首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human multidrug resistance P-glycoprotein (P-gp) pumps a wide variety of structurally diverse compounds out of the cell. It is an ATP-binding cassette transporter with two nucleotide-binding domains and two transmembrane (TM) domains. One class of compounds transported by P-gp is the rhodamine dyes. A P-gp deletion mutant (residues 1-379 plus 681-1025) with only the TM domains retained the ability to bind rhodamine. Therefore, to identify the residues involved in rhodamine binding, 252 mutants containing a cysteine in the predicted TM segments were generated and reacted with a thiol-reactive analog of rhodamine, methanethiosulfonate (MTS)-rhodamine. The activities of 28 mutants (in TMs 2-12) were inhibited by at least 50% after reaction with MTS-rhodamine. The activities of five mutants, I340C(TM6), A841C(TM9), L975C(TM12), V981C(TM12), and V982C(TM12), however, were significantly protected from inhibition by MTS-rhodamine by pretreatment with rhodamine B, indicating that residues in TMs 6, 9, and 12 contribute to the binding of rhodamine dyes. These results, together with those from previous labeling studies with other thiol-reactive compounds, dibromobimane, MTS-verapamil, and MTS-cross-linker substrates, indicate that common residues are involved in the binding of structurally different drug substrates and that P-gp has a common drug-binding site. The results support the "substrate-induced fit" hypothesis for drug binding.  相似文献   

2.
YiiP is a secondary transporter that couples Zn2+ transport to the proton motive force. Structural studies of YiiP from prokaryotes and Znt8 from humans have revealed three different Zn2+ sites and a conserved homodimeric architecture. These structures define the inward-facing and outward-facing states that characterize the archetypal alternating access mechanism of transport. To study the effects of Zn2+ binding on the conformational transition, we use cryo-EM together with molecular dynamics simulation to compare structures of YiiP from Shewanella oneidensis in the presence and absence of Zn2+. To enable single-particle cryo-EM, we used a phage-display library to develop a Fab antibody fragment with high affinity for YiiP, thus producing a YiiP/Fab complex. To perform MD simulations, we developed a nonbonded dummy model for Zn2+ and validated its performance with known Zn2+-binding proteins. Using these tools, we find that, in the presence of Zn2+, YiiP adopts an inward-facing conformation consistent with that previously seen in tubular crystals. After removal of Zn2+ with high-affinity chelators, YiiP exhibits enhanced flexibility and adopts a novel conformation that appears to be intermediate between inward-facing and outward-facing states. This conformation involves closure of a hydrophobic gate that has been postulated to control access to the primary transport site. Comparison of several independent cryo-EM maps suggests that the transition from the inward-facing state is controlled by occupancy of a secondary Zn2+ site at the cytoplasmic membrane interface. This work enhances our understanding of individual Zn2+ binding sites and their role in the conformational dynamics that govern the transport cycle.  相似文献   

3.
The human multidrug resistance P-glycoprotein (P-gp, ABCB1) is quite promiscuous in that it can transport a broad range of structurally diverse compounds out of the cell. We hypothesized that the transmembrane (TM) segments that constitute the drug-binding site are quite mobile such that drug binding occurs through a "substrate-induced fit" mechanism. Here, we used cysteine-scanning mutagenesis and oxidative cross-linking to test for substrate-induced changes in the TM segments. Pairs of cysteines were introduced into a Cys-less P-gp and the mutants treated with oxidant (copper phenanthroline) in the presence or absence of various drug substrates. We show that cyclosporin A promoted cross-linking between residues P350C(TM6)/G939C(TM11), while colchicine and demecolcine promoted cross-linking between residues P350C(TM6)/V991C(TM12). Progesterone promoted cross-linking between residues P350C(TM6)/A935C(TM11), P350C(TM6)/G939C(TM11), as well as between residues P350C(TM6)/V991C(TM12). Other substrates such as vinblastine, verapamil, cis-(Z)-flupenthixol or trans-(E)-flupenthixol did not induce cross-linking at these sites. These results provide direct evidence that the packing of the TM segments in the drug-binding site is changed when P-gp binds to a particular substrate. The induced-fit mechanism explains how P-gp can accommodate a broad range of compounds.  相似文献   

4.
The human SLC28 family of concentrative (Na+-dependent) nucleoside transporters has three members, hCNT1, hCNT2 and hCNT3. Previously, we have used heterologous expression in Xenopus laevis oocytes in combination with an engineered cysteine-less hCNT3 protein hCNT3(C-) to undertake systematic substituted cysteine accessibility method (SCAM) analysis of the transporter using the membrane-impermeant thiol reactive reagent p-chloromercuribenzene sulfonate (PCMBS). A continuous sequence of more than 300 individual amino acid residue positions were investigated, including the entire transport domain of the protein, as well as important elements of the corresponding hCNT3 structural domain. We have now constructed 3D structural homology models of hCNT3 based upon inward-facing, intermediates and outward-facing crystal structures of the bacterial CNT Neisseria wadsworthii CNTNW to show that all previously identified PCMBS-sensitive residues in hCNT3 are located above (ie on the extracellular side of) the key diagonal barrier scaffold domain TM9 in the transporter’s outward-facing conformation. In addition, both the Na+ and permeant binding sites of the mobile transport domain of hCNT3 are elevated from below the scaffold domain TM9 in the inward-facing conformation to above TM9 in the outward-facing conformation. The hCNT3 homology models generated in the present study validate our previously published PCMBS SCAM data, and confirm an elevator-type mechanism of membrane transport.  相似文献   

5.
Weng J  Fan K  Wang W 《PloS one》2012,7(1):e30465
BtuCD is a member of the ATP-binding cassette transporters in Escherichia coli that imports vitamin B(12) into the cell by utilizing the energy of ATP hydrolysis. Crystal structures of BtuCD and its homologous protein HI1470/1 in various conformational states support the "alternating access" mechanism which proposes the conformational transitions of the substrate translocation pathway at transmembrane domain (TMD) between the outward-facing and inward-facing states. The conformational transition at TMD is assumed to couple with the movement of the cytoplasmic nucleotide-binding domains (NBDs) driven by ATP hydrolysis/binding. In this study, we performed targeted molecular dynamics (MD) simulations to explore the atomic details of the conformational transitions of BtuCD importer. The outward-facing to inward-facing (O→I) transition was found to be initiated by the conformational movement of NBDs. The subsequent reorientation of the substrate translocation pathway at TMD began with the closing of the periplasmic gate, followed by the opening of the cytoplamic gate in the last stage of the conformational transition due to the extensive hydrophobic interactions at this region, consistent with the functional requirement of unidirectional transport of the substrates. The reverse inward-facing to outward-facing (I→O) transition was found to exhibit intrinsic diversity of the conformational transition pathways and significant structural asymmetry, suggesting that the asymmetric crystal structure of BtuCD-F is an intermediate state in this process.  相似文献   

6.
The drug-binding domain of the human multidrug resistance P-glycoprotein (P-gp) probably consists of residues from multiple transmembrane (TM) segments. In this study, we tested whether the amino acids in TM11 participate in binding drug substrates. Each residue in TM11 was initially altered by site-directed mutagenesis and assayed for drug-stimulated ATPase activity in the presence of verapamil, vinblastine, or colchicine. Mutants G939V, F942A, T945A, Q946A, A947L, Y953A, A954L, and G955V had altered drug-stimulated ATPase activities. Direct evidence for binding of drug substrate was then determined by cysteine-scanning mutagenesis of the residues in TM11 and inhibition of drug-stimulated ATPase activity by dibromobimane, a thiol-reactive substrate. Dibromobimane inhibited the drug-stimulated ATPase activities of two mutants, F942C and T945C, by more than 75%. These results suggest that residues Phe(942) and Thr(945) in TM11, together with residues previously identified in TM6 (Leu(339) and Ala(342)) and TM12 (Leu(975), Val(982), and Ala(985)) (Loo, T. W., and Clarke, D. M. (1997) J. Biol. Chem. 272, 31945-31948) form part of the drug-binding domain of P-gp.  相似文献   

7.
Major facilitator superfamily (MFS) transporters typically need to alternatingly sample the outward-facing and inward-facing conformations, in order to transport the substrate across membrane. To understand the mechanism, in this work, we focused on one MFS member, the L-fucose/H+ symporter (FucP), whose crystal structure exhibits an outward-open conformation. Previous experiments imply several residues critical to the substrate/proton binding and structural transition of FucP, among which Glu135, located in the periplasm-accessible vestibule, is supposed as being involved in both proton translocation and conformational change of the protein. Here, the structural transition of FucP in presence of substrate was investigated using molecular-dynamics simulations. By combining the equilibrium and accelerated simulations as well as thermodynamic calculations, not only was the large-scale conformational change from the outward-facing to inward-facing state directly observed, but also the free energy change during the structural transition was calculated. The simulations confirm the critical role of Glu135, whose protonation facilitates the outward-to-inward structural transition both by energetically favoring the inward-facing conformation in thermodynamics and by reducing the free energy barrier along the reaction pathway in kinetics. Our results may help the mechanistic studies of both FucP and other MFS transporters.  相似文献   

8.
Human P-glycoprotein (P-gp), a kind of ATP-Binding Cassette transporter, can export a diverse variety of anti-cancer drugs out of the tumor cell. Its overexpression is one of the main reasons for the multidrug resistance (MDR) of tumor cells. It has been confirmed that during the substrate transport process, P-gp experiences a large-scale structural rearrangement from the inward- to outward-facing states. However, the mechanism of how the nucleotide-binding domains (NBDs) control the transmembrane domains (TMDs) to open towards the periplasm in the outward-facing state has not yet been fully characterized. Herein, targeted molecular dynamics simulations were performed to explore the conformational rearrangement of human P-gp. The results show that the allosteric process proceeds in a coupled way, and first the transition is driven by the NBDs, and then transmitted to the cytoplasmic parts of TMDs, finally to the periplasmic parts. The trajectories show that besides the translational motions, the NBDs undergo a rotation movement, which mainly occurs in xy plane and ensures the formation of the correct ATP-binding pockets. The analyses on the interaction energies between the six structure segments (cICLs) from the TMDs and NBDs reveal that their subtle energy differences play an important role in causing the periplasmic parts of the transmembrane helices to separate from each other in the established directions and in appropriate amplitudes. This conclusion can explain the two experimental phenomena about human P-gp in some extent. These studies have provided a detailed exploration into human P-gp rearrangement process and given an energy insight into the TMD reorientation during P-gp transition.  相似文献   

9.
Organic cation transporters (OCTs) of the SLC22 family play a pivotal role in distribution and excretion of cationic drugs. They mediate electrogenic translocation of cations in both directions. OCTs are polyspecific transporters. During substrate translocation they perform a series of conformational changes involving an outward-facing conformation, an occluded state and an inward-facing conformation. Mutagenesis of OCT1 in combination with homology modeling showed that identical amino acids form the innermost parts of the outward-open and inward-open binding clefts. In addition to low affinity substrate binding sites, OCT1 contains high affinity substrate binding sites that can mediate inhibition via non-transported compounds.  相似文献   

10.
LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method) followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5). The Potential of Mean Force (PMF) computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate''s binds to the site S1 ∼5 kcal/mol more favorable than that to the site S2 for all studied bound combinations of ions and a substrate.  相似文献   

11.
Multidrug transporters mediate the active extrusion of antibiotics and toxic ions from the cell. This reaction is thought to be based on a switch of the transporter between two conformational states, one in which the interior substrate binding cavity is available for substrate binding at the inside of the cell, and another in which the cavity is exposed to the outside of the cell to enable substrate release. Consistent with this model, cysteine cross-linking studies with the Major Facilitator Superfamily drug/proton antiporter LmrP from Lactococcus lactis demonstrated binding of transported benzalkonium to LmrP in its inward-facing state. The fluorescent dye Hoechst 33342 is a substrate for many multidrug transporters and is extruded by efflux pumps in microbial and mammalian cells. Surprisingly, and in contrast to other multidrug transporters, LmrP was found to actively accumulate, rather than extrude, Hoechst 33342 in lactococcal cells. Consistent with this observation, LmrP expression was associated with cellular sensitivity, rather than resistance to Hoechst 33342. Thus, we discovered a hidden “Janus” amongst LmrP substrates that is translocated in reverse direction across the membrane by binding to outward-facing LmrP followed by release from inward-facing LmrP. These findings are in agreement with distance measurements by electron paramagnetic resonance in which Hoechst 33342 binding was found to stabilize LmrP in its outward-facing conformation. Our data have important implications for the use of multidrug exporters in selective targeting of “Hoechst 33342-like” drugs to cells and tissues in which these transporters are expressed.  相似文献   

12.
The human multidrug resistance P-glycoprotein (P-gp, ABCB1) transports a wide variety of structurally diverse compounds out of the cell. The drug-binding pocket of P-gp is located in the transmembrane domains. Although occupation of the drug-binding pocket by one molecule is sufficient to activate the ATPase activity of P-gp, the drug-binding pocket may be large enough to accommodate two different substrates at the same time. In this study, we used cysteine-scanning mutagenesis to test whether P-gp could simultaneously interact with the thiol-reactive drug substrate, Tris-(2-maleimidoethyl)amine (TMEA) and a second drug substrate. TMEA is a cross-linker substrate of P-gp that allowed us to test for stimulation of cross-linking by a second substrate such as calcein-acetoxymethyl ester, colchicine, demecolcine, cyclosporin A, rhodamine B, progesterone, and verapamil. We report that verapamil induced TMEA cross-linking of mutant F343C(TM6)/V982C(TM12). By contrast, no cross-linked product was detected in mutants F343C(TM6), V982C(TM12), or F343C(TM6)/V982C(TM12) in the presence of TMEA alone. The verapamil-stimulated ATPase activity of mutant F343C(TM6)/V982C(TM12) in the presence of TMEA decreased with increased cross-linking of the mutant protein. These results show that binding of verapamil must induce changes in the drug-binding pocket (induced-fit mechanism) resulting in exposure of residues F343C(TM6)/V982C(TM12) to TMEA. The results also indicate that the common drug-binding pocket in P-gp is large enough to accommodate both verapamil and TMEA simultaneously and suggests that the substrates must occupy different regions in the common drug-binding pocket.  相似文献   

13.
GAT-1 mediates transport of GABA together with sodium and chloride in an electrogenic process enabling efficient GABAergic transmission. Biochemical and modeling studies based on the structure of the bacterial homologue LeuT are consistent with a mechanism whereby the binding pocket is alternately accessible to either side of the membrane and which predicts that the extracellular part of transmembrane domain 10 (TM10) exhibits aqueous accessibility in the outward-facing conformation only. In this study we have engineered cysteine residues in the extracellular half of TM10 of GAT-1 and probed their state-dependent accessibility to sulfhydryl reagents. In three out of four of the accessible cysteine mutants, the inhibition of transport by a membrane impermeant sulfhydryl reagent was diminished under conditions expected to increase the proportion of inward-facing transporters, such as the presence of GABA together with the cotransported ions. A conserved TM10 aspartate residue, whose LeuT counterpart participates in a "thin" extracellular gate, was found to be essential for transport and only the D451E mutant exhibited residual transport activity. D451E exhibited robust sodium-dependent transient currents with a voltage-dependence indicative of an increased apparent affinity for sodium. Moreover the accessibility of an endogenous cysteine to a membrane impermeant sulfhydryl reagent was enhanced by the D451E mutation, suggesting that sodium binding promotes an outward-facing conformation of the transporter. Our results support the idea that TM10 of GAT-1 lines an accessibility pathway from the extracellular space into the binding pocket and plays a role in the opening and closing of the extracellular transporter gate.  相似文献   

14.
Z Feng  T Hou  Y Li 《Molecular bioSystems》2012,8(10):2699-2709
Tripartite complex AcrB-ToIC, the major efflux system in Escherichia coli, is the principal multidrug transporter in Gram-negative bacteria, which is important in antibiotic drug tolerance. AcrB is a homotrimer that acts as a tripartite complex with the outer membrane channel ToIC and the membrane fusion protein AcrA. Recently, the crystal structures of AcrB bound to the high-molecular-mass drugs rifampicin and erythromycin were reported. Here we performed 20 ns molecular dynamics (MD) simulations of the AcrB-rifampicin-minocycline complex in a lipid bilayer and explicit water. We found that the bound drugs, rifampicin and erythromycin, made a unidirectional peristaltic movement towards the extrusion funnel of ToIC, which was facilitated by the water efflux in the channel of AcrB. With a shift of the Phe-617 loop, rifampicin in the access monomer moved towards the entrance of the distal binding pocket. Minocycline in the binding monomer moved from the distal binding pocket towards the gate of the central funnel. The channel between the entrance and the gate made a concerted opening during the MD simulations, which was helpful for the peristaltic movement. Our results showed that the mutations of Gly616Pro and Gly619Pro prevented the movement of the Phe-617 loop, which indicated the critical role of the flexibility of the Phe-617 loop. In addition, three putative proton translocation channels were proposed based on our results. Our study provided dynamical information and important residues for the peristaltic movement in AcrB, which were critical for substrate uptake and extrusion function.  相似文献   

15.
Defining the residues involved in the binding of a substrate provides insight into how the human multidrug resistance P-glycoprotein (P-gp) can transport a wide range of structurally diverse compounds out of the cell. Because verapamil is the most potent stimulator of P-gp ATPase activity, we synthesized a thiol-reactive analog of verapamil (MTS-verapamil) and used it with cysteine-scanning mutagenesis to identify the reactive residues within the drug-binding domain of P-gp. MTS-verapamil stimulated the ATPase activity of Cys-less P-gp and had a K(m) value (25 microM) that was similar to that of verapamil. 252 P-gp mutants containing a single cysteine within the predicted transmembrane (TM) segments were expressed in HEK 293 cells and purified by nickel-chelate chromatography and assayed for inhibition by MTS-verapamil. The activities of 15 mutants, Y118C (TM2), V125C (TM2), S222C (TM4), L339C (TM6), A342C (TM6), A729C (TM7), A841C (TM9), N842C (TM9), I868C (TM10), A871C (TM10), F942C (TM11), T945C (TM11), V982C (TM12), G984C (TM12), and A985C (TM12), were inhibited by MTS-verapamil. Four mutants, S222C (TM4), L339C (TM6), A342C (TM6), and G984C (TM12), were significantly protected from inhibition by MTS-verapamil by pretreatment with verapamil. Less protection was observed in mutants I868C (TM10), F942C (TM11) and T945C (TM11). These results indicate that residues in TMs 4, 6, 10, 11, and 12 must contribute to the binding of verapamil.  相似文献   

16.
D3 receptor, a member of dopamine (DA) D2-like receptor family, which belongs to class A of G-protein coupled receptors (GPCRs), has been reported to play a critical role in neuropsychiatric disorders. Recently, the crystal structure of human dopamine D3 receptor was reported, which facilitates structure-based drug discovery of D3R significantly. We dock D3R-selective compounds into the crystal structure of D3R and homology structure of D2R. Then we perform 20?ns molecular dynamics (MD) of the receptor with selective compounds bound in explicit lipid and water. Our docking and MD results indicate the important residues related to the selectivity of D3R. Specifically, residue Thr7.39 in D3R may contribute to the high selectivity of R-22 with D3R. Meanwhile, the 4-carbon linker and phenylpiperazine of R-22 improve the binding affinity and the selectivity with D3R. We also dock the agonists, including dopamine, into D3R and perform MD. Our molecular dynamics results of D3R with agonist bound show strong conformational changes from TM5, TM6, and TM7, outward movement of intracellular part of TM6, fluctuation of “ionic lock” motif and conformational change of Tyr7.53, which is consistent with recent crystal structures of active GPCRs and illustrates the dynamical process during activation. Our results reveal the mechanism of selectivity and activation for D3R, which is important for developing high selective antagonists and agonists for D3R.  相似文献   

17.
P-glycoprotein (P-gp), encoded by the MDR1 gene, is a plasma membrane transporter which confers resistance to many chemotherapeutic drugs. Monoclonal antibodies raised against P-gp have been used as tools to study P-gp topology and activity. Monoclonal antibody UIC2 recognizes a functional conformation of P-gp on the cell surface and blocks P-gp-mediated drug transport. Knowledge about the UIC2 epitope and the mechanism of its inhibitory effects may be helpful for understanding P-gp structure and developing P-gp inhibitors. In the present work, using several chimeras of MDR1 and MDR2, we found that the native sequence of the predicted extracellular loop between transmembrane domains (TM) 5 and 6 of P-gp is necessary, but not sufficient, for UIC2 reactivity. In addition, UIC2 reactivity is also affected by mutations in TM6, a region known to be involved in interactions of P-gp with substrates. These observations suggest that residues in the extracellular loop between TM5 and TM6 are directly involved in the display of the UIC2 epitope. Since TM6 has been shown to be actively involved in drug transport process, the proximity of this region to TM6 may help to explain why UIC2 binding is sensitive to the functional state of P-gp and why binding of UIC2 inhibits P-gp-mediated drug transport.  相似文献   

18.
Molecular dynamics (MD) simulations (5-10ns in length) and normal mode analyses were performed for the monomer and dimer of native porcine insulin in aqueous solution; both starting structures were obtained from an insulin hexamer. Several simulations were done to confirm that the results obtained are meaningful. The insulin dimer is very stable during the simulation and remains very close to the starting X-ray structure; the RMS fluctuations calculated from the MD simulation agree with the experimental B-factors. Correlated motions were found within each of the two monomers; they can be explained by persistent non-bonded interactions and disulfide bridges. The correlated motions between residues B24 and B26 of the two monomers are due to non-bonded interactions between the side-chains and backbone atoms. For the isolated monomer in solution, the A chain and the helix of the B chain are found to be stable during 5ns and 10ns MD simulations. However, the N-terminal and the C-terminal parts of the B chain are very flexible. The C-terminal part of the B chain moves away from the X-ray conformation after 0.5-2.5ns and exposes the N-terminal residues of the A chain that are thought to be important for the binding of insulin to its receptor. Our results thus support the hypothesis that, when monomeric insulin is released from the hexamer (or the dimer in our study), the C-terminal end of the monomer (residues B25-B30) is rearranged to allow binding to the insulin receptor. The greater flexibility of the C-terminal part of the beta chain in the B24 (Phe-->Gly) mutant is in accord with the NMR results. The details of the backbone and side-chain motions are presented. The transition between the starting conformation and the more dynamic structure of the monomers is characterized by displacements of the backbone of Phe B25 and Tyr B26; of these, Phe B25 has been implicated in insulin activation.  相似文献   

19.
20.
Musgaard M  Thøgersen L  Schiøtt B 《Biochemistry》2011,50(51):11109-11120
The P-type ATPases are responsible for the transport of cations across cell membranes. The sarco(endo)plasmic reticulum Ca2?-ATPase (SERCA) transports two Ca2? ions from the cytoplasm to the lumen of the sarco(endo)plasmic reticulum and countertransports two or three protons per catalytic cycle. Two binding sites for Ca2? ions have been located via protein crystallography, including four acidic amino acid residues that are essential to the ion coordination. In this study, we present molecular dynamics (MD) simulations examining the protonation states of these amino acid residues in a Ca2?-free conformation of SERCA. Such knowledge will be important for an improved understanding of atomistic details of the transport mechanism of protons and Ca2? ions. Eight combinations of the protonation of four central acidic residues, Glu309, Glu771, Asp800, and Glu908, are tested from 10 ns MD simulations with respect to protein stability and ability to maintain a structure similar to the crystal structure. The trajectories for the most prospective combinations of protonation states were elongated to 50 ns and subjected to more detailed analysis, including prediction of pK(a) values of the four acidic residues over the trajectories. From the simulations we find that the combination leaving only Asp800 as charged is most likely. The results are compared to available experimental data and explain the observed destabilization upon full deprotonation, resulting in the entry of cytoplasmic K? ions into the Ca2? binding sites during the simulation in which Ca2? ions are absent. Furthermore, a hypothesis for the exchange of protons from the central binding cavity is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号