coli K-12. We screened a library of acid sugars to discover that the enzyme displays a promiscuous substrate specificity: l-rhamnonate (6-deoxy- l-mannonate) has the "best" kinetic constants, with l-mannonate, l-lyxonate, and d-gulonate dehydrated less efficiently. Crystal structures of the RhamDs from both E. coli K-12 and Salmonella typhimurium LT2 (95% sequence identity) were obtained in the presence of Mg (2+); the structure of the RhamD from S. typhimurium was also obtained in the presence of 3-deoxy- l-rhamnonate (obtained by reduction of the product with NaBH 4). Like other members of the enolase superfamily, RhamD contains an N-terminal alpha + beta capping domain and a C-terminal (beta/alpha) 7beta-barrel (modified TIM-barrel) catalytic domain with the active site located at the interface between the two domains. In contrast to other members, the specificity-determining "20s loop" in the capping domain is extended in length and the "50s loop" is truncated. The ligands for the Mg (2+) are Asp 226, Glu 252 and Glu 280 located at the ends of the third, fourth and fifth beta-strands, respectively. The active site of RhamD contains a His 329-Asp 302 dyad at the ends of the seventh and sixth beta-strands, respectively, with His 329 positioned to function as the general base responsible for abstraction of the C2 proton of l-rhamnonate to form a Mg (2+)-stabilized enediolate intermediate. However, the active site does not contain other acid/base catalysts that have been implicated in the reactions catalyzed by other members of the MR subgroup of the enolase superfamily. Based on the structure of the liganded complex, His 329 also is expected to function as the general acid that both facilitates departure of the 3-OH group in a syn-dehydration reaction and delivers a proton to carbon-3 to replace the 3-OH group with retention of configuration.  相似文献   

16.
Neurotensin (NT) is a tridecapeptide, hormone in the periphery and neurotransmitter in the brain. We used high-resolution nuclear magnetic resonance (NMR) to resolve the three-dimensional structure of NT in a small unilamellar vesicle (SUV) environment. We demonstrate that if the dynamic of the association–dissociation processes of peptide to SUV binding is rapid enough, structural determination can be obtained by solution NMR experiments. Thus, according to the global dynamic of the system, SUVs seem to be an effective model to mimic biological membranes, especially since the lipid composition can be modified or sterols may be added to closely mimic the biological membranes studied.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:2  相似文献   

17.
Nesterenkonia strain AN1 was isolated from a screening program for nitrile- and amide-hydrolyzing microorganisms in Antarctic desert soil samples. Strain AN1 showed significant 16S rRNA sequence identity to known members of the genus. Like known Nesterenkonia species, strain AN1 was obligately alkaliphilic (optimum environmental pH, 9 to 10) and halotolerant (optimum environmental Na(+) content, 0 to 15% [wt/vol]) but was also shown to be an obligate psychrophile with optimum growth at approximately 21°C. The partially sequenced genome of AN1 revealed an open reading frame (ORF) encoding a putative protein member of the nitrilase superfamily, referred to as NitN (264 amino acids). The protein crystallized readily as a dimer and the atomic structure of all but 10 amino acids of the protein was determined, confirming that the enzyme had an active site and a fold characteristic of the nitrilase superfamily. The protein was screened for activity against a variety of nitrile, carbamoyl, and amide substrates and was found to have only amidase activity. It had highest affinity for propionamide but demonstrated a low catalytic rate. NitN had maximal activity at 30°C and between pH 6.5 and 7.5, conditions which are outside the optimum growth range for the organism.  相似文献   

18.
Amidases: versatile enzymes in nature   总被引:1,自引:0,他引:1  
Amidases are ubiquitous enzymes and biological functions of these enzymes vary widely. In past five decades, they turned out to be an attractive tool in industries for the synthesis of wide variety of carboxylic acids, hydroxamic acids and hydrazide, which find applications in commodity chemicals synthesis, pharmaceuticals agrochemicals and waste water treatments etc. Their proteins structures revealed that aliphatic amidases share the typical α/β hydrolase fold (like nitrilase superfamily) and signature amidases are evolutionary related to aspartic proteinases. They hydrolyse wide variety of amides (short chain aliphatic amides, mid-chain amides, arylamides, α-aminoamides and α-hydroxyamides) and can be grouped on the basis of their catalytic site and preferred substrate. They resist denaturation at extreme of pH and temperature because of their strong and compact multimeric structures. Inhibition studies and three-dimensional analysis of the structures identified a Glu59, Lys134, Cys166 catalytic triad and follow “Bi-bi Ping-Pong” mechanism reaction for amide hydrolysis and acyl transferase reactions. Many recombinant amidases have been expressed in Escherichia coli as well as in Brevibacterium lactofermentum.  相似文献   

19.
Formamidases (EC 3.5.1.49) are poorly characterized proteins. In spite of this scarce knowledge, ammonia has been described as playing a central role in the pathogenesis of human pathogens such as Helicobacter pylori, for which formamidase has been shown to participate in the nitrogen metabolic pathway. Sequence analysis has revealed that at least two different groups of formamidases are classified as EC 3.5.1.49: on the one hand, the derivatives of the FmdA-AmdA superfamily, which are the best studied to date, and on the other hand, the derivatives of Helicobacter pylori AmiF. Here we present the cloning, purification, and characterization of a recombinant formamidase from Bacillus cereus CECT 5050T (BceAmiF), the second member of the AmiF subfamily to be characterized, showing new features of the enzyme further supporting its relationship with aliphatic amidases. We also present homology modeling-based mutational studies confirming the importance of the Glu140 and Tyr191 residues in the enzymatic activities of the AmiF family. Moreover, we can conclude that a second glutamate residue is critical in several members of the nitrilase superfamily, meaning that what has consistently been identified as a C-E-K triad is in fact a C-E-E-K tetrad.  相似文献   

20.
A new pathway of molinate mineralization has recently been described. Among the five members of the mixed culture able to promote such a process, Gulosibacter molinativorax ON4(T) has been observed to promote the initial breakdown of the herbicide into ethanethiol and azepane-1-carboxylate. In the current study, the gene encoding the enzyme responsible for molinate hydrolysis was identified and heterologously expressed, and the resultant active protein was purified and characterized. Nucleotide sequence analysis revealed that the gene encodes a 465-amino-acid protein of the metal-dependent hydrolase A subfamily of the amidohydrolase superfamily with a predicted molecular mass of 50.9 kDa. Molinate hydrolase shares the highest amino acid sequence identity (48 to 50%) with phenylurea hydrolases of Arthrobacter globiformis and Mycobacterium brisbanense. However, in contrast to previously described members of the metal-dependent hydrolase A subfamily, molinate hydrolase contains cobalt as the only active-site metal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号