首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Measuring the (dis)similarity between RNA secondary structures is critical for the study of RNA secondary structures and has implications to RNA functional characterization. Although a number of methods have been developed for comparing RNA structural similarities, their applications have been limited by the complexity of the required computation. In this paper, we present a novel method for comparing the similarity of RNA secondary structures generated from the same RNA sequence, i.e., a secondary structure ensemble, using a matrix representation of the RNA structures. Relevant features of the RNA secondary structures can be easily extracted through singular value decomposition (SVD) of the representing matrices. We have mapped the feature vectors of the singular values to a kernel space, where (dis)similarities among the mapped feature vectors become more evident, making clustering of RNA secondary structures easier to handle. The pair-wise comparison of RNA structures is achieved through computing the distance between the singular value vectors in the kernel space. We have applied a fuzzy kernel clustering method, using this similarity metric, to cluster the RNA secondary structure ensembles. Our application results suggest that our fuzzy kernel clustering method is highly promising for classifications of RNA structure ensembles, because of its low computational complexity and high clustering accuracy.  相似文献   

2.

Background  

Recent discoveries of a large variety of important roles for non-coding RNAs (ncRNAs) have been reported by numerous researchers. In order to analyze ncRNAs by kernel methods including support vector machines, we propose stem kernels as an extension of string kernels for measuring the similarities between two RNA sequences from the viewpoint of secondary structures. However, applying stem kernels directly to large data sets of ncRNAs is impractical due to their computational complexity.  相似文献   

3.
Many raw biological sequence data have been generated by the human genome project and related efforts. The understanding of structural information encoded by biological sequences is important to acquire knowledge of their biochemical functions but remains a fundamental challenge. Recent interest in RNA regulation has resulted in a rapid growth of deposited RNA secondary structures in varied databases. However, a functional classification and characterization of the RNA structure have only been partially addressed. This article aims to introduce a novel interval-based distance metric for structure-based RNA function assignment. The characterization of RNA structures relies on distance vectors learned from a collection of predicted structures. The distance measure considers the intersected, disjoint, and inclusion between intervals. A set of RNA pseudoknotted structures with known function are applied and the function of the query structure is determined by measuring structure similarity. This not only offers sequence distance criteria to measure the similarity of secondary structures but also aids the functional classification of RNA structures with pesudoknots.  相似文献   

4.
A statistical reference for RNA secondary structures with minimum free energies is computed by folding large ensembles of random RNA sequences. Four nucleotide alphabets are used: two binary alphabets, AU and GC, the biophysical AUGC and the synthetic GCXK alphabet. RNA secondary structures are made of structural elements, such as stacks, loops, joints, and free ends. Statistical properties of these elements are computed for small RNA molecules of chain lengths up to 100. The results of RNA structure statistics depend strongly on the particular alphabet chosen. The statistical reference is compared with the data derived from natural RNA molecules with similar base frequencies. Secondary structures are represented as trees. Tree editing provides a quantitative measure for the distance dt, between two structures. We compute a structure density surface as the conditional probability of two structures having distance t given that their sequences have distance h. This surface indicates that the vast majority of possible minimum free energy secondary structures occur within a fairly small neighborhood of any typical (random) sequence. Correlation lengths for secondary structures in their tree representations are computed from probability densities. They are appropriate measures for the complexity of the sequence-structure relation. The correlation length also provides a quantitative estimate for the mean sensitivity of structures to point mutations. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Several computational methods based on stochastic context-free grammars have been developed for modeling and analyzing functional RNA sequences. These grammatical methods have succeeded in modeling typical secondary structures of RNA, and are used for structural alignment of RNA sequences. However, such stochastic models cannot sufficiently discriminate member sequences of an RNA family from nonmembers and hence detect noncoding RNA regions from genome sequences. A novel kernel function, stem kernel, for the discrimination and detection of functional RNA sequences using support vector machines (SVMs) is proposed. The stem kernel is a natural extension of the string kernel, specifically the all-subsequences kernel, and is tailored to measure the similarity of two RNA sequences from the viewpoint of secondary structures. The stem kernel examines all possible common base pairs and stem structures of arbitrary lengths, including pseudoknots between two RNA sequences, and calculates the inner product of common stem structure counts. An efficient algorithm is developed to calculate the stem kernels based on dynamic programming. The stem kernels are then applied to discriminate members of an RNA family from nonmembers using SVMs. The study indicates that the discrimination ability of the stem kernel is strong compared with conventional methods. Furthermore, the potential application of the stem kernel is demonstrated by the detection of remotely homologous RNA families in terms of secondary structures. This is because the string kernel is proven to work for the remote homology detection of protein sequences. These experimental results have convinced us to apply the stem kernel in order to find novel RNA families from genome sequences.  相似文献   

6.
Bilateral similarity function is designed for analyzing the similarities of biological sequences such as DNA, RNA secondary structure or protein in this paper. The defined function can perform comprehensive comparison between sequences remarkably well, both in terms of the Hamming distance of two compared sequences and the corresponding location difference. Compared with the existing methods for similarity analysis, the examination of similarities/dissimilarities illustrates that the proposed method with the computational complexity of O(N) is effective for these three kinds of biological sequences, and bears the universality for them.  相似文献   

7.
We have developed a new method and program, SARF2, for fast comparison of protein structures, which can detect topological as well as nontopological similarities. The method searches for large ensembles of secondary structure elements, which are mutually compatible in two proteins. These ensembles consist of small fragments of Cα-trace, similarly arranged in three-dimensional space in two proteins, but not necessarily equally-ordered along the polypeptide chains. The program SARF2 is available for everyone through the World-Wide Web (WWW). We have performed an exhaustive pairwise comparison of all the entries from a recent issue of the Protein Data Bank (PDB) and report here on the results of an automated hierarchical cluster analysis. In addition, we report on several new cases of significant structural resemblance between proteins. To this end, a new definition of the significance of structural similarity is introduced, which effectively distinguishes the biologically meaningful equivalences from those occurring by chance. Analyzing the distribution of sequence similarity in significant structural matches, we show that sequence similarity as low as 20% in structurally-prealigned proteins can be a strong indication for the biological relevance of structural similarity. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational processes. RNA is a paradigmatic example of biopolymer where genotype (sequence) and phenotype (approximated by the secondary structure fold) are identified in a single molecule. The extreme redundancy of the genotype-phenotype map leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive folding of sequence space. A total of 4(12) sequences fragments into 645 subnetworks that correspond to 57 different secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to other networks previously described.  相似文献   

9.
Interval-based distance function for identifying RNA structure candidates   总被引:1,自引:0,他引:1  
Many clustering approaches have been developed for biological data analysis, however, the application of traditional clustering algorithms for RNA structure data analysis is still a challenging issue. This arises from the existence of complex secondary structures while clustering. One of the most critical issues of cluster analysis is the development of appropriate distance measures in high dimensional space. The traditional distance measures focus on scale issues, but ignores the correlation between two values. This article develops a novel interval-based distance (Hausdorff) measure for computing the similarity between characterized structures. Three relationships including perfect match, partially overlapped and non-overlapped are considered. Finally, we demonstrate the methods by analyzing a data set of RNA secondary structures from the Rfam database.  相似文献   

10.

Background  

The secondary structure of folded RNA sequences is a good model to map phenotype onto genotype, as represented by the RNA sequence. Computational studies of the evolution of ensembles of RNA molecules towards target secondary structures yield valuable clues to the mechanisms behind adaptation of complex populations. The relationship between the space of sequences and structures, the organization of RNA ensembles at mutation-selection equilibrium, the time of adaptation as a function of the population parameters, the presence of collective effects in quasispecies, or the optimal mutation rates to promote adaptation all are issues that can be explored within this framework.  相似文献   

11.
Multiple kernel learning (MKL) is demonstrated to be flexible and effective in depicting heterogeneous data sources since MKL can introduce multiple kernels rather than a single fixed kernel into applications. However, MKL would get a high time and space complexity in contrast to single kernel learning, which is not expected in real-world applications. Meanwhile, it is known that the kernel mapping ways of MKL generally have two forms including implicit kernel mapping and empirical kernel mapping (EKM), where the latter is less attracted. In this paper, we focus on the MKL with the EKM, and propose a reduced multiple empirical kernel learning machine named RMEKLM for short. To the best of our knowledge, it is the first to reduce both time and space complexity of the MKL with EKM. Different from the existing MKL, the proposed RMEKLM adopts the Gauss Elimination technique to extract a set of feature vectors, which is validated that doing so does not lose much information of the original feature space. Then RMEKLM adopts the extracted feature vectors to span a reduced orthonormal subspace of the feature space, which is visualized in terms of the geometry structure. It can be demonstrated that the spanned subspace is isomorphic to the original feature space, which means that the dot product of two vectors in the original feature space is equal to that of the two corresponding vectors in the generated orthonormal subspace. More importantly, the proposed RMEKLM brings a simpler computation and meanwhile needs a less storage space, especially in the processing of testing. Finally, the experimental results show that RMEKLM owns a much efficient and effective performance in terms of both complexity and classification. The contributions of this paper can be given as follows: (1) by mapping the input space into an orthonormal subspace, the geometry of the generated subspace is visualized; (2) this paper first reduces both the time and space complexity of the EKM-based MKL; (3) this paper adopts the Gauss Elimination, one of the on-the-shelf techniques, to generate a basis of the original feature space, which is stable and efficient.  相似文献   

12.
Methods for efficient and accurate prediction of RNA structure are increasingly valuable, given the current rapid advances in understanding the diverse functions of RNA molecules in the cell. To enhance the accuracy of secondary structure predictions, we developed and refined optimization techniques for the estimation of energy parameters. We build on two previous approaches to RNA free-energy parameter estimation: (1) the Constraint Generation (CG) method, which iteratively generates constraints that enforce known structures to have energies lower than other structures for the same molecule; and (2) the Boltzmann Likelihood (BL) method, which infers a set of RNA free-energy parameters that maximize the conditional likelihood of a set of reference RNA structures. Here, we extend these approaches in two main ways: We propose (1) a max-margin extension of CG, and (2) a novel linear Gaussian Bayesian network that models feature relationships, which effectively makes use of sparse data by sharing statistical strength between parameters. We obtain significant improvements in the accuracy of RNA minimum free-energy pseudoknot-free secondary structure prediction when measured on a comprehensive set of 2518 RNA molecules with reference structures. Our parameters can be used in conjunction with software that predicts RNA secondary structures, RNA hybridization, or ensembles of structures. Our data, software, results, and parameter sets in various formats are freely available at http://www.cs.ubc.ca/labs/beta/Projects/RNA-Params.  相似文献   

13.

Background  

Owing to the rapid expansion of RNA structure databases in recent years, efficient methods for structure comparison are in demand for function prediction and evolutionary analysis. Usually, the similarity of RNA secondary structures is evaluated based on tree models and dynamic programming algorithms. We present here a new method for the similarity analysis of RNA secondary structures.  相似文献   

14.
With more and more ribonucleic acid (RNA) secondary structures accumulated, the need for comparing different RNA secondary structures often arises in function prediction and evolutionary analysis. Numerous efficient algorithms were developed for comparing different RNA secondary structures, but challenges remain. In this paper, six new models based on the linear regression model were proposed for the comparison of RNA secondary structures. The proposed models were tested on a mixed data, containing six secondary structures from RNase P RNAs, three secondary structures from SSU rRNA and five secondary structures from 16S ribosomal RNAs. The results have shown the effectiveness of the proposed models. Moreover, the time complexity of our models is favorable by comparing with that of the existing methods which solve the similar problem.  相似文献   

15.
Abstract

A new approach to the prediction of secondary RNA structures based on the analysis of the kinetics of molecular self-organisation is proposed herein. The Markov process is used to describe structural reconstructions during secondary structure formation. This process is modelled by a Monte-Carlo method. Examples of the calculation by this method of the secondary structures kinetic ensemble are given. Distribution of time-dependent probabilities within the ensembles is obtained.

An effective method for search for the equilibrium ensemble is also suggested. This method is based on the construction of a tree of all possible secondary structures of RNA. By ascribing a probability for each structure (according to its free energy) the Boltzmann equilibrium ensemble can be obtained.  相似文献   

16.
To address many challenges in RNA structure/function prediction, the characterization of RNA''s modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.  相似文献   

17.

Background

Molecular dynamics (MD) simulations are powerful tools to investigate the conformational dynamics of proteins that is often a critical element of their function. Identification of functionally relevant conformations is generally done clustering the large ensemble of structures that are generated. Recently, Self-Organising Maps (SOMs) were reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data mining problems. We present a novel strategy to analyse and compare conformational ensembles of protein domains using a two-level approach that combines SOMs and hierarchical clustering.

Results

The conformational dynamics of the α-spectrin SH3 protein domain and six single mutants were analysed by MD simulations. The Cα's Cartesian coordinates of conformations sampled in the essential space were used as input data vectors for SOM training, then complete linkage clustering was performed on the SOM prototype vectors. A specific protocol to optimize a SOM for structural ensembles was proposed: the optimal SOM was selected by means of a Taguchi experimental design plan applied to different data sets, and the optimal sampling rate of the MD trajectory was selected. The proposed two-level approach was applied to single trajectories of the SH3 domain independently as well as to groups of them at the same time. The results demonstrated the potential of this approach in the analysis of large ensembles of molecular structures: the possibility of producing a topological mapping of the conformational space in a simple 2D visualisation, as well as of effectively highlighting differences in the conformational dynamics directly related to biological functions.

Conclusions

The use of a two-level approach combining SOMs and hierarchical clustering for conformational analysis of structural ensembles of proteins was proposed. It can easily be extended to other study cases and to conformational ensembles from other sources.  相似文献   

18.
比较序列分析作为RNA二级结构预测的最可靠途径, 已经发展出许多算法。将基于此方法的结构预测视为一个二值分类问题: 根据序列比对给出的可用信息, 判断比对中任意两列能否构成碱基对。分类器采用支持向量机方法, 特征向量包括共变信息、热力学信息和碱基互补比例。考虑到共变信息对序列相似性的要求, 通过引入一个序列相似度影响因子, 来调整不同序列相似度情况下共变信息和热力学信息对预测过程的影响, 提高了预测精度。通过49组Rfam-seed比对的验证, 显示了该方法的有效性, 算法的预测精度优于多数同类算法, 并且可以预测简单的假节。  相似文献   

19.
J Boberg  T Salakoski  M Vihinen 《Proteins》1992,14(2):265-276
Reliable structural and statistical analyses of three dimensional protein structures should be based on unbiased data. The Protein Data Bank is highly redundant, containing several entries for identical or very similar sequences. A technique was developed for clustering the known structures based on their sequences and contents of alpha- and beta-structures. First, sequences were aligned pairwise. A representative sample of sequences was then obtained by grouping similar sequences together, and selecting a typical representative from each group. The similarity significance threshold needed in the clustering method was found by analyzing similarities of random sequences. Because three dimensional structures for proteins of same structural class are generally more conserved than their sequences, the proteins were clustered also according to their contents of secondary structural elements. The results of these clusterings indicate conservation of alpha- and beta-structures even when sequence similarity is relatively low. An unbiased sample of 103 high resolution structures, representing a wide variety of proteins, was chosen based on the suggestions made by the clustering algorithm. The proteins were divided into structural classes according to their contents and ratios of secondary structural elements. Previous classifications have suffered from subjective view of secondary structures, whereas here the classification was based on backbone geometry. The concise view lead to reclassification of some structures. The representative set of structures facilitates unbiased analyses of relationships between protein sequence, function, and structure as well as of structural characteristics.  相似文献   

20.
ABSTRACT: BACKGROUND: Identification of protein structural cores requires isolation of sets of proteins all sharing a same subset of structural motifs. In the context of ever growing number of available 3D protein structures, standard and automatic clustering algorithms require adaptations so as to allow for efficient identification of such sets of proteins. RESULTS: When considering a pair of 3D structures, they are stated as similar or not according to the local similarities of their matching substructures in a structural alignment. This binary relation can be represented in a graph of similarities where a node represents a 3D protein structure and an edge states that two 3D protein structures are similar. Therefore, the classification of proteins into structural families can be viewed as graph clustering task. Unfortunately, because such a graph encodes only pairwise similarity information, clustering algorithms may group in the same cluster a subset of 3D structures that do not share a common substructure. To overcome this drawback we first define a ternary similarity on a triple of 3D structures as a constraint to be satisfied by the graph of similarities. Such a ternary constraint takes into account similarities between pairwise alignments, so as to ensure that the three involved protein structures do have some common substructure. We propose hereunder a modification algorithm that eliminates edges from the original graph of similarities and outputs a reduced graph in which no ternary constraints are violated. Our proposition is then first to build a graph of similarities, then to reduce the graph according to the modification algorithm, and finally to apply to the reduced graph a standard graph clustering algorithm. We applied this method to ASTRAL-40 non-redundant protein domains, identifying significant pairwise similarities with Yakusa, a program devised for rapid 3D structure alignments. CONCLUSIONS: We show that filtering similarities prior to standard graph based clustering process by applying ternary similarity constraints i) improves the separation of proteins of different classes and consequently ii) improves the classification quality of standard graph based clustering algorithms according to the reference classification SCOP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号