首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Human adipose tissue is a viable source of mesenchymal stem cells (MSCs) with wide differentiation potential for musculoskeletal tissue engineering research. The stem cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and expanded in vitro easily. This study was to determine molecular and cellular characterization of PLA cells during chondrogenic differentiation in vitro and cartilage formation in vivo . When cultured in vitro with chondrogenic medium as monolayers in high density, they could be induced toward the chondrogenic lineages. To determine their ability of cartilage formation in vivo , the induced cells in alginate gel were implanted in nude mice subcutaneously for up to 20 weeks. Histological and immunohistochemical analysis of the induced cells and retrieved specimens from nude mice at various intervals showed obviously cartilaginous phenotype with positive staining of specific extracellular matrix (ECM). Correlatively, results of RT-PCR and Western Blot confirmed the expression of characteristic molecules during chondrogenic differentiation namely collagen type II, SOX9, cartilage oligomeric protein (COMP) and the cartilage-specific proteoglycan aggrecan. Meanwhile, there was low level synthesis of collagen type X and decreasing production of collagen type I during induction in vitro and formation of cartilaginous tissue in vivo . These cells induced to form engineered cartilage can maintain the stable phenotype and indicate no sign of hypertrophy in 20 weeks in vivo , however, when they cultured as monolayers, they showed prehypertrophic alteration in late stage about 10 weeks after induction. Therefore, it is suggested that human adipose tissue may represent a novel plentiful source of multipotential stem cells capable of undergoing chondrogenesis and forming engineered cartilage.  相似文献   

2.
3.
Osteogenesis and the production of composite osteochondral tissues were investigated using human adult adipose‐derived stem cells and polyglycolic acid (PGA) mesh scaffolds under dynamic culture conditions. For osteogenesis, cells were expanded with or without osteoinduction factors and cultured in control or osteogenic medium for 2 weeks. Osteogenic medium enhanced osteopontin and osteocalcin gene expression when applied after but not during cell expansion. Osteogenesis was induced and mineralized deposits were present in tissues produced using PGA culture in osteogenic medium. For development of osteochondral constructs, scaffolds seeded with stem cells were precultured in either chondrogenic or osteogenic medium, sutured together, and cultured in dual‐chamber stirred bioreactors containing chondrogenic and osteogenic media in separate compartments. After 2 weeks, total collagen synthesis was 2.1‐fold greater in the chondroinduced sections of the composite tissues compared with the osteoinduced sections; differentiation markers for cartilage and bone were produced in both sections of the constructs. The results from the dual‐chamber bioreactor highlight the challenges associated with achieving simultaneous chondrogenic and osteogenic differentiation in tissue engineering applications using a single stem‐cell source. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

4.
We previously compared mesenchymal stem cells (MSCs) from a variety of mesenchymal tissues and demonstrated that synovium-MSCs had the best expansion and chondrogenic ability in vitro in humans and rats. In this study, we compared the in vivo chondrogenic potential of rabbit MSCs. We also examined other parameters to clarify suitable conditions for in vitro and in vivo cartilage formation. MSCs were isolated from bone marrow, synovium, adipose tissue, and muscle of adult rabbits. Proliferation potential and in vitro chondrogenic potential were compared. Toxicity of the tracer DiI for in vitro chondrogenesis was also examined. MSCs from each tissue were embedded in collagen gel and transplanted into full thickness cartilage defects of rabbits. Cartilage matrix production was compared histologically. The effects of cell density and periosteal patch on the in vivo chondrogenic potential of synovium-MSCs were also examined. Synovium- and muscle-MSCs had a higher proliferation potential than other cells. Pellets from synovium- and bone-marrow-MSCs showed abundant cartilage matrix. DiI had no significant influence on in vitro cartilage formation. After transplantation into cartilage defects, synovium- and bone-marrow-MSCs produced much more cartilage matrix than other cells. When synovium-MSCs were transplanted at a higher cell density and with a periosteal patch, more abundant cartilage matrix was observed. Thus, synovium- and bone-marrow-MSCs had greater in vivo chondrogenic potential than adipose- and muscle-MSCs, but synovium-MSCs had the advantage of a greater proliferation potential. Higher cell density and a periosteum patch were needed to obtain a high production of cartilage matrix by synovium-MSCs.  相似文献   

5.
This study demonstrated a newly developed method using adipose tissue-derived stromal cells (ADSCs) and hydroxypropylmethylcellulose (HPMC) in building injectable tissue engineered cartilage in vivo. ADSCs from rabbit subcutaneous fatty tissue were cultured in chondrogenic differentiation medium and supplemented with transforming growth factor-β1 (TGF-β1) and basic fibroblast growth factor (bFGF). Histological, immunohistochemistry and RT-PCR analysis confirmed that the ADSCs differentiated into chondrocytes following induction. Induced ADSCs mixed with 15 % HPMC were injected into the subcutaneous tissue of nude mice and, after a period of 8 weeks, newly formed cartilage was observed at the site of injection. The ability of ADSCs cultured in the induction medium with TGF-β1 and bFGF to differentiate into chondrocytes and construct new cartilage indicates that ADSCs are suitable for use as seed cells in cartilage tissue engineering. HPMC, according to its good water solubility and being able to transform from liquid to solid at body temperature, was found to be an ideal scaffold for tissue engineering.  相似文献   

6.
Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells   总被引:7,自引:0,他引:7  
Bone morphogenetic proteins (BMPs) initiate, promote, and maintain chondrogenesis and osteogenesis. We hypothesize that BMP-2 induces an osteogenic, and BMP-7 a chondrogenic phenotype in adipose tissue-derived mesenchymal stem cells (AT-MSCs). We compared the effects of a short 15min BMP-2 or BMP-7 (10ng/ml) treatment on osteogenic and chondrogenic differentiation of AT-MSCs. Gene expression was studied 4 and 14 days after BMP-treatment. At day 4 BMP-2, but not BMP-7, stimulated runx-2 and osteopontin gene expression, and at day 14 BMP-7 down-regulated expression of these genes. At day 4 BMP-2 and BMP-7 stimulated biglycan gene expression, which was down-regulated by BMP-7 at day 14. BMP-7 stimulated aggrecan gene expression at day 14. Our data indicate that BMP-2 treatment for 15min induces osteogenic differentiation, whereas BMP-7 stimulates a chondrogenic phenotype of AT-MSCs. Therefore, AT-MSCs triggered for only 15min with BMP-2 or BMP-7 provide a feasible tool for bone and cartilage tissue engineering.  相似文献   

7.
Adipose tissue is a compact and well-organized tissue containing a heterogeneous cellular population of progenitor cells, including mesenchymal stromal cells. Due to its availability and accessibility, adipose tissue is considered a “stem cell depot.” Adipose tissue products possess anti-inflammatory, anti-fibrotic, anti-apoptotic, and immunomodulatory effects. Nanofat, being a compact bundle of stem cells with regenerative and tissue remodeling potential, has potential in translational and regenerative medicine. Considering the wide range of applicability of its reconstructive and regenerative potential, the applications of nanofat can be used in various disciplines. Nanofat behaves on the line of adipose tissue-derived mesenchymal stromal cells. At the site of injury, these stromal cells initiate a site-specific reparative response comprised of remodeling of the extracellular matrix, enhanced and sustained angiogenesis, and immune system modulation. These properties of stromal cells provide a platform for the usage of regenerative medicine principles in curbing various diseases. Details about nanofat, including various preparation methods, characterization, delivery methods, evidence on practical applications, and ethical concerns are included in this review. However, appropriate guidelines and preparation protocols for its optimal use in a wide range of clinical applications have yet to be standardized.  相似文献   

8.
Human mesenchymal stem cells (MSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle and neuron. This differentiation potential makes MSC excellent candidates for cell-based tissue engineering. In this study, we have examined phenotypes and gene expression profile of the human adipose tissue-derived stromal cells (ATSC) in the undifferentiated states, and compared with that of bone marrow stromal cells (BMSC). ATSC were enzymatically released from adipose tissues from adult human donors and were expanded in monolayer with serial passages at confluence. BMSC were harvested from the metaphysis of adult human femur. Flowcytometric analysis showed that ATSC have a marker expression that is similar to that of BMSC. ATSC expressed CD29, CD44, CD90, CD105 and were absent for HLA-DR and c-kit expression. Under appropriate culture conditions, MSC were induced to differentiate to the osteoblast, adipocyte, and chondrogenic lineages. ATSC were superior to BMSC in respect to maintenance of proliferating ability, and microarray analysis of gene expression revealed differentially expressed genes between ATSC and BMSC. The proliferating ability and differentiation potential of ATSC were variable according to the culture condition. The similarities of the phenotypes and the gene expression profiles between ATSC and BMSC could have broad implications for human tissue engineering.  相似文献   

9.
Novel bioengineering strategies for the ex vivo fabrication of native‐like tissue‐engineered cartilage are crucial for the translation of these approaches to clinically manage highly prevalent and debilitating joint diseases. Bioreactors that provide different biophysical stimuli have been used in tissue engineering approaches aimed at enhancing the quality of the cartilage tissue generated. However, such systems are often highly complex, expensive, and not very versatile. In the current study, a novel, cost‐effective, and customizable perfusion bioreactor totally fabricated by additive manufacturing (AM) is proposed for the study of the effect of fluid flow on the chondrogenic differentiation of human bone‐marrow mesenchymal stem/stromal cells (hBMSCs) in 3D porous poly(?‐caprolactone) (PCL) scaffolds. hBMSCs are first seeded and grown on PCL scaffolds and hBMSC–PCL constructs are then transferred to 3D‐extruded bioreactors for continuous perfusion culture under chondrogenic inductive conditions. Perfused constructs show similar cell metabolic activity and significantly higher sulfated glycosaminoglycan production (≈1.8‐fold) in comparison to their non‐perfused counterparts. Importantly, perfusion bioreactor culture significantly promoted the expression of chondrogenic marker genes while downregulating hypertrophy. This work highlights the potential of customizable AM platforms for the development of novel personalized repair strategies and more reliable in vitro models with a wide range of applications.  相似文献   

10.
A major clinical need exists for cartilage repair and regeneration. Despite many different strategies having been pursued, the identification of an optimised cell type and of pre-treatment conditions remains a challenge. This study compares the cartilage-like tissue generated by human bone marrow stromal cells (HBMSCs) and human neonatal and adult chondrocytes cultured on three-dimensional (3D) scaffolds under various conditions in vitro and in vivo with the aim of informing future cartilage repair strategies based upon tissue-engineering approaches. After 3 weeks in vitro culture, all three cell types showed cartilage-like tissue formation on 3D poly (lactide-co-glycolide) acid scaffolds only when cultured in chondrogenic medium. After 6 weeks of chondro-induction, neonatal chondrocyte constructs revealed the most cartilage-like tissue formation with a prominent superficial zone-like layer, a middle zone-like structure and the thinnest fibrous capsule. HBMSC constructs had the thickest fibrous capsule formation. Under basal culture conditions, neonatal articular chondrocytes failed to form any tissue, whereas HBMSCs and adult chondrocytes showed thick fibrous capsule formation at 6 weeks. After in vivo implantation, all groups generated more compact tissues compared with in vitro constructs. Pre-culturing in chondrogenic media for 1 week before implantation reduced fibrous tissue formation in all cell constructs at week 3. After 6 weeks, only the adult chondrocyte group pre-cultured in chondrogenic media was able to maintain a more chondrogenic/less fibrocartilaginous phenotype. Thus, pre-culture under chondrogenic conditions is required to maintain a long-term chondrogenic phenotype, with adult chondrocytes being a more promising cell source than HBMSCs for articular cartilage tissue engineering.  相似文献   

11.
Recent studies suggest that human adipose tissue contains pluripotent stem cells similar to bone marrow-derived stem cells. Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have previously demonstrated that bone marrow-derived stromal cells (BSCs) differentiate into a variety of cell lineages both in vitro and in vivo. In the present study, we extend this approach to characterize adipose tissue-derived stromal cells, sometimes called processed lipoaspirate (PLA) cells. Adipose-derived stromal cells (ASCs) were isolated from inguinal fat pads of GFP transgenic mice after extensive washing with phosphate-buffered saline and treatment with collagenase. After primary culture in a control medium (Dulbecco's modified Eagle's medium+10% fetal bovine serum) and expansion to two passages, the cells were incubated in either an osteogenic medium (Dulbecco's modified Eagle's medium+10% fetal bovine serum+dexamethasone+ascorbate-2-phosphate+beta-glycerophosphate) or a chondrogenic medium (Dulbecco's modified Eagle's medium+1% fetal bovine serum+insulin+ascorbate-2-phosphate+transforming growth factor-beta1) for 2-4 weeks to induce osteogenesis and chondrogenesis, respectively. Osteogenic differentiation was assessed by von Kossa and alkaline phosphatase staining, while chondrogenic differentiation was assessed by Alcian blue staining. Expression of osteocyte specific osteopontin, osteocalcin, and alkaline phosphatase, and chondrocyte specific aggrecan and type II/X collagen was confirmed by RT-PCR. ASCs incubated in the osteogenic medium were stained positively for von Kossa and alkaline phosphatase staining. Expression of osteocyte specific genes, except osteocalcin, was also detected. Incubation with chondrogenic medium induced Alcian blue positive cells and expression of aggrecan and type II/X collagen genes. No osteochondrogenic differentiation was observed in cells incubated in the control medium. ASCs from GFP transgenic mice have both osteogenic and chondrogenic potential in vitro. Since this cell population can be easily identified through fluorescence microscopy, it may be an ideal source of ASCs for further experiments on stem cell biology and tissue engineering.  相似文献   

12.
Recent studies have shown that liposuction aspirates from rat, rabbit, mouse, and human sources contain pluripotent adipose tissue-derived stromal cells (ASCs) that can differentiate into various mesodermal cell types, including osteoblasts, myoblasts, chondroblasts, and preadipocytes. To develop a research model for autologous bone tissue engineering, we isolated ASCs from human liposuction aspirates (hASCs) and induced their osteogenic differentiation in three-dimensional poly(dl-lactic-co-glycolic acid) (PLGA) scaffolds. Human liposuction aspirates were proteolytically digested and centrifuged to obtain hASCs. After primary culture in control media and expansion to three passages, the cells were seeded in two-dimensional plates or three-dimensional PLGA scaffolds and cultured in osteogenic media for 4 weeks. In two-dimensional culture, osteogenesis was assessed by RT-PCR analysis of the osteogenic-specific bone sialoprotein mRNA, by alkaline phosphatase staining, and by von Kossa staining. In three-dimensional culture, osteogenesis was assessed by von Kossa and alizarine red S staining at 1, 2, and 4 weeks following osteogenic induction. hASCs incubated in two-dimensional osteogenic media stained positively for alkaline phosphatase and with von Kossa stain after 2 weeks of differentiation. Expression of the osteogenesis-specific bone sialoprotein gene was detected by RT-PCR after 2 weeks of differentiation. PLGA scaffolds seeded with hASCs showed multiple calcified extracellular matrix nodules by von Kossa and alizarine red S staining after 2 weeks of differentiation. In conclusion, the authors identified an osteogenic potential of hASCs and demonstrated osteogenic differentiation of hASCs into an osteogenic lineage in three-dimensional PLGA scaffolds.  相似文献   

13.
Clinical imperatives for new bone to replace or restore the function of traumatized or bone lost as a consequence of age or disease has led to the need for therapies or procedures to generate bone for skeletal applications. However, current in vitro methods for the differentiation of human bone marrow stromal cells (HBMSCs) do not, to date, produce homogeneous cell populations of the osteogenic or chondrogenic lineages. As epigenetic modifiers are known to influence differentiation, we investigated the effects of the DNA demethylating agent 5-aza-2'-deoxycytidine (5-aza-dC) or the histone deacetylase inhibitor trichostatin A (TSA) on osteogenic and chondrogenic differentiation. Monolayer cultures of HBMSCs were treated for 3 days with the 5-aza-dC or TSA, followed by culture in the absence of modifiers. Cells were subsequently grown in pellet culture to determine matrix production. 5-aza-dC stimulated osteogenic differentiation as evidenced by enhanced alkaline phosphatase activity, increased Runx-2 expression in monolayer, and increased osteoid formation in 3D cell pellets. In pellets cultured in chondrogenic media, TSA enhanced cartilage matrix formation and chondrogenic structure. These findings indicate the potential of epigenetic modifiers, as agents, possibly in combination with other factors, to enhance the ability of HBMSCs to form functional bone or cartilage with significant therapeutic implications therein.  相似文献   

14.
This article presents the stem and progenitor cells from subcutaneous adipose tissue,briefly comparing them with their bone marrow counterparts,and discussing their potential for use in regenerative medicine.Subcutaneous adipose tissue differs from other mesenchymal stromal/stem cells(MSCs) sources in that it contains a pre-adipocyte population that dwells in the adventitia of robust blood vessels.Pre-adipocytes are present both in the stromal-vascular fraction(SVF;freshly isolated cells) and in the adherent fraction of adipose stromal/stem cells(ASCs;in vitro expanded cells),and have an active role on the chronic inflammation environment established in obesity,likely due their monocyticmacrophage lineage identity.The SVF and ASCs have been explored in cell therapy protocols with relative success,given their paracrine and immunomodulatory effects.Importantly,the widely explored multipotentiality of ASCs has direct application in bone,cartilage and adipose tissue engineering.The aim of this editorial is to reinforce the peculiarities of the stem and progenitor cells from subcutaneous adipose tissue,revealing the spheroids as a recently described biotechnological tool for cell therapy and tissue engineering.Innovative cell culture techniques,in particular 3 D scaffold-free cultures such as spheroids,are now available to increase the potential for regeneration and differentiation of mesenchymal lineages.Spheroids are being explored not only as a model for cell differentiation,but also as powerful 3 D cell culture tools to maintain the stemness and expand the regenerative and differentiation capacities of mesenchymal cell lineages.  相似文献   

15.
BACKGROUND: Adipose tissue contains a stromal vascular fraction that can be easily isolated and provides a rich source of adipose tissue-derived mesenchymal stem cells (ASC). These ASC are a potential source of cells for tissue engineering. We studied whether the yield and growth characteristics of ASC were affected by the type of surgical procedure used for adipose tissue harvesting, i.e. resection, tumescent liposuction and ultrasound-assisted liposuction. METHODS: Frequencies of ASC in the stromal vascular fraction were assessed in limiting dilution assays. The phenotypical marker profile of ASC was determined, using flow cytometry, and growth kinetics were investigated in culture. ASC were cultured under chondrogenic and osteogenic conditions to confirm their differentiation potential. RESULTS: The number of viable cells in the stromal vascular fraction was affected by neither the type of surgical procedure nor the anatomical site of the body from where the adipose tissue was harvested. After all three surgical procedures, cultured ASC did express a CD34+ CD31- CD105+ CD166+ CD45- CD90+ ASC phenotype. However, ultrasound-assisted liposuction resulted in a lower frequency of proliferating ASC, as well as a longer population doubling time of ASC, compared with resection. ASC demonstrated chondrogenic and osteogenic differentiation potential. DISCUSSION: We conclude that yield and growth characteristics of ASC are affected by the type of surgical procedure used for adipose tissue harvesting. Resection and tumescent liposuction seem to be preferable above ultrasound-assisted liposuction for tissue-engineering purposes.  相似文献   

16.
Multipotential bone marrow stromal cells have the ability to differentiate along multiple connective tissue lineages including cartilage. In this study, we developed an efficient and reproducible procedure for the isolation of stromal cells from bone marrow aspirates of normal human donors based on the expression of endoglin, a type III receptor of the transforming growth factor-beta (TGF-beta) receptor family. We demonstrate that these cells have the ability of multiple lineage differentiation. Stromal cells represented 2-3% of the total mononuclear cells of the marrow. The cells displayed a fibroblastic colony formation in monolayer culture and maintained similar morphology with passage. Expression of cell surface molecules by flow cytometry displayed a stable phenotype with culture expansion. When cocultured with hematopoietic CD34(+) progenitor cells, stromal cells were able to maintain their ability to support hematopoiesis in vitro. Culture expanded stromal cells were placed in a 3-dimensional matrix of alginate beads and cultured in serum-free media in the presence of TGFbeta-3 for chondrogenic lineage progression. Increased expression of type II collagen messenger RNA was observed in the TGFbeta3 treated cultures. Immunohistochemistry performed on sections of alginate beads detected the presence of type II collagen protein. This isolation procedure for stromal cells and the establishment of the alginate culture system for chondrogenic progression will contribute to the understanding of chondrogenesis and cartilage repair.  相似文献   

17.
18.
19.
As cartilage is incapable of self-healing upon severe degeneration because of the lack of blood vessels, cartilage tissue engineering is gaining importance in the treatment of cartilage defects. This study was designed to improve cartilage tissue regeneration by expressing tissue transglutaminase variant 2 (TGM2_v2) in mesenchymal stem cells (MSC) derived from bone marrow of rats. For this purpose, rat MSCs transduced with TGM2_v2 were grown and differentiated on three-dimensional polybutylene succinate (PBSu) and poly-l -lactide (PLLA) blend scaffolds. The transduced cells could not only successfully express the short form transglutaminase-2, but also deposited the protein onto the scaffolds. In addition, they could spontaneously produce cartilage-specific proteins without any chondrogenic induction, suggesting that TGM2_v2 expression provided the cells the ability of chondrogenic differentiation. PBSu:PLLA scaffolds loaded with TGM2_v2 expressing MSCs could be used in repair of articular cartilage defects.  相似文献   

20.
脂肪间质干细胞,是脂肪组织中一类多能性干细胞。其在体外特定的培养条件下,可诱导分化形成脂肪、骨、软骨、肌肉等组织类型细胞。人体脂肪组织十分丰富,用其分离脂肪间质干细胞可避免分离胚胎干细胞所面临的道德伦理问题和获取极少量骨髓分离骨髓间质干细胞时给供者带来极大痛苦等。因此脂肪间质干细胞可作为组织再生工程的干细胞理想的替代资源。本文重点论述脂肪间质干细胞的研究进展,并探讨其临床应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号