首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 A genetic map of Pedunculate oak (Quercus robur) was constructed based on one 5S rDNA, 271 RAPD, ten SCAR, 18 microsatellite, one minisatellite, and six isozyme markers. A total of 94 individuals from a full-sib family was genotyped. Two maps, including 307 markers, were constructed according to the “two-way pseudo-testcross” mapping strategy. Testcross markers segregating in the 1 : 1 ratio were first used to establish separate maternal (893.2 cM, 12 linkage groups) and paternal (921.7 cM, 12 linkage groups) maps. Both maps provided 85–90% genome coverage. Homologies between the male and female linkage groups were then identified based on 74 intercross markers segregating in the 3 : 1, 1 : 2 : 1 and 1 : 1 : 1 : 1 ratios (RAPDs, SCARs, SSRs, 5S rDNA and isozymes) in the hybrid progeny. In each map, approximately 18% of the studied markers showed segregation distortion. More than 60% of the skewed markers were due to an excess of heterozygote genotypes. This map will be used for: (1) studying the molecular organisation of genomic regions involved in inter- and intraspecific differentiation in oaks and (2) identification of QTLs for adaptive traits. Received: 30 January 1998 / Accepted: 12 May 1998  相似文献   

2.
 We have constructed a genetic linkage map within the cultivated gene pool of cowpea (2n=2x=22) from an F8 recombinant inbred population (94 individuals) derived from a cross between the inbreds IT84S-2049 and 524B. These breeding lines, developed in Nigeria and California, show contrasting reactions against several pests and diseases and differ in several morphological traits. Parental lines were screened with 332 random RAPD decamers, 74 RFLP probes (bean, cowpea and mung bean genomic DNA clones), and 17 AFLP primer combinations. RAPD primers were twice as efficient as AFLP primers and RFLP probes in detecting polymorphisms in this cross. The map consists of 181 loci, comprising 133 RAPDs, 19 RFLPs, 25 AFLPs, three morphological/classical markers, and a biochemical marker (dehydrin). These markers identified 12 linkage groups spanning 972 cM with an average distance of 6.4 cM between markers. Linkage groups ranged from 3 to 257 cM in length and included from 2 to 41 markers, respectively. A gene for earliness was mapped on linkage group 2. Seed weight showed a significant association with a RAPD marker on linkage group 5. This map should facilitate the identification of markers that “tag” genes for pest and disease resistance and other traits in the cultivated gene pool of cowpea. Received: 16 September 1996 / Accepted: 25 April 1997  相似文献   

3.
 Genetic maps facilitate the study of genome structure and evolution, and the identification of monogenic traits or Mendelian components of quantitative traits. We evaluated 228 RAPD, microsatellite and AFLP markers for linkage analysis in melon (Cucumis melo L.) varieties MR-1 (resistant to Fusarium wilt, powdery and downy mildews) and Ananas Yokneum (AY; susceptible to these diseases) and constructed a detailed genetic map. The mapping population consisted of 66 backcross progenies derived from AY×(MR-1×AY). Despite a relatively low level of polymorphism in the species, AFLP markers were found to be more efficient in mapping the melon genome than RAPD or microsatellite markers. The map contains 197 AFLPs, six RAPDs and one microsatellite marker assigned to 14 major and six minor linkage groups, and covers 1942 cM with the average distance between adjacent markers of approximately 10 cM. The maximum distance allowed between markers is 27.5 cM. About 11% of the intervals (20 out of 173) are over 20 cM (but less than 27.5 cM). The map has immediate utility for identifying markers linked to disease resistance genes that are suitable for marker-assisted breeding. The use of microsatellite markers for integration with other maps is also discussed. Received: 12 March 1997 / Accepted: 20 May 1997  相似文献   

4.
AFLP genetic maps of Eucalyptus globulus and E. tereticornis   总被引:8,自引:0,他引:8  
 Amplified fragment length polymorphism (AFLP) analysis is a rapid and efficient technique for detecting large numbers of DNA markers in eucalypts. We have used AFLP markers in a two-way pseudo-testcross strategy to generate genetic maps of two clones of different Eucalyptus species (E. tereticornis and E. globulus). Of 606 polymorphic fragments scored, 487 segregated in a 1 : 1 ratio, corresponding to DNA polymorphisms heterozygous in one parent and null in the other. In the maternal E. tereticornis map, 268 markers were ordered in 14 linkage groups (919 cM); the paternal E. globulus map had 200 markers in 16 linkage groups (967 cM). Results from PGRI software were compared with MAPMAKER. The average density of markers was approximately 1 per 3.9 cM. Framework markers were ordered with an average confidence level of 90%, covering 80–100% of the estimated Eucalyptus genome size. In order to investigate the homologies between the E. tereticornis and the E. globulus genetic linkage maps, we included 19 markers segregating 3 : 1 in the analysis. Some homeologous linkage groups were recognized. The linkage data developed in these maps will be used to detect loci controlling commercially important traits. Received: 17 July 1997 / Accepted: 13 October 1997  相似文献   

5.
 Two independent F2 populations of Lycopersicon esculentum×L. pennellii which have previously been investigated in RFLP mapping studies were used for construction of a highly saturated integrated AFLP map. This map spanned 1482 cM and contained 67 RFLP markers, 1078 AFLP markers obtained with 22 EcoRI+MseI primer combinations and 97 AFLP markers obtained with five PstI+MseI primer combinations, 231 AFLP markers being common to both populations. The EcoRI+MseI AFLP markers were not evenly distributed over the chromosomes. Around the centromeric region, 848 EcoRI+ MseI AFLP markers were clustered and covered a genetic distance of 199 cM, corresponding to one EcoRI+ MseI AFLP marker per 0.23 cM; on the distal parts 1283 cM were covered by 230 EcoRI+MseI AFLP markers, corresponding to one marker per 5.6 cM. The PstI/MseI AFLP markers showed a more even distribution with 16 PstI/MseI AFLP markers covering a genetic distance of 199 cM around the centromeric regions and 81 PstI/MseI AFLP markers covering a genetic distance of 1283 cM on the more distal parts, corresponding to one marker per 12 and 16 cM respectively. In both populations a large number of loci showed a significant skewed segregation, but only chromosome 10 loci showed skewness that was similar for both populations. This ultra-dense molecular-marker map provides good perspectives for genetic and breeding purposes and map-based cloning. Received: 3 September 1998 / Accepted: 27 October 1998  相似文献   

6.
We have constructed a molecular linkage map of pepper (Capsicum spp.) in an interspecific F2 population of 107 plants with 150 RFLP and 430 AFLP markers. The resulting linkage map consists of 11 large (206–60.3 cM) and 5 small (32.6–10.3 cM) linkage groups covering 1,320 cM with an average map distance between framework markers of 7.5 cM. Most (80%) of the RFLP markers were pepper-derived clones, and these markers were evenly distributed across the genome. By using 30 primer combinations, we were able to generate 444 AFLP markers in the F2 population. The majority of the AFLP markers clustered in each linkage group, although PstI/MseI markers were more evenly distributed than EcoRI/MseI markers within the linkage groups. Genes for the biosynthesis of carotenoids and capsaicinoids were mapped on our linkage map. This map will provide the basis of studying secondary metabolites in pepper. Received: 20 October 1999 / Accepted: 3 July 2000  相似文献   

7.
Construction of an RFLP linkage map for cultivated sunflower   总被引:5,自引:0,他引:5  
 An RFLP linkage map was constructed for cultivated sunflower Helianthus annuus L., based on 271 loci detected by 232 cDNA probes. Ninety-three F2 plants of a cross between inbred lines RHA 271 and HA 234 were used as the mapping population. These genetic markers plus a fertility restoration gene, Rf 1, defined 20 linkage groups, covering 1164 cM of the sunflower genome. Of the 71 loci 202 had codominant genotypic segregation, with the rest showing dominant segregation. Thirty-two of the 232 probes gave multiple locus segregation. There were 39 clusters of tightly linked markers with 0 cM distance among loci. This map has an average marker-to-marker distance of 4.6 cM, with 11 markerless regions exceeding 20 cM. Received: 17 June 1997 / Accepted: 19 June 1997  相似文献   

8.
Linkage mapping and genome length in eastern white pine (Pinus strobus L.)   总被引:2,自引:0,他引:2  
 Haploid linkage analysis of eastern white pine, Pinus strobus L., was carried out using mainly RAPD markers and microsatellite, or simple-sequence-repeat, markers. Ninety one loci mapped to 12 linkage groups of three or more markers. The resulting framework genome map, the first for a soft pine species, contained 69 markers. The map covered 58% of the estimated genome length of 2071 cM(K), with a 95% confidence interval of 1828–2242 cM(K). A systematic comparison of linkage data from eastern white pine, longleaf pine (P. palustris Mill.) and maritime pine (P. pinaster Ait.), gave genome-length estimates for all three species very close to either 2000 cM(K) or 2600 cM(H), depending on whether the Kosambi(K) or Haldane(H) map functions, respectively, were employed. Differences among previous pine genome-length estimates were attributed to the divergent criteria used in the methods of estimation, and indicate the need for the adoption of uniform criteria when performing genome-length estimates. Current data suggest that members of the two pine subgenera, which diverged during the late Mesozoic era, have highly conserved rates of recombination. Received: 5 January 1997/Accepted: 24 January 1997  相似文献   

9.
De novo construction of complete genetic linkage maps requires large mapping populations, large numbers of genetic markers, and efficient algorithms for ordering markers and evaluating order confidence. We constructed a complete genetic map of an individual loblolly pine (Pinus taeda L.) using amplified fragment length polymorphism (AFLP) markers segregating in haploid megagametophytes and PGRI mapping software. We generated 521 polymorphic fragments from 21 AFLP primer pairs. A total of 508 fragments mapped to 12 linkage groups, which is equal to the Pinus haploid chromosome number. Bootstrap locus order matrices and recombination matrices generated by PGRI were used to select 184 framework markers that could be ordered confidently. Order support was also evaluated using log likelihood criteria in MAPMAKER. Optimal marker orders from PGRI and MAPMAKER were identical, but the implied reliability of orders differed greatly. The framework map provides nearly complete coverage of the genome, estimated at approximately 1700 cM in length using a modified estimator. This map should provide a useful framework for merging existing loblolly pine maps and adding multiallelic markers as they become available. Map coverage with dominant markers in both linkage phases will make the map useful for subsequent quantitative trait locus mapping in families derived by self-pollination. Received: 7 August 1998 / Accepted: 27 October 1998  相似文献   

10.
 A genetic map of Pinus radiata plus tree 850.55 was constructed using megagametophytes of S1 seeds. The map contained 19 linkage groups, with 168 RAPD and four microsatellite markers. The total map length was 1116.7 cM (Kosambi’s function) and was estimated to cover 56% of the genome. Of the 172 markers, 59 (34%) were distorted from the expected 1 : 1 ratio in megagametophytes (P<0.05). We show that if the distortion is caused by a single viability gene or by sampling error, the estimate of recombination frequency in megagametophytes of selfed seeds would not be affected. Received: 20 April 1998 / Accepted: 13 July 1998  相似文献   

11.
Amplified fragment length polymorphisms (AFLPs) were used for genome mapping in the Pacific oyster Crassostrea gigas Thunberg. Seventeen selected primer combinations produced 1106 peaks, of which 384 (34.7%) were polymorphic in a backcross family. Among the polymorphic markers, 349 were segregating through either the female or the male parent. Chi-square analysis indicated that 255 (73.1%) of the markers segregated in a Mendelian ratio, and 94 (26.9%) showed significant (P < 0.05) segregation distortion. Separate genetic linkage maps were constructed for the female and male parents. The female framework map consisted of 119 markers in 11 linkage groups, spanning 1030.7 cM, with an average interval of 9.5 cM per marker. The male map contained 96 markers in 10 linkage groups, covering 758.4 cM, with 8.8 cM per marker. The estimated genome length of the Pacific oyster was 1258 cM for the female and 933 cM for the male, and the observed coverage was 82.0% for the female map and 81.3% for the male map. Most distorted markers were deficient for homozygotes and closely linked to each other on the genetic map, suggesting the presence of major recessive deleterious genes in the Pacific oyster.  相似文献   

12.
A genetic linkage map of tef was constructed with amplified fragment length polymorphism (AFLP) markers using F5 recombinant inbred lines (RILs) derived by single seed descent from the intraspecific cross of ’Kaye Murri’×’Fesho’. A total of 192 EcoRI/MseI primer combinations were screened for parental polymorphism. Around three polymorphic fragments per primer combination were detected, indicating a low polymorphism level in tef. Fifty primer combinations were selected to assay the mapping population, and 226 loci segregated among 85 F5 RILs. Most AFLP loci behaved as dominant markers (presence or absence of a band), but about 15% of the loci were codominant. Significant deviations from the expected Mendelian segregation ratio were observed for 26 loci. The genetic linkage map comprised 211 markers assembled into 25 linkage groups and covered 2,149 cM of genome. AFLP is an efficient marker system for mapping plant species with low polymorphism such as tef. This is the first genetic linkage map constructed for tef. It will facilitate the mapping of genes controlling agronomically important traits and cultivar improvement in tef. Received: 27 April 1998 / Accepted: 4 January 1999  相似文献   

13.
The Pacific oyster (Crassostrea gigas) is one of the most important oysters cultured worldwide. To analyze the oyster genome and dissect growth-related traits, we constructed a sex-averaged linkage map by combining 64 genomic simple sequence repeats, 42 expressed sequence tag-derived SSRs, and 320 amplified fragment length polymorphism markers in an F1 full-sib family. A total of 426 markers were assigned to 11 linkage groups, spanning 558.2 cM with an average interval of 1.3 cM and 94.7% of genome coverage. Segregation distortion was significant for 18.8% of the markers (P < 0.05), and distorted markers tended to occur on some genetic regions or linkage groups. Most growth-related quantitative traits were highly significantly (P < 0.01) correlated, and principal component analysis obtained four principal components. Quantitative trait locus (QTL) analysis identified three significant QTLs for two principal components, which explained 0.6–13.9% of the phenotypic variation. One QTL for sex was detected on linkage group 6, and the inheritabilities of sex for parental alleles and maternal alleles on that locus C15 are 39.8% and 0.01%, respectively. The constructed linkage map and determined QTLs can provide a tool for further genetic analysis of the traits and be potential for marker-assisted selection in C. gigas breeding.  相似文献   

14.
We have constructed a partial linkage map in tetraploid potato which integrates simplex, duplex and double-simplex AFLP markers. The map consists of 231 maternal and 106 paternal markers with total map lengths of 990.9 cM and 484.6 cM. The longer of the two cumulative map lengths represents approximately 25% coverage of the genome. In tetraploids, much of the polymorphism between parental clones is masked by `dosage' which significantly reduces the number of individual markers that can be scored in a population. Consequently, the major advantage of using AFLPs – their high multiplex ratio – is reduced to the point where the use of alternative multi-allelic marker types would be significantly more efficient. The segregation data and map information have been used in a QTL analysis of late blight resistance, and a multi-allelic locus at the proximal end of chromosome VIII has been identified which contributes significantly to the expression of resistance. No late blight resistance genes or QTLs have previously been mapped to this location. Received: 1 October 1997 / Accepted: 18 March 1998  相似文献   

15.
 The potential of PCR-based markers for construction of a genetic linkage map in Einkorn wheat was investigated. From a comparison of polymorphisms between two Einkorn wheats, Triticum monococcum (Mn) and T. boeoticum (Bt), we obtained 49 polymorphic bands produced by 33 primers for inter-simple sequence repeat (ISSR) and 36 polymorphic bands shown by 25 combinations of random amplified polymorphic DNA (RAPD) primers for mapping in 66 individuals in the F2 population. Although 44 ISSR fragments and 29 RAPD fragments statistically showed a 3 : 1 segregation ratio in the F2 population, only 9 markers each of the ISSR and RAPD bands were able to be mapped on the RFLP linkage map of Einkorn wheat. ISSR markers were distributed throughout the chromosomes. The mapped positions of the ISSR markers seemed to be similar to those obtained by the RFLP markers. On the other hand, 4 of the 9 RAPD markers could map the RFLP marker-poor region on the short arm of 3Am, suggesting a potential to map novel regions containing repetitive sequences. Comparisons of the genetic linkage map of Einkorn wheat to the linkage map and cytological map of common wheat revealed that the marker orders between the two maps of Einkorn wheat and common wheat coincided except for 4A, which harbors chromosome rearrangements specific for polyploid wheats, indicating a conservatism between the two genomes. Recombinations in Einkorn wheat chromosomes took place more frequently around the centromere and less at the distal part of chromosomes in comparison to those in common wheat. Nevertheless, recombinations even in Einkorn wheat chromosomes were strongly suppressed around the centromere. In fact, the markers located within 1 cM of the centromere were located almost in the central part of the chromosome arm. Received: 7 June 1997 / Accepted: 17 June 1997  相似文献   

16.
 Restriction fragment length polymorphism (RFLP) analysis provides a valuable tool for characterizing and understanding relationships among genes for useful traits in crop species, particularly in ones with complex genomes such as the hexaploid cultivated oat Avena sativa L. (2n=6x=42). Using Bulked Segregant Analysis (BSA) and F2 RFLP linkage data, we mapped three dominant oat dwarfing loci to different regions of the oat genome. Dw6, in oat line OT207, is 3.3±1.3 cM from the Xumn145B locus, which has not been placed on the hexaploid oat linkage map. Dw7, in line NC2469-3, is 4.3±2.3 cM from Xcdo1437B and 33±4.1 cM from Xcdo708B. This places Dw7 to linkage group 22. Dw8, in the Japanese lines AV17/3/10 and AV18/2/4, mapped 4.9±2.2 cM from Xcdo1319A in an AV17/3/10בKanota’ F2 population and 6.6±2.6 cM from it in an AV18/2/4בKanota’ population. This places Dw8 to linkage group 3. Aneuploid analysis of markers linked to the dwarfing genes located Dw6 on the smallest oat chromosome (chromosome 18) and Dw7 on the longest satellited chromosome (chromosome 19). The RFLP markers closely linked to the three dwarfing genes identify distinct regions of the oat genome that contribute to plant height and they should be useful in characterizing new genetic sources of dwarfness in oat. Received: 8 May 1997 / Accepted: 20 May 1997  相似文献   

17.
Genetic linkage maps have been produced for a wide range of organisms during the last decade, thanks to the increasing availability of molecular markers. The use of microsatellites (or Simple Sequence Repeats, SSRs) as genetic markers has led to the construction of “second-generation” genetic maps for humans, mouse and other organisms of major importance. We constructed a second-generation single-tree genetic linkage map of Norway spruce (Picea abies K.) using a panel of 72 haploid megagametophytes with a total of 447 segregating bands [366 Amplified Fragment Length Polymorphisms (AFLPs), 20 Selective Amplification of Microsatellite Polymorphic Loci (SAMPLs) and 61 SSRs, each single band being treated initially as a dominant marker]. Four hundred and thirteen markers were mapped in 29 linkage groups (including triplets and doublets) covering a genetic length of 2198.3 cM, which represents 77.4% of the estimated genome length of Picea abies (approximately 2839 cM). The map is still far from coalescing into the expected 12 chromosomal linkage groups of Norway spruce (2n = 2x = 24). A possible explanation for this comes from the observed non-random distribution of markers in the framework map. Thirty-eight SSR marker loci could be mapped onto 19 linkage groups. This set of highly informative Sequence Tagged Sites (STSs) can be used in many aspects of genetic analysis of forest trees, such as marker-assisted selection, QTL mapping, positional cloning, gene flow analysis, mating system analysis and genetic diversity studies. Received: 5 November 1997 / Accepted: 16 March 1998  相似文献   

18.
Towards a saturated sorghum map using RFLP and AFLP markers   总被引:20,自引:3,他引:17  
 A near-saturated sorghum genetic linkage map was produced using RFLP, AFLP and morphological markers. First a composite, essentially RFLP-based genetic linkage map was obtained from analyses of two recombinant inbred populations. This map includes 343 loci for 11 linkage groups spanning 1352 cM. Since this map was constructed with many previously mapped heterologous probes, it offers a good basis for synteny studies. Separately, an AFLP map was obtained from the analysis of 168 bands revealed from 12 primer pair combinations. It includes 137 loci for 11 linkage groups spanning 849 cM. Taking into account the different data sets, we constructed a combined genetic linkage map including 443 loci spanning 1899 cM. Two main features are to be noted: (1) the distribution of AFLPs along the genome is not uniform; (2) an important stretching of the former core map is induced after adding the AFLPs. Received: 10 May 1998 / Accepted: 13 July 1998  相似文献   

19.
AFLP and CAPS linkage maps of Cryptomeria japonica   总被引:7,自引:0,他引:7  
We have used two DNA marker systems, AFLP and CAPS, in a two-way pseudo-testcross strategy applied to an F1 population to construct genetic linkage maps of two local sugi cultivars. The AFLP markers detected about eight polymorphisms per parent per primer combination. Using 38 primer combinations, 612 AFLPs were detected in ’Haara 4’ and ’Kumotooshi’, of which 305 segregated in a 1:1 ratio (P>0.05). A total of 91 markers (83 AFLP and 8 CAPS) in ’Haara 4’ and 132 (123 AFLP and 9 CAPS) in ’Kumotooshi’ were distributed among 19 and 23 linkage groups, respectively, each of which included 2–17 markers. Maps of ’Haara 4’ and ’Kumotooshi’ spanned 1266.1 cM and 1992.3 cM, and covered approximately 50% and 80% of the sugi genome, respectively. Sequences derived from cDNA, which were previously used to construct a sugi linkage map, were also placed on our linkage maps as CAPS markers. Where a ’two-way pseudo-testcross’ is used, more than half of the sugi CAPS developed can be used to construct linkage maps for each parental family. The saturation of mapped markers, and the integration of several linkage maps derived from different mapping populations, is anticipated in the near future. Received: 15 August 1999 / Accepted: 27 August 1999  相似文献   

20.
An improved linkage map of Lentinula edodes (shiitake) was constructed with an HEGS (high-efficiency genome scanning) system. Two hundred twenty-one HEGS-derived amplified fragment length polymorphism (AFLP-H) markers and 21 gene markers were developed and combined with 203 previously developed sequencer-derived AFLP markers (AFLP-S markers) and 3 mating factor loci (A, Bα, and Bβ) to construct a comprehensive linkage analysis. As a result, a novel linkage map with 166 markers including 2 mating factors (A and B), 10 HEGS-derived gene markers, 72 AFLP-H markers, and 82 AFLP-S markers was obtained. Of the total 448 markers, 273 could not be located on a linear map and thus were assigned to linkage groups as accessory markers. The map covers a total length of 1398.4 centimorgans (cM) with an average marker interval distance of 8.4 cM. The map consists of 11 linkage groups (LGs) in agreement with our previous map, and 7 LGs among them were found to contain branched linkages, which may be the result of reciprocal translocations representing dynamic reorganization of the shiitake genome. The previously reported linkage map was improved in terms of number of markers, marker density, linear order of markers, and total map length. Contribution no. 384 of the Tottori Mycological Institute  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号