首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrophoresis of bacteriophage T7 and T7 capsids in agarose gels.   总被引:10,自引:7,他引:3       下载免费PDF全文
Agarose gel electrophoresis of the following was performed in 0.05 M sodium phosphate-0.001 M MgCl2 (pH 7.4): (i) bacteriophage T7; (ii) a T7 precursor capsid (capsid I), isolated from T7-infected Escherichia coli, which has a thicker and less angular envelope than bacteriophage T7; (iii) a second capsid (capsid II), isolated from T7-infected E. coli, which has a bacteriophage-like envelope; and (iv) capsids (capsid IV) produced by temperature shock of bacteriophage T7. Bacteriophage T7 and all of the above capsids migrated towards the anode. In a 0.9% agarose gel, capsid I had an electrophoretic mobility of 9.1 +/- 0.4 X 10(-5) cm2/V.s; bacteriophage T7 migrated 0.31 +/- 0.02 times as fast as capsid I. The mobilities of different preparations of capsid II varied in such gels: the fastest-migrating capsid II preparation was 0.51 +/- 0.03 times as fast as capsid I and the slowest was 0.37 +/- 0.02 times as fast as capsid I. Capsid IV with and without the phage tail migrated 0.29 +/- 0.02 and 0.42 +/- 0.02 times as fast as capsid I. The results of the extrapolation of bacteriophage and capsid mobilities to 0% agarose concentration indicated that the above differences in mobility are caused by differences in average surface charge density. To increase the accuracy of mobility comparisons and to increase the number of samples that could be simultaneously analyzed, multisample horizontal slab gels were used. Treatment with the ionic detergent sodium dodecyl sulfate converted capsid I to a capsid that migated in the capsid II region during electrophoresis through agarose gels. In the electron microscope, most of the envelopes of these latter capsids resembled the capsid II envelope, but some envelope regions were thicker than the capsid II envelope.  相似文献   

2.
To understand constraints on the evolution of bacteriophage assembly, the structures, electrophoretic mobilities (mu) and assembly pathways of the related double-stranded DNA bacteriophages T7, T3 and phi II, have been compared. The characteristics of the following T7, T3 and phi II capsids in these assembly pathways have also been compared: (1) a DNA-free procapsid (capsid I) that packages DNA during assembly; (b) a DNA packaging-associated conversion product of capsid I (capsid II). The molecular weights of the T3 and phi II genomes were 25.2 X 10(6) and 25.9 (+/- 0.2) X 10(6) (26.44 X 10(6) for T7, as previously determined), as determined by agarose gel electrophoresis of intact genomes. The radii of T7, T3 and phi II bacteriophages were indistinguishable by sieving during agarose gel electrophoresis (+/- 4%) and measurement of the bacteriophage hydration (+/- 2%) (30.1 nm for T7, as previously determined). Assuming a T = 7 icosahedral lattice for the arrangement of the major capsid subunits (p10A) of T7, T3 and phi II best explains these data and data previously obtained for T7. At pH 7.4 and an ionic strength of 1.2, the solid-support-free mu values (mu 0 values) of T7, T3 and phi II bacteriophages, obtained by extrapolation of mu during agarose gel electrophoresis to an agarose concentration of 0 and correction for electro-osmosis, were -0.71, -0.91 and -1.17(X 10(-4) cm2V-1 s-1. The mu 0 values of T7, T3 and phi II capsids I were -1.51, -1.58 and -2.07(X 10(-4] cm2V-1 s-1. For the capsids II, these mu 0 values were -0.82, -1.07 and -1.37(X 10(-4] cm2V-1 s-1. The tails of all three bacteriophages were positively charged and the capsid envelopes (heads) were negatively charged. In all cases the procapsid had a negative mu 0 value larger in magnitude than the negative mu 0 value for bacteriophage or capsid II. A trypsin-sensitive region in capsid I-associated, but not capsid II-associated, T3 p10A was observed (previously observed for T7). The largest fragment of trypsinized capsid I-associated p10A had the same molecular weight in T7 and T3, although the T3 p10A is 18% more massive than the T7 p10A. It is suggested that the trypsin-resistant region of capsid I-associated p10A determines the radius of the bacteriophage capsid.  相似文献   

3.
It has previously been shown that: (i) during infection of its host, the DNA bacteriophage T7 assembles a DNA-free procapsid (capsid I), a capsid with an envelope differing physically and chemically from the capsid of the mature bacteriophage, and (ii) capsid I converts to a capsid (capsid II) with a bacteriophage-like envelope as it packages DNA. Lysates of phage T7-infected Escherichia coli contained a particle (AG particle) which copurified with capsid II during buoyant density sedimentation, velocity sedimentation, and solid support-free electrophoresis, but was distinguished from capsid II by its apparent diversity during electrophoresis in agarose gels. Treatment of AG particles with trypsin converted most of them to particles that comigrated with trypsin-treated capsid II during electrophoresis in agarose gels. Irreversible binding of AG particles to agarose gels was shown to contribute to the apparent diversity of AG particles during agarose gel electrophoresis. The results of quantitation of AG particles and of capsid I and capsid II in lysates of a nonpermissive host infected with T7 amber mutants suggested that, in site of their capsid II-like properties, most AG particles were produced during assembly of capsid I and not during DNA packaging. The presence of AG particles in T7 lysates explains contradictions in previous data concerning the pathway of T7 assembly.  相似文献   

4.
Evidence that in vivo bacteriophage T3 DNA packaging includes capsid hyper-expansion that is triggered by lengthening of incompletely packaged DNA (ipDNA) is presented here. This evidence includes observation that some of the longer ipDNAs in T3-infected cells are packaged in ipDNA-containing capsids with hyper-expanded outer shells (HE ipDNA-capsids). In addition, artificially induced hyper-expansion is observed for the outer shell of a DNA-free capsid. Detection and characterization of HE ipDNA-capsids are based on two-dimensional, non-denaturing agarose gel electrophoresis, followed by structure determination with electron microscopy and protein identification with SDS-PAGE/mass spectrometry. After expulsion from HE ipDNA-capsids, ipDNA forms sharp bands during gel electrophoresis. The following hypotheses are presented: (1) T3 has evolved feedback-initiated, ATP-driven capsid contraction/hyper-expansion cycles that accelerate DNA packaging when packaging is slowed by increase in the packaging-resisting force of the ipDNA and (2) each gel electrophoretic ipDNA band reflects a contraction/hyper-expansion cycle.  相似文献   

5.
G A Griess  P Serwer 《Biopolymers》1990,29(14):1863-1866
The gel electrophoresis of spherical particles with a radius above 0.2 micron has not been reported yet. In the present study, video phase-contrast light microscopy is used to observe the motion of individual latex spheres, 0.52 micron in radius, during electrophoresis in 0.1% agarose gels. At 2 V/cm, the spheres initially migrate in the direction of the electrical field. However, each sphere eventually undergoes a cessation of all motion. Brownian motion is restored when the electrical potential gradient is reduced to zero. Arrest can be prevented by periodically inverting the direction of the electrical field. These observations are explained by electrical field-induced steric trapping of the spheres by gel fibers. Inversion of the electrical field should assist the application of agarose gel electrophoresis to micron-sized cellular organelles and cells.  相似文献   

6.
The understanding, on a molecular level, of the mechanisms responsible for the improved separation in DNA gel electrophoresis when using modulated electric fields requires detailed information about conformational distribution and dynamics in the DNA/gel system. The orientational order due to electrophoretic migration ("electrophoretic orientation") is an interesting piece of information in this context that can be obtained through linear dichroism spectroscopy [M. Jonsson, B. Akerman, and B. Nordén, (1988) Biopolymers 27, 381-414]. The technique permits measurement of the orientation factor S of DNA (S = 1 corresponds to perfect orientation) within an electrophoretic zone in the gel during the electrophoresis. It is reported that the degree of orientation of T2 DNA [170 kilo base pairs (kpb)] is considerable (S = 0.17 in 1% agarose at 10 V/cm) compared to relatively modest orientations of short fragments found earlier (for 23-kbp DNA, S = 0.03 in 1% agarose at 10 V/cm), showing that large DNA coils are substantially deformed during the migration. Growth and relaxation dynamics of the orientational order of the T2 DNA are also reported, as functions of gel concentration (0.3-2%), electric field strength (0-40 V/cm), and pulse characteristics. The rise profile of the DNA orientation, when applying a constant field, is a nonmonotonic function that displays a pronounced overshoot, followed by a minor undershoot, before it reaches steady-state orientation (after 12 s in 1% agarose, 9 V/cm). The orientational relaxation in absence of field shows a multiexponential decay in a time region of some 10 s, when most of the DNA anisotropy has disappeared. A surprising phenomenon is a memory over minutes of the DNA/gel system to previous pulses: with two consecutive rectangular pulses (of the same polarity), the orientational overshoot and undershoot as a response to the second pulse are significantly reduced compared to the first pulse. The time required to recover 90% of their amplitudes is typically 1200 s (1% agarose, 9 V/cm), which may be compared to the time required to relax 90% of the DNA orientation, which is only 6 s. The major part of the over- and undershoot recovery is thus a reorganization of a system in which DNA is already randomly oriented. The different response amplitudes and relaxation times, including the amplitude and recovery time of the overshoot, of the orientational order of DNA in the electrophoretic gel have been studied as functions of gel concentration and field strength. The results are discussed against relevant theories of polymer dynamics.  相似文献   

7.
To build a foundation for the single-molecule fluorescence microscopy of protein complexes, the present study achieved fluorescence microscopy of single, nucleic acid-free protein capsids of bacteriophage T7. The capsids were stained with Alexa 488 (green emission). Manipulation of the capsids' thermal motion was achieved in three dimensions. The procedure for manipulation included embedding the capsids in an agarose gel. The data indicate that the thermal motion of capsids is reduced by the sieving of the gel. The thermal motion can be reduced to any desired level. A semilogarithmic plot of an effective diffusion constant as a function of gel concentration is linear. Single, diffusing T7 capsids were also visualized in the presence of single DNA molecules that had been both stretched and immobilized by gel-embedding. The DNA molecules were stained with ethidium (orange emission). This study shows that single-molecule (protein and DNA) analysis is possible for both packaging of DNA in a bacteriophage capsid and other events of DNA metabolism. The major problem is the maintenance of biochemical activity.  相似文献   

8.
We have examined the use of pulsed-field gel electrophoresis (PFGE) to measure DNA double-strand breaks induced in CHO cells by ionizing radiation. The PFGE assay provides a simple method for the measurement of DNA double-strand breaks for doses as low as 3-4 Gy ionizing radiation, and appears applicable for the measurement of damage produced by any agent producing double-strand breaks. The conditions of transverse alternating field electrophoresis determined both the sensitivity of the assay and the ability to resolve DNA fragments with different sizes. For example, with 0.8% agarose and a 1-min pulse time at 250 V for 18 h of electrophoresis, 0.39% of the DNA per gray migrated into the gel, and only molecules less than 1500 kb could be resolved. With 0.56% agarose and a 60-min pulse time at 40 V for 6 days of electrophoresis, 0.55-0.90% of the DNA per gray migrated into the gel, and molecules between 1500 and 7000 kb could be resolved.  相似文献   

9.
Circular DNA of 3T6R50 double minute chromosomes   总被引:13,自引:1,他引:12       下载免费PDF全文
In pulsed field gradient gel electrophoresis (PFGE) the intact deproteinized circular DNA of Mycoplasma (800 kb) and Escherichia coli (4700 kb) remains trapped in the slot. We show here that gamma-irradiation of the DNA in agarose plugs is a convenient method to partially convert these circles into full-length linears, migrating with the expected mobility in PFGE. We have used this method to study the structure of Double Minute chromosomes (DMs) from the methotrexate (MTX)-resistant mouse cell line 3T6R50. Intact deproteinized DM DNA is immobile in these gels, but is converted into a single band of about 2500 kb by either gamma-irradiation, DNaseI in the presence of Mn2+, or restriction enzymes. We conclude that the DM DNA in 3T6R50 cells consists of a homogeneous population of 2500-kb circles.  相似文献   

10.
The orientation of agarose gels in pulsed electric fields has been studied by the technique of transient electric birefringence. The unidirectional electric fields ranged from 2 to 20 V/cm in amplitude and 1 to 100 s in duration, values within the range typically used for pulsed field gel electrophoresis (PFGE). Agarose gels varying in concentration from 0.3 to 2.0% agarose were studied. The sign of the birefringence varied randomly from one gel to another, as described previously [J. Stellwagen & N. C. Stellwagen (1989), Nucleic Acids Research, Vol. 17, 1537–1548]. The sign and amplitude of the birefringence also varied randomly at different locations within each gel, indicating that agarose gels contain multiple subdomains that orient independently in the electric field. Three or four relaxation times of alternating sign were observed during the decay of the birefringence. The various relaxation times, which range from 1 to ~ 120 s, can be attributed to hierarchies of aggregates that orient in different directions in the applied electric field. The orienting domains range up to ~ 22 μm in size, depending on the pulsing conditions. The absolute amplitude of the birefringence of the agarose gels increased approximately as the square of the electric field strength. The measured Ker constants are ~ 5 orders of magnitude larger than those observed when short, high-voltage pulses are applied to agarose gels. The increase in the Kerr constants in the low-voltage regime parallels the increase in the relaxation times in low-voltage electric fields. Birefringence saturation saturation curves in both the low- and high-voltage regimes can be fitted by theoretical curves for permanent dipole orientation. The apparent permanent dipole moment increase approximately as the 1.6 power of fiber length, consistent with the presence of overlapping agarose helices in the large fiber bundles orienting in low-voltage electric fields, the optical factor is approximately independent of fiber length. Therefore, the marked increase in the Kerr constants observed in the low-voltage regime is due to the large increase in the electrical orientation factor, which is due in turn to the increased length of the fiber bundles and domains orienting in low-voltage electric fields. Since the size of the fiber bundles and domains approximates the size of the DNA molecules being separated by PFGE, the orientation of the agarose matrix in the applied electric field may facilitate the migration of large DNA molecules during PFGE. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Bacteriophage P22, like other double-stranded DNA bacteriophages, packages DNA in a preassembled, DNA-free procapsid. The P22 procapsid and P22 bacteriophage have been electrophoretically characterized; the procapsid has a negative average electrical surface charge density (sigma) higher in magnitude than the negative sigma of the mature bacteriophage. Dextrans, sucrose, and maltose were shown to have a dramatic stimulatory effect on the in vitro packaging of DNA by the P22 procapsid. However, sedoheptulose, smaller sugars, and smaller polyols did not stimulate in vitro P22 DNA packaging. These and other data suggest that an osmotic pressure difference across some particle, probably a capsid, stimulates P22 DNA packaging. After in vitro packaging was optimized by including dextran 40 in extracts, the entry kinetics of DNA into P22 capsids were measured. Packaged DNA was detected by: (i) DNA-specific staining of intact capsids after fractionation by agarose gel electrophoresis and (ii) agarose gel electrophoresis of DNase-resistant DNA after release of DNase-resistant DNA from capsids. It was found that the first DNA was packaged by 1.5 min after the start of incubation. The data further suggest that either P22 capsids with DNA partially packaged in vitro are too unstable to be detected by the above procedures or entry of DNA into the capsid occurs in less than 0.25 min.  相似文献   

12.
Bacteriophage P22 assembles a DNA-free procapsid that subsequently packages P22 DNA. To study the packaging of bacteriophage P22 DNA, attempts were made to isolate P22 capsids with a subgenome length of packaged DNA. With the use of cesium chloride buoyant density sedimentation and agarose gel electrophoresis, the following capsids with a subgenome length of packaged DNA were isolated and characterized: (i) a capsid with the solid-support-free electrophoretic mobility and radius of the DNA-free P22 procapsid; (ii) a capsid with the solid-support-free electrophoretic mobility and radius of the mature P22 bacteriophage; and (iii) a capsid with a solid-support-free electrophoretic mobility and possibly a radius intermediate to those of the procapsid and bacteriophage.  相似文献   

13.
A technique has been developed for embedding several agarose gels (running gels), each of a different agarose concentration, within a single 1.5% agarose slab. Equal portions of a sample were placed at the origin of each running gel and were simultaneously subjected to electrophoresis. Protein within the running gels was detected by staining with Coomassie blue; 0.2% gels were the least concentrated gels that were stained without gel breakage. Using the above technique, the dependence of electrophoretic mobility on agarose concentration has been measured for bacteriophage T7 capsids and a capsid dimer.  相似文献   

14.
Pulsed field gel electrophoresis (PFGE) is a technique for the fractionation of high-molecular-weight DNA ranging from 10 kb to 10 Mb by electrophoresis in agarose gel with an electric field that alternates (pulsates) in two directions. This technology plays a key role in modern genomics, as it allows manipulations with DNA of whole chromosomes or their large fragments. In this review, we discuss (1) the theory behind PFGE; (2) different instruments based on the principle of pulsed field, as well as their advantages and limitations; (3) factors affecting the DNA mobility in PFGE gel; and (4) practical applications of the technique.  相似文献   

15.
P Serwer  R H Watson    S J Hayes 《Journal of virology》1987,61(11):3499-3509
By use of rate-zonal centrifugation, followed by either one- or two-dimensional agarose gel electrophoresis, the forms of intracellular bacteriophage T7 DNA produced by replication, recombination, and packaging have been analyzed. Previous studies had shown that at least some intracellular DNA with sedimentation coefficients between 32S (the S value of mature T7 DNA) and 100S is concatemeric, i.e., linear and longer than mature T7 DNA. The analysis presented here confirmed that most of this DNA is linear, but also revealed a significant amount of circular DNA. The data suggest that these circles are produced during DNA packaging. It is proposed that circles are produced after a capsid has bound two sequential genomes in a concatemer. The size distribution of the linear, concatemeric DNA had peaks at the positions of dimeric and trimeric concatemers. Restriction endonuclease analysis revealed that most of the mature T7 DNA subunits of concatemers were joined left end to right end. However, these data also suggest that a comparatively small amount of left-end to left-end joining occurs, possibly by blunt-end ligation. A replicating form of T7 DNA that had an S value greater than 100 (100S+ DNA) was also found to contain concatemers. However, some of the 100S+ DNA, probably the most branched component, remained associated with the origin after agarose gel electrophoresis. It has been found that T7 protein 19, known to be required for DNA packaging, was also required to prevent loss, probably by nucleolytic degradation, of the right end of all forms of intracellular T7 DNA. T7 gene 3 endonuclease, whose activity is required for both recombination of T7 DNA and degradation of host DNA, was required for the formation of the 32S to 100S molecules that behaved as concatemers during gel electrophoresis. In the absence of gene 3 endonuclease, the primary accumulation product was origin-associated 100S+ DNA with properties that suggest the accumulation of branches, primarily at the left end of mature DNA subunits within the 100S+ DNA.  相似文献   

16.
利用脉冲电泳介导绿色荧光蛋白(GFP)基因导入玉米种胚;以GFP基因在种胚中瞬时表达作为外源基因导人种胚细胞的标记,分析了外源.DNA浓度、电泳时间、电压、电流转换时间等脉冲电泳转化参数对种胚发芽率和外源基因导入率的影响。结果表明:脉冲电泳时间对种胚发芽率和外源GFP基因导入率影响最大;通过脉冲电泳可将外源基因导入胚芽细胞,其GFP基因导人种子的频率与各电泳参数均呈二次曲线关系,300μg/ml外源DNA浓度、120min电泳时间、5V电压、2s电流转换时间可作为脉冲电泳介导玉米种胚转化较适宜的参数。  相似文献   

17.
The displacement per pulse of lambda, T4, and G DNA during pulsed-field agarose gel electrophoresis has been measured for a fine mesh of pulse durations T between 0.02 and 120 s. The slopes of these curves show that the DNA moves by two distinct processes, designated 1 and 2, depending upon the pulse duration T. Process 1 operates at short T and causes dx/dT to decrease gradually with increasing T. This process is independent of molecular weight M. Process 2 is effective at longer T and causes dx/dT to rise sharply in sigmoidal fashion at a value of T which increases as M1.2, finally reaching a plateau of 1.4 microns/s for E = 4 V/cm. The shape of the dx/dT curve and its dependence on M lead directly to 4 zones of separation in plots of mobility vs M for different T. The alignment of the 3 DNAs during PFGE was measured by fluorescence-detected linear dichroism for E between 4 and 10 V/cm. These results are used in developing a molecular understanding of the mobility data.  相似文献   

18.
Electrophoresis in an agarose gel dilute enough to be almost nonretarding, followed by electrophoresis in an orthogonal direction into a more concentrated agarose gel, has been developed as a procedure to determine the radius of spherical particles. Unlike procedures of unidirectional electrophoresis in a single gel, the above procedure can be used to compare the radii of particles that differ in solid-support-free electrophoretic mobility. Accuracy of 0.3 nm has been achieved with particles 30 nm in radius. It was found that the apparent radius of the spherical capsid of bacteriophage P22 decreased by 3% during elevated temperature-induced ejection of DNA from the capsid. Though originally designed for use with multimolecular particles, the procedure described here should also be useful with monomolecular particles.  相似文献   

19.
P Serwer  S J Hayes 《Biochemistry》1989,28(14):5827-5832
Pulsed field agarose gel (PFG) electrophoresis, originally used to improve the resolution by length of linear DNA [Cantor et al. (1988) Annu. Rev. Biophys. Biophys. Chem. 17, 287-304], is found here to cause atypical sieving of 48.5-97.0-kb open circular DNA. Two procedures of PFG electrophoresis are used: rotating gel electrophoresis with rotation of 2 pi radians [2 pi RGE; Serwer, P., & Hayes, S.J. (1989) Appl. Theor. Electrophor. (in press)] and field inversion gel electrophoresis [FIGE; Carle, G.F., Frank, M., & Olson, M. V. (1986) Science 232, 65-68]. During 2 pi RGE at 6 V/cm, the electrophoretic mobility (mu) of 48.5-kb open circular DNA increases in magnitude as agarose percentage (A) increases from 0.4 to 1.5. The sieving revealed by this mu vs A relationship is highly atypical (possibly unique) for any particle. The extent of this atypical sieving increases as electrical potential gradient, DNA length, and pulse time increase. In some cases a maximum is observed in a plot of mu's magnitude vs A. The mu of open circular lambda DNA is smaller in magnitude than the mu of equally long linear lambda DNA. Atypical sieving has also been observed by use of FIGE. As pulse times used during FIGE decrease below those achievable by 2 pi RGE, the progressive loss of circular DNA's atypical sieving is accompanied by both a dramatic increase in mu's magnitude at the lower A values and a decrease in mu's magnitude at the higher A values. At the lower A values, open circular DNA sometimes migrates more rapidly than linear DNA of the same length.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
S B Smith  C Heller  C Bustamante 《Biochemistry》1991,30(21):5264-5274
A model is presented for the motion of individual molecules of DNA undergoing pulse field gel electrophoresis (PFGE). The molecule is represented by a chain of charged beads connected by entropic springs, and the gel is represented by a segmented tube surrounding the beads. This model differs from earlier reptation/tube models in that the tube is allowed to leak in certain places and the chain can double over and flow out of the side of the tube in kinks. It is found that these kinks often lead to the formation of U shapes, which are a major source of retardation in PFGE. The results of computer simulations using this model are compared with real DNA experimental results for the following cases: steady field motion as seen in fluorescence microscopy, mobility in steady fields, mobility in transverse field alternation gel electrophoresis (TFAGE), mobility in field inversion gel electrophoresis (FIGE), and linear dichroism (LD) of DNA in agarose gels during PFGE. Good agreement between the simulations and the experimental results is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号