首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pep5 is a cationic pore-forming lantibiotic produced by Staphylococcus epidermidis strain 5. The producer strain protects itself from the lethal action of its own bacteriocin through the 69-amino-acid immunity peptide PepI. The N-terminal segment of PepI contains a 20-amino-acid stretch of apolar residues, whereas the C terminus is very hydrophilic, with a net positive charge. We used green fluorescent protein (GFP)-PepI fusions to obtain information on its localization in vivo. PepI was found to occur outside the cytoplasm and to accumulate at the membrane-cell wall interface. The extracellular localization appeared essential for conferring immunity. We analyzed the functional role of the specific segments by constructing various mutant peptides, which were also fused to GFP. When the hydrophobic N-terminal segment of PepI was disrupted by introducing charged amino acids, the export of PepI was blocked and clones expressing such mutant peptides were Pep5 sensitive. When PepI was successively shortened at the C terminus, in contrast, its export properties remained unchanged whereas its ability to confer immunity was gradually reduced. The results show that the N-terminal part is required for the transport of PepI and that the C-terminal part is important for conferring the immunity phenotype. A concept based on target shielding is proposed for the PepI immunity mechanism.  相似文献   

2.
The lantibiotic Pep5 is produced by Staphylococcus epidermidis 5. Pep5 production and producer immunity are associated with the 20-kb plasmid pED503. A 1.3-kb KpnI fragment of pED503, containing the Pep5 structural gene pepA, was subcloned into the Escherichia coli-Staphylococcus shuttle vector pCU1, and the recombinant plasmid pMR2 was transferred to the Pep5- and immunity-negative mutant S. epidermidis 5 Pep5- (devoid of pED503). This clone did not produce active Pep5 but showed the same degree of insensitivity towards Pep5 as did the wild-type strain. Sequencing of the 1.3-kb KpnI-fragment and analysis of mutants demonstrated the involvement of two genes in Pep5 immunity, the structural gene pepA itself and pepI, a short open reading frame upstream of pepA. To identify the 69-amino-acid pepI gene product, we constructed an E. coli maltose-binding protein-PepI fusion clone. The immunity peptide PepI was detected in the soluble and membrane fractions of the wild-type strain and the immune mutants (harboring the plasmids pMR2 and pMR11) by immunoblotting with anti-maltose-binding protein-PepI antiserum. Strains harboring either pepI without pepA or pepI with incomplete pepA were not immune and did not produce PepI. Washing the membrane with salts and EDTA reduced the amount of PepI in this fraction, and treatment with Triton X-100 almost completely removed the peptide. Furthermore, PepI was hydrolyzed by proteases added to osmotically stabilized protoplasts. This suggests that PepI is loosely attached to the outside of the cytoplasmic membrane. Proline uptake and efflux experiments with immune and nonimmune strains also indicated that PepI may act at the membrane site.  相似文献   

3.
Pep5 is a 34-amino-acid antimicrobial peptide, produced by Staphylococcus epidermidis 5, that contains the thioether amino acids lanthionine and methyllanthionine, which form three intramolecular ring structures. In addition, two didehydrobutyrines are present in the central part of the lantibiotic and an oxobutyryl residue is located at the N terminus. All rare amino acids are introduced by posttranslational modifications of a ribosomally made precursor peptide. To elucidate the function of the modified residues for the antimicrobial action of Pep5, mutant peptides, in which single modified residues had been eliminated, were produced by site-directed mutagenesis. All of these peptides showed a reduced antimicrobial activity. In addition, those peptides from which the ring structures had been deleted became susceptible to proteolytic digest. This demonstrates that the ring structures serve as stabilizers of conformations essential for activity, e.g., amphiphilicity, as well as for protecting Pep5 against proteases of the producing strains. In addition, residues that could serve as precursors of new modified amino acids in lantibiotics were introduced into the Pep5 precursor peptide. This way, a novel methyllanthionine and a didehydroalanine were inserted into the flexible central part of Pep5, demonstrating that biosynthesis of modified amino acids is feasible by protein engineering and use of the lantibiotic modification system.  相似文献   

4.
p21-activated kinase 5 (Pak5) is an effector for the small GTPase Cdc42, known to activate cell survival signaling pathways. Previously, we have shown that Pak5 localizes primarily to mitochondria. To study the relationship between Pak5 localization and its effects on apoptosis, we identified three N-terminal regions that regulate the localization of this kinase: a mitochondrial targeting sequence, a nuclear export sequence, and a nuclear localization sequence. When the first two sequences are deleted, Pak5 is retained in the nucleus and no longer protects cells from apoptosis. Moreover, blockade of nuclear export with leptomycin B causes endogenous Pak5 to accumulate in the nucleus. Additionally, the removal of the N-terminal nuclear localization sequence abolishes Pak5 translocation to the nucleus. Finally, we show that reduction of endogenous Pak5 expression in neuroblastoma and neural stem cells increases their sensitivity to apoptosis and that this effect is reversed upon reexpression of wild-type Pak5 but not of a mutant form of Pak5 that cannot localize to mitochondria. These results show that Pak5 shuttles from mitochondria to the nucleus and that the mitochondrial localization of Pak5 is vital to its effects on cell survival.  相似文献   

5.
6.
Mouse mammary tumor virus (MMTV) encodes a Rev-like protein, Rem, which is involved in the nuclear export and expression of viral RNA. Previous data have shown that all Rev-like functions are localized to the 98-amino-acid signal peptide (SP) at the N terminus of MMTV Rem or envelope proteins. MMTV-SP uses endoplasmic reticulum-associated degradation (ERAD) for protein trafficking. Rem cleavage by signal peptidase in the ER is necessary for MMTV-SP function in a reporter assay, but many requirements for trafficking are not known. To allow detection and localization of both MMTV-SP and the C-terminal cleavage product, we prepared plasmids expressing green fluorescent protein (GFP) tags. N-terminal Rem tagging led to protein accumulation relative to untagged Rem and allowed signal peptidase cleavage but reduced its specific activity. C-terminal tagging also led to Rem accumulation yet dramatically reduced cleavage, GFP fluorescence, and activity relative to N-terminally tagged Rem (GFPRem). Substitutions of an invariant leucine at position 71 between the known RNA-binding and nuclear export sequences interfered with GFPRem accumulation and activity but not cleavage. Similarly, deletion of 100 or 150 C-terminal amino acids from GFPRem dramatically reduced both Rem and MMTV-SP levels and function. Removal of the entire C terminus (203 amino acids) restored both protein levels and activity of MMTV-SP. Only C-terminal GFP tagging, and not other modifications, appeared to trap Rem in the ER membrane. Thus, Rem conformation in both the ER lumen and cytoplasm determines cleavage, retrotranslocation, and MMTV-SP function. These mutants further characterize intermediates in Rem trafficking and have implications for all proteins affected by ERAD.  相似文献   

7.
Calneuron I (CalnI) is a calmodulin-like protein that contains two functional EF-hand motifs at the N-terminal and a hydrophobic segment at the C-terminal. CalnI was cloned from the adult rat cortex and fused with GFP at its N-terminal. When expressed in bovine chromaffin cells, wild-type CalnI was localized at the plasma membrane. However, a mutant that lacked the hydrophobic segment was localized in the cytosol and nucleus, while a Ca2+-binding-deficient mutant was found in the cytosol and at the plasma membrane. Evaluation using the whole-cell patch-clamp technique revealed that Ca2+ currents were inhibited by both wild-type CalnI and the Ca2+-binding-deficient mutant. When the bovine N-type Ca2+ channel was expressed in 293T cells, Ca2+ currents were mostly inhibited by co-expression of CalnI, but not by the mutant without the hydrophobic tail. These results suggest that CalnI attenuates Ca2+ channel activity and that its subcellular localization is important for this effect.  相似文献   

8.
The human I-mfa domain-containing protein (HIC) mRNA produces two protein isoforms, HIC p32 and p40, synthesized from alternative translational initiations. p32 translation is initiated from a standard AUG codon and p40 is an N-terminal extension of p32 generated from an upstream GUG codon. The two isoforms show different subcellular localization: p32 is distributed throughout the cytoplasm whereas p40 can be found both in the cytoplasm and the nucleolus. To investigate the possibility that p40 contains a nucleolus targeting sequence in its N-terminal region, COS cells were transfected with an eukaryotic expression vector coding for green fluorescent protein (GFP) fused to the p40 N terminus. The localization of this fusion protein in the nucleolus indicated that the N-terminal amino acids of p40 probably contain a nucleolar localization signal (NoLS). To find the structural motifs required for nucleolar localization of p40, deletion mutants were expressed in COS cells as fusion polypeptides with GFP. We defined a domain of 19 amino acids near the N terminus that contains an arginine-rich subdomain that conforms to other known NoLS. To demonstrate that this sequence is an authentic NoLS, the sequence was fused to GFP. This fusion protein was observed to migrate into the nucleolus. Taken together, our studies demonstrate that p40 contains a NoLS.  相似文献   

9.
Lactobacillus gasseri LF221, an isolate from the feces of a child, produces two bacteriocins. Standard procedures for molecular techniques were used to locate, clone and sequence the fragments of LF221 chromosomal DNA carrying the acidocin LF221 A and B structural genes, respectively. Sequencing analysis revealed the gene of acidocin LF221 A to be an open reading frame encoding a protein composed of 69 amino acids, including a 16-amino-acid N-terminal extension. The acidocin LF221 B gene was found to encode a 65-amino-acid bacteriocin precursor with a 17-amino-acid N-terminal leader peptide. DNA homology searches showed similarities of acidocin LF221 A to brochocin B, lactococcin N and thermophilin B, whereas acidocin LF221 B exhibited some homology to lactacin F and was virtually identical to gassericin X. The peptides encoded by orfA1 and orfB3 showed characteristics of class II bacteriocins and are suspected to be the complementary peptides of acidocin A and B, respectively. orfA3 and orfB5 are proposed to encode putative immunity proteins for the acidocins. Acidocin LF221 A and acidocin LF221 B are predicted to be members of the two-component class II bacteriocins, where acidocin LF221 A appears to be a novel bacteriocin. L. gasseri LF221 is being developed as a potential probiotic strain and a food/feed preservative. Detailed characterization of its acidocins is an important piece of background information useful in applying the strain into human or animal consumption. The genetic information on both acidocins also enables tracking of the LF221 strain in mixed populations and complex environments.  相似文献   

10.
Ataxia-telangiectasia mutated (ATM) is essential for rapid induction of cellular responses to DNA double strand breaks (DSBs). In this study, we mapped a nuclear localization signal (NLS), 385KRKK388, within the amino terminus of ATM and demonstrate its recognition by the conventional nuclear import receptor, the importin alpha1/beta1 heterodimer. Although mutation of this NLS resulted in green fluorescent protein (GFP) x ATM(NLSm) localizing predominantly within the cytoplasm, small amounts of nuclear GFP x ATM(NLSm) were still sufficient to elicit a DNA damage response. Insertion of an heterologous nuclear export signal between GFP and ATM(NLSm) resulted in complete cytoplasmic localization of ATM, concomitantly reducing the level of substrate phosphorylation and increasing radiosensitivity, which indicates a functional requirement for ATM nuclear localization. Interestingly, the carboxyl-terminal half of ATM, containing the kinase domain, which localizes to the cytoplasm, could not autophosphorylate itself or phosphorylate substrates, nor could it correct radiosensitivity in response to DSBs even when targeted to the nucleus by insertion of an exogenous NLS, demonstrating that the ATM amino terminus is required for optimal ATM function. Moreover, we have shown that the recruitment/retention of ATM at DSBs requires its kinase activity because a kinase-dead mutant of GFP x ATM failed to form damage-induced foci. Using deletion mutation analysis we mapped a domain in ATM (amino acids 5-224) required for its association with chromatin, which may target ATM to sites of DNA damage. Combined, these data indicate that the amino terminus of ATM is crucial not only for nuclear localization but also for chromatin association, thereby facilitating the kinase activity of ATM in vivo.  相似文献   

11.
The green fluorescent protein (GFP) of the jellyfish, Aeqorea victoria, was used as an autofluorescent tag to track the trafficking of aquaporin 5 (AQP5), an exocrine gland-type water channel. Two groups of chimeric proteins were constructed; one in which GFP was fused to the amino-terminus of AQP5 (GFP-AQP5) and the other, in which it was fused to the carboxyl terminus of it (AQP5-GFP). In each group, 2 chimeras were produced, a wild-type AQP5 with its normal sequence and a mutant AQP5 having a mutated amino acid at 259, i.e., GFP-AQP5-T259A and AQP5-GFP-T259A. They were used to transfect Madin-Darby canine kidney (MDCK) cells. The GFP-AQP5 chimera was localized in the intracellular vesicles, which trafficked to the plasma membrane in response to N(6), 2'-O-dibutyryladenosine 3', 5'-cyclic monophosphate (dbcAMP). Membrane trafficking was inhibited by N-[2-(p-bromocinnamylamino)ethyl]-5-isoquimolinesulfonamide (H-89) but not by palmitoyl-dl-carnitine chloride (PCC). In contrast, the AQP5-GFP chimera expressed in MDCK cells was localized constitutively on the plasma membrane. The cellular localization of the latter chimera was not affected by stimulation with dbcAMP in the presence or absence of H-89 or PCC. Replacement of Thr-259 with Ala-259 did not affect the dbcAMP-induced translocation of the chimeric protein, suggesting that phosphorylation of Thr-259 was not necessary for AQP5 trafficking under the present experimental conditions. Thus, the GFP-AQP5 chimera will be a useful tool to study AQP5 trafficking in vitro, whereas the constitutive membrane localization of the AQP5-GFP chimera suggests the importance of the carboxyl terminus of the AQP5 protein for its sorting, whether it is translocated to intracellular vesicles or to the plasma membrane.  相似文献   

12.
The Rsp5 ubiquitin ligase regulates numerous cellular processes. Rsp5 is mainly localized to the cytoplasm but nuclear localization was also reported. A potential nuclear export signal was tested for activity by using a GFP(2) reporter. The 687-LIGGIAEIDI-696 sequence located in the Hect domain was identified as a nuclear export signal active in a Crm1-dependent manner, and its importance for the localization of Rsp5 was documented by using fluorescence microscopy and a lacZ-based reporter system. Analysis of the cellular location of other Rsp5 fragments fused with GFP(2) indicated two independent potential nuclear localization signals, both located in the Hect domain. We also uncovered Rsp5 fragments that are important to targeting/tethering Rsp5 to various regions in the cytoplasm. The presented data indicate that Rsp5 ligase is a shuttling protein whose distribution within the cytoplasm and partitioning between cytoplasmic and nuclear locations is determined by a balance between the actions of several targeting sequences and domains.  相似文献   

13.
The N terminus of G protein-coupled receptors has been implicated in binding to peptide hormones. We have used random saturation mutagenesis to identify essential residues in the N terminus of the human complement factor 5a receptor (C5aR). In a library of N-terminal mutant C5aR molecules screened for activation by C5a, residues 24-30 of the C5aR showed a marked propensity to mutate to cysteine, most likely indicating that sulfhydryl groups at these positions are appropriately situated to form disulfide interactions with the unpaired Cys(27) of human C5a. This presumptive spatial constraint allowed the ligand to be computationally docked to the receptor to form a model of the C5a/C5aR interaction. When the N-terminal mutant C5aR library was rescreened with C5a C27R, a ligand incapable of disulfide interactions, no individual position in the N terminus was essential for receptor signaling. However, the region 19-29 was relatively highly conserved in the functional mutants, further demonstrating that this region of the C5aR makes a productive physiologic interaction with the C5a ligand.  相似文献   

14.
G Bierbaum  M Reis  C Szekat    H G Sahl 《Applied microbiology》1994,60(12):4332-4338
Pep5 is a lanthionine-containing antimicrobial peptide which is produced by Staphylococcus epidermidis 5. Its structural gene, pepA, is located on the 20-kb plasmid pED503. A 6.2-kb fragment of pED503 containing pepA, the immunity gene pepI, and 5.4 kb of downstream sequence was able to direct biosynthesis of biologically active Pep5 in a nonproducing variant of the producer strain which is devoid of pED503. In addition to producing wild-type Pep5 with a molecular mass of 3,488 Da, the clone produced a peptide with an eightfold-lower bactericidal activity and a mass of 3,506 Da, indicative of incomplete dehydration of one hydroxyamino acid. For construction of the expression system, this 6.2-kb fragment was cut into a 1.39-kb fragment containing pepA and pepI and a 4.8-kb fragment covering the remaining downstream region. This 4.8-kb fragment was directly cloned into an Escherichia coli-Staphylococcus shuttle vector, yielding a new plasmid (pGB9) into which mutated pepA genes generated on the 1.39-kb fragment can be reinserted to yield a functional Pep5 biosynthesis gene cluster. To test the expression system, two mutants were constructed. Lys-18-Pro Pep5 was produced in its dehydrated form and a partially hydrated form in amounts comparable to those of the wild-type peptide. In contrast, only small amounts of Phe-23-Asp Pep5 were excreted, indicating that some residues in the propeptide part of the prelantibiotic may be crucial for certain steps in the biosynthetic pathway of lantibiotics.  相似文献   

15.
Pep5 is a tricyclic peptide antibiotic which contains the unusual amino acids dehydrobutyrine, lanthionine and 3-methyllanthionine. It is matured from a 60-amino-acid precursor peptide (pre-Pep5) deduced from the sequence of the structural gene pepA. To study the biosynthesis of Pep5 we tried to isolate the primary translation product. We identified a peptide in crude extracts of the Pep5-producing Staphylococcus epidermidis strain using antibodies raised against a synthetic 26-residue peptide representing the leader peptide region of pre-Pep5. The putative precursor was purified by reversed-phase HPLC. The isolated peptide did not react with antibodies directed against a C-terminal fragment of mature Pep5 containing two sulfide bridges. Neither lanthionine nor 3-methyllanthionine was detected in amino acid analysis of the isolated precursor. Its amino acid sequence was identical with the sequence predicted from pepA, but Edman degradation stopped at the first threonine residue of the prolantibiotic region indicating a posttranslational modification at this position. The molecular mass of the isolated peptide was 6575.4 +/- 1.7 Da, determined by ion-spray mass spectrometry. This is in agreement with a molecule being dehydrated at the four threonine and the two serine residues in the propeptide region; such a peptide has a calculated molecular mass of 6576.7 Da. The results strongly suggest that maturation of the lantibiotic Pep5 is initiated by selective dehydration of hydroxyamino acids in the propeptide region of the primary translation product and that thioether ring formation is not closely linked to dehydration.  相似文献   

16.
The complete amino acid sequence of a peptic fragment (Pep M5) of the group A streptococcal type 5 M protein, the antiphagocytic cell surface molecule of the bacteria, is described. This fragment, comprising nearly half of the native M molecule, is biologically active in that it has the ability to interact with opsonic antibodies as well as to evoke such an antibody response in rabbits. The sequence of Pep M5 was determined by automated Edman degradations of the uncleaved molecule and its enzymatically derived peptides. The primary peptides for Edman degradation were the arginine peptides obtained by tryptic digestion. The tryptic cleavage of Pep M5 was limited to the arginyl peptide bonds by derivatizing the epsilon-amino groups of lysine residues by reductive dihydroxypropylation. The overlapping peptides were generated by digestion of the unmodified Pep M5 with chymotrypsin, V8 protease, and subtilisin. The sequence thus established for the Pep M5 molecule consists of a total of 197 residues (Mr = 22,705). The Pep M5 protein contains some identical, or nearly so, repeating sequences: four 7-residue segments and two 10-residue segments. However, extensive sequence repeats of the kind previously reported within the partial sequence of another M protein serotype, namely Pep M24, were absent. The Pep M5 sequence is distinct from, but exhibits some homology with, the partial sequences of two other M protein serotypes, namely, Pep M6 and Pep M24. Furthermore, the 7-residue periodicity of the nonpolar and charged residues, an alpha-helical coiled-coil structural characteristic that was previously observed within the partial sequences of M proteins, was found to extend over a significant part of the Pep M5 sequence. The implication of these results to the function and immunological diversity in M proteins is discussed.  相似文献   

17.
Lantibiotics are antibiotic peptides that contain the rare thioether amino acids lanthionine and/or methyllanthionine. Epidermin, Pep5 and epilancin K7 are produced by Staphylococcus epidermidis whereas gallidermin (6L-epidermin) was isolated from the closely related species Staphylococcus gallinarum. The biosynthesis of all four lantibiotics proceeds from structural genes which code for prepeptides that are enzymatically modified to give the mature peptides. The genes involved in biosynthesis, processing, export etc. are found in gene clusters adjacent to the structural genes and code for transporters, immunity functions, regulatory proteins and the modification enzymes LanB, LanC and LanD, which catalyze the biosynthesis of the rare amino acids. LanB and LanC are responsible for the dehydration of the serine and threonine residues to give dehydroalanine and dehydrobutyrine and subsequent addition of cysteine SH-groups to the dehydro amino acids which results in the thioether rings. EpiD, the only LanD enzyme known so far, catalyzes the oxidative decarboxylation of the C-terminal cysteine of epidermin which gives the C-terminal S-aminovinylcysteine after addition of a dehydroalanine residue.Abbreviations Dha 2,3-didehydroalanine - Dhb 2,3-didehydrobutyrine - Lan lanthionine - Melan methyllanthionine  相似文献   

18.
The osmotic response element-binding protein (OREBP), also known as tonicity enhancer-binding protein (TonEBP) or NFAT5, regulates the hypertonicity-induced expression of a battery of genes crucial for the adaptation of mammalian cells to extracellular hypertonic stress. The activity of OREBP/TonEBP is regulated at multiple levels, including nucleocytoplasmic trafficking. OREBP/TonEBP protein can be detected in both the cytoplasm and nucleus under isotonic conditions, although it accumulates exclusively in the nucleus or cytoplasm when subjected to hypertonic or hypotonic challenges, respectively. Using immunocytochemistry and green fluorescent protein fusions, the protein domains that determine its subcellular localization were identified and characterized. We found that OREBP/TonEBP nuclear import is regulated by a nuclear localization signal. However, under isotonic conditions, nuclear export of OREBP/TonEBP is mediated by a CRM1-dependent, leucine-rich canonical nuclear export sequence (NES) located in the N terminus. Disruption of NES by site-directed mutagenesis yielded a mutant OREBP/TonEBP protein that accumulated in the nucleus under isotonic conditions but remained a target for hypotonicity-induced nuclear export. More importantly, a putative auxiliary export domain distal to the NES was identified. Disruption of the auxiliary export domain alone is sufficient to abolish the nuclear export of OREBP/TonEBP induced by hypotonicity. By using bimolecular fluorescence complementation assay, we showed that CRM1 interacts with OREBP/TonEBP, but not with a mutant protein deficient in NES. Our findings provide insight into how nucleocytoplasmic trafficking of OREBP/TonEBP is regulated by changes in extracellular tonicity.  相似文献   

19.
The epithelial Ca(2+) channel transient receptor potential vanilloid 5 (TRPV5) constitutes the apical entry site for active Ca(2+) reabsorption in the kidney. The TRPV5 channel is a member of the TRP family of cation channels, which are composed of four subunits together forming a central pore. Regulation of channel activity is tightly controlled by the intracellular N and C termini. The TRPV5 C terminus regulates channel activity by various mechanisms, but knowledge regarding the role of the N terminus remains scarce. To study the role of the N terminus in TRPV5 regulation, we generated different N-terminal deletion constructs. We found that deletion of the first 32 residues did not affect TRPV5-mediated (45)Ca(2+) uptake, whereas deletion up to residue 34 and 75 abolished channel function. Immunocytochemistry demonstrated that these mutant channels were retained in the endoplasmic reticulum and in contrast to wild-type TRPV5 did not reach the Golgi apparatus, explaining the lack of complex glycosylation of the mutants. A limited amount of mutant channels escaped the endoplasmic reticulum and reached the plasma membrane, as shown by cell surface biotinylation. These channels did not internalize, explaining the reduced but significant amount of these mutant channels at the plasma membrane. Wild-type TRPV5 channels, despite significant plasma membrane internalization, showed higher plasma membrane levels compared with the mutant channels. The assembly into tetramers was not affected by the N-terminal deletions. Thus, the N-terminal residues 34-75 are critical in the formation of a functional TRPV5 channel because the deletion mutants were present at the plasma membrane as tetramers, but lacked channel activity.  相似文献   

20.
Phosphoinositide phospholipase C (PI-PLC) plays an essential role in cell signaling. A unique Trypanosoma cruzi PI-PLC (TcPI-PLC) is lipid-modified in its N terminus and localizes to the plasma membrane of amastigotes. Here, we show that TcPI-PLC is located onto the extracellular phase of the plasma membrane of amastigotes and that its N-terminal 20 amino acids are necessary and sufficient to target the fused GFP to the outer surface of the parasite. Mutagenesis of the predicted acylated residues confirmed that myristoylation of a glycine residue in the 2nd position and acyl modification of a cysteine in the 4th but not in the 8th or 15th position of the coding sequence are required for correct plasma membrane localization in T. cruzi epimastigotes or amastigotes. Interestingly, mutagenesis of the cysteine at the 8th position increased its flagellar localization. When expressed as fusion constructs with GFP, the N-terminal 6 and 10 amino acids fused to GFP are predominantly located in the cytosol and concentrated in a compartment that co-localizes with a Golgi complex marker. The N-terminal 20 amino acids of TcPI-PLC associate with lipid rafts when dually acylated. Taken together, these results indicate that N-terminal acyl modifications serve as a molecular addressing system for sending TcPI-PLC to the outer surface of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号