首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Ultraviolet (UV) radiation affects the extracellular matrix (ECM) of the human skin. The small leucine-rich repeat protein fibromodulin interacts with type I and II collagen fibrils, thereby affecting ECM assembly. The aim of this study was to evaluate whether short wave UV (UVB) or long wave UV (UVA) irradiation influences fibromodulin expression. Exponentially growing human fibroblasts (IMR-90 cells) were exposed to increasing doses of UVB (2.5–60 mJ/cm2) or UVA (0.5–10 J/cm2). After UV irradiation fibromodulin, p21 and GADD45 levels were evaluated as well as cell viability, reactive oxygen species formation (ROS) and DNA damage. We found that fibromodulin expression: (i) increased after UVB and UVA irradiation; (ii) was 10-fold higher after UVA (10 J/cm2) versus 5-fold with UVB (10 mJ/cm2); (iii) correlated with reactive oxygen species formation, particularly after UVA; and (iv) was linked to the DNA damage binding protein (DDB1) translocation in the nucleus, particularly after UVB. These results further suggest that the UV-induced fibromodulin increase could counteract the UV-induced connective tissue damage, promoting the assembly of new collagen fibrils.  相似文献   

2.
Striking differences are observed in the melanogenic response of normal human melanocytes to UVA and UVB irradiation depending on culture conditions and the presence of keratinocytes. Exposure of melanocytes co‐cultured with keratinocytes to UVB irradiation triggered, already at low doses (5 mJ/cm2), an increase in melanin synthesis whereas in melanocyte mono‐cultures, UVB doses up to 50 mJ/cm2 had no melanogenic effect. Unlike UVB, UVA exposure caused the same melanogenic response in both mono‐ and co‐cultures. Removing certain keratinocyte growth factors from the co‐culture medium abolished the melanogenic response to UVB, but not to UVA exposure. When integrated into the basal layer of a reconstructed human epidermis, human melanocytes similarly reacted to UVA and UVB irradiation as in vivo by increasing their production and transfer of melanin to the neighboring keratinocytes which resulted in a noticeable tanning of the reconstructed epidermis. The presence of a dense stratum corneum, known to scatter and absorb UV light, is responsible for higher minimal UVB and UVA doses required to trigger a melanogenic response in the reconstructed epidermis compared to keratinocyte–melanocyte co‐cultures. Furthermore, an immediate tanning response was observed in the pigmented epidermis following UVA irradiation. From these results we conclude that: (i) keratinocytes play an important role in mediating UVB‐induced pigmentation, (ii) UVA‐induced pigmentation is the result of a rather direct effect on melanocytes and (iii) reconstructed pigmented epidermis is the most appropriate model to study UV‐induced pigmentation in vitro.  相似文献   

3.
Pigment dispersion in chromatophores as a response to UV radiation was investigated in two species of crustaceans, the crab Chasmagnathus granulata and the shrimp Palaemonetes argentinus. Eyestalkless crabs and shrimps maintained on either a black or a white background were irradiated with different UV bands. In eyestalkless crabs the significant minimal effective dose inducing pigment dispersion was 0.42 J/cm2 for UVA and 2.15 J/cm2 for UVB. Maximal response was achieved with 10.0 J/cm2 UVA and 8.6 J/cm2 UVB. UVA was more effective than UVB in inducing pigment dispersion. Soon after UV exposure, melanophores once again reached the initial stage of pigment aggregation after 45 min. Aggregated erythrophores of shrimps adapted to a white background showed significant pigment dispersion with 2.5 J/cm2 UVA and 0.29 J/cm2 UVC. Dispersed erythrophores of shrimps adapted to a black background did not show any significant response to UVA, UVB or UVC radiation. UVB did not induce any significant pigment dispersion in shrimps adapted to either a white or a black background. As opposed to the tanning response, which only protects against future UV exposure, the pigment dispersion response could be an important agent protecting against the harmful effects of UV radiation exposure.  相似文献   

4.
The response of Antarctic, tropical and temperate microalgae of similar taxonomic grouping to ultraviolet radiation (UVR) stress was compared based on their growth and fatty acid profiles. Microalgae of similar taxa from the Antarctic (Chlamydomonas UMACC 229, Chlorella UMACC 237 and Navicula UMACC 231), tropical (Chlamydomonas augustae UMACC 246, Chlorella vulgaris UMACC 001 and Amphiprora UMACC 259) and temperate (Chlamydomonas augustae UMACC 247, Chlorella vulgaris UMACC 248 and Navicula incerta UMACC 249) regions were exposed to different UVR conditions. The cultures were exposed to the following conditions: PAR (42 μmol photons m−2 s−1), PAR + UVA (854 μW cm−2) and PAR + UVA + UVB (117 μW cm−2). The cultures were subjected to UVA doses of 46.1, 92.2 and 184.4 J cm−2 and UVB doses of 6.3, 12.6 and 25.2 J cm−2 by varying the duration of their exposure (1.5, 3 and 6 h) to UVR during the light period (12:12 h light-dark cycle). UVA did not affect the growth of the microalgae, even at the highest dose. In contrast, growth was adversely affected by UVB, especially at the highest dose. The dose that caused 50% inhibition (ID50) in growth was used to assess the sensitivity of the microalgae to UVB. Sensitivity of the microalgae to UVB was species-dependent and also dependent on their biogeographic origin. Of the nine microalgae, the Antarctic Chlorella was most tolerant to UVB stress (ID50 = 21.0 J cm−2). Except for this Chlorella, the percentage of polyunsaturated fatty acids of the microalgae decreased in response to high doses of UVB. Fatty acid profile is a useful biomarker for UVB stress for some microalgae. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

5.
Survival of Shewanella oneidensis MR-1 after UV Radiation Exposure   总被引:2,自引:0,他引:2       下载免费PDF全文
We systematically investigated the physiological response as well as DNA damage repair and damage tolerance in Shewanella oneidensis MR-1 following UVC, UVB, UVA, and solar light exposure. MR-1 showed the highest UVC sensitivity among Shewanella strains examined, with D37 and D10 values of 5.6 and 16.5% of Escherichia coli K-12 values. Stationary cells did not show an increased UVA resistance compared to exponential-phase cells; instead, they were more sensitive at high UVA dose. UVA-irradiated MR-1 survived better on tryptic soy agar than Luria-Bertani plates regardless of the growth stage. A 20% survival rate of MR-1 was observed following doses of 3.3 J of UVC m−2, 568 J of UVB m−2, 25 kJ of UVA m−2, and 558 J of solar UVB m−2, respectively. Photoreactivation conferred an increased survival rate to MR-1 of as much as 177- to 365-fold, 11- to 23-fold, and 3- to 10-fold following UVC, UVB, and solar light irradiation, respectively. A significant UV mutability to rifampin resistance was detected in both UVC- and UVB-treated samples, with the mutation frequency in the range of 10−5 to 10−6. Unlike in E. coli, the expression levels of the nucleotide excision repair (NER) component genes uvrA, uvrB, and uvrD were not damage inducible in MR-1. Complementation of Pseudomonas aeruginosa UA11079 (uvrA deficient) with uvrA of MR-1 increased the UVC survival of this strain by more than 3 orders of magnitude. Loss of damage inducibility of the NER system appears to contribute to the high sensitivity of this bacterium to UVR as well as to other DNA-damaging agents.  相似文献   

6.
The combined effects of ammonium concentration and UV radiation on the red alga Porphyra columbina (Montagne) from the Patagonian coast (Chubut, Argentina) was determined using short‐term (less than a week) experimentation. Discs of P. columbina were incubated with three ammonium concentrations (0, 50, and 300 μM NH4Cl) in anilluminated chamber (PAR=300 μmol photons·m?2·s?1, UVA=15 W·m?2, UVB=0.7 W·m?2) at 15°C. Algae incubated at 300 μM ammonium showed a significant increase (P<0.05) in the concentration of mycosporine‐like amino acids (MAAs) compared with the initial value or with the other ammonium treatments. The increase of MAAs was, however, a function of the quality of irradiance received, with a higher increase in samples exposed to UVA compared with UVB (29% and 5% increase, respectively). However, UVB radiation was more effective in inducing MAA synthesis per unit energy received by the algae. Samples exposed to PAR only had an intermediate increase in MAA concentration of 16%. Chl a concentration decreased through the incubation with the greatest decrease at high ammonium concentration. Phycobiliprotein (BP) decreased through time with the smallest decrease occurring at high ammonium concentration. Photoinhibition (as a decrease of optimal quantum yield) was significantly greater under nitrogen‐deprived conditions than that under replete ammonium levels. Maximal gross photosynthesis (GPmax), as oxygen evolution, and maximal electron transport rate (ETRmax), as chl fluorescence, increased with the ammonium concentration. Positive relationships between maximal GP or ETR and pigment ratios (BP/chl a and MAAs/chl a) and negative relationships with chl a concentration were found.  相似文献   

7.
Previous studies have shown that increasing atmospheric CO2 concentrations affect calcification in some planktonic and macroalgal calcifiers due to the changed carbonate chemistry of seawater. However, little is known regarding how calcifying algae respond to solar UV radiation (UVR, UVA+UVB, 280–400 nm). UVR may act synergistically, antagonistically or independently with ocean acidification (high CO2/low pH of seawater) to affect their calcification processes. We cultured the articulated coralline alga Corallina sessilis Yendo at 380 ppmv (low) and 1000 ppmv (high) CO2 levels while exposing the alga to solar radiation treatments with or without UVR. The presence of UVR inhibited the growth, photosynthetic O2 evolution and calcification rates by13%, 6% and 3% in the low and by 47%, 20% and 8% in the high CO2 concentrations, respectively, reflecting a synergistic effect of CO2 enrichment with UVR. UVR induced significant decline of pH in the CO2‐enriched cultures. The contents of key photosynthetic pigments, chlorophyll a and phycobiliproteins decreased, while UV‐absorptivity increased under the high pCO2/low pH condition. Nevertheless, UV‐induced inhibition of photosynthesis increased when the ratio of particulate inorganic carbon/particulate organic carbon decreased under the influence of CO2‐acidified seawater, suggesting that the calcified layer played a UV‐protective role. Both UVA and UVB negatively impacted photosynthesis and calcification, but the inhibition caused by UVB was about 2.5–2.6 times that caused by UVA. The results imply that coralline algae suffer from more damage caused by UVB as they calcify less and less with progressing ocean acidification.  相似文献   

8.
The change in optimal quantum efficiency (F v/F m) of the Arctic species Laminaria saccharina and Palmaria palmata was investigated in a long-term experiment in situ under different radiation levels during the summer of 1997 in the Kongsfjord (Ny-Ålesund, Spitsbergen, Norway, 78°55.5′N, 11°56.0′E). Whole plants were incubated in an open box system made of UV-transparent Perspex and exposed to solar radiation (λ>295?nm), solar radiation excluding UVB (λ?>?320?nm) and solar radiation excluding UVA?+ UVB (λ?>?400?nm). Increasing radiation levels were simulated by transplantation of the pre-adapted algae from their growth depth at 2?m to a water depth of 1?m. Sensitivity to artificially increased UV radiation was determined by exposure of algae from the three treatments to 6?h of strong UV radiation. P. palmata was relatively insensitive to increasing UV radiation and recovered very fast and almost completely in 2?h. Even plants pre-cultured in ambient radiation levels excluding UVA?+?UVB or UVB only showed no photoinhibition after exposure to extra UV radiation in the laboratory. L. saccharina was, in comparison to P. palmata, more sensitive and showed photoinhibition under solar radiation and solar minus UVB radiation after transplantation from 2 to 1?m water depth. However, after 3?weeks at 1?m depth, F v/F m of L. saccharina was equal in all treatments and restored to the original values at the start of the experiment. Sensitivity to extra UV radiation in the laboratory increased in time, although recovery was also fast and occurred within 20?h.  相似文献   

9.
Aims: To determine inactivation profiles of three human norovirus (NoV) surrogate viruses and coliphage MS2 by ultraviolet (UV) irradiation and the protective effect of cell association on UV inactivation. Methods and Results: The inactivation rate for cell‐free virus or intracellular echovirus 12 was determined by exposure to 254‐nm UV light at fluence up to 100 mJ cm?2. The infectivity of murine norovirus (MNV), feline calicivirus (FCV) and echovirus 12 was determined by cell culture infectivity in susceptible host cell lines, and MS2 infectivity was plaque assayed on Escherichia coli host cells. The UV fluencies to achieve 4‐log10 inactivation were 25, 29, 30 and 70 (mJ cm?2) for cell‐free FCV, MNV, echovirus 12 and MS2, respectively. However, a UV fluence of 85 mJ cm?2 was needed to inactivate intracellular echovirus 12 by 4 log10. Conclusions: Murine norovirus and echoviruses 12 are more conservative surrogates than FCV to predict the UV inactivation response of human NoV. Intracellular echovirus 12 was 2·8‐fold more resistant to UV irradiation than cell‐free one. Significance and Impact of the Study: Variation in UV susceptibilities among NoV surrogate viruses and a likely protective effect of cell association on virus susceptibility to UV irradiation should be considered for effective control of human NoV in water.  相似文献   

10.
Because Cryptosporidium parvum oocysts are very resistant to conventional water treatment processes, including chemical disinfection, we determined the kinetics and extent of their inactivation by monochromatic, low-pressure (LP), mercury vapor lamp UV radiation and their subsequent potential for DNA repair of UV damage. A UV collimated-beam apparatus was used to expose suspensions of purified C. parvum oocysts in phosphate-buffered saline, pH 7.3, at 25°C to various doses of monochromatic LP UV. C. parvum infectivity reductions were rapid, approximately first order, and at a dose of 3 mJ/cm2 (=30 J/m2), the reduction reached the cell culture assay detection limit of ~3 log10. At UV doses of 1.2 and 3 mJ/cm2, the log10 reductions of C. parvum oocyst infectivity were not significantly different for control oocysts and those exposed to dark or light repair conditions for UV-induced DNA damage. These results indicate that C. parvum oocysts are very sensitive to inactivation by low doses of monochromatic LP UV radiation and that there is no phenotypic evidence of either light or dark repair of UV-induced DNA damage.  相似文献   

11.
UVB irradiation can induce apoptotic, necrotic, and differentiation pathways in normal human keratinocytes. The present study was undertaken to determine at what dose of UVB each of these pathways is induced and whether these pathways are distinct or overlapping. We have observed that UVB induces fragmentation of DNA in human HaCaT keratinocytes, in a bimodal manner. Low doses of UVB, 5–20 mJ/cm2, increase the levels of apoptosis as shown by increased levels of fragmented DNA, Fas, PARP, and FasL protein, and the number of apoptotic cells as assessed by FACS analysis. At higher doses of UVB (20 and 30 mJ/cm2) the number of apoptotic cells becomes reduced, as does the amount of Fas, PARP, and FasL protein. At these higher doses, cell viability is decreased as measured by DNA synthesis (BrdU labeling) neutral red uptake, which represents an increasing necrotic phenotype. Expression of markers of keratinocyte differentiation, involucrin, keratin K1, and keratin K10, are also observed to decrease with increasing UVB dose. These changes are accompanied by a further increase in DNA fragmentation. We conclude that low doses of UVB (5–20 mJ/cm2) induced an apoptotic pathway, whereas increasing doses (greater than 20 mJ/cm2) of UVB produce a direct necrotic effect and inhibit terminal differentiation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Kang YA  Na JI  Choi HR  Choi JW  Kang HY  Park KC 《Peptides》2011,32(10):2134-2136
Ultraviolet (UV) radiation induced inflammation plays an important role in the aging of human skin. Prostaglandin (PG) E2 is the primary mediator of UVB induced photoinflammation. We screened an internal library for dipeptides that inhibited UVB induced PGE2 synthesis but showed no cytotoxicity toward human keratinocytes. We identified three highly active inhibitory sequences, LE (Leu + Glu), MW (Met + Trp) and MY (Met + Tyr). To evaluate their efficacy in human skin, 24 sites of abdomen skin were irradiated with a 308 nm excimer laser (300 mJ/cm2), after which 2% LE, MW, MY or a control were applied to the irradiated sites for 24 h. The erythema index (EI) was measured before and 24 h after treatment. The results showed that LE and MW significantly decreased UVB induced erythema (p = 0.041 and p = 0.036, respectively), but ME did not. Overall, LE and MW are candidate cosmeceutical peptides that can protect skin from UVB induced photoinflammation.  相似文献   

13.
The induction and protective role of the UV-absorbing compounds known as mycosporine-like amino acids (MAAs) were examined in sublittoral Chondrus crispus Stackh. transplanted for 2 weeks in the spring and summer to shallow water under three irradiance conditions: PAR (photosynthetically active radiation; 400–700 nm), PAR + UVA (PAR + 320– 400 nm), PAR + UVA + UVB (PAR + UVA + 280– 320 nm). Sublittoral thalli collected around Helgoland, North Sea, Germany, from 6 m below the mean low water of spring tides contained less than 0.1 mg·g−1 dry weight (DW) total MAAs, whereas eulittoral samples contained over 1 mg·g−1 DW. Transplantation to shallow water led to the immediate synthesis of three MAAs in the following temporal order: shinorine (λmax 334 nm), asterina (λmax 330 nm), and palythine (λmax 320 nm), with the shinorine content peaking and then declining after 2 days (exposure to 100 mol photons·m−2). Maximum total MAA content (2 mg·g−1 DW) also occurred after 2 days of induction, exceeding the content normally found in eulittoral samples. Furthermore, the relative proportion of the different MAAs at this time was different than that in eulittoral samples. After 2 days the total content declined to the eulittoral value, with palythine as the principal MAA. Similar data were obtained for all treatments, indicating that MAA synthesis in C. crispus was induced by PAR and not especially stimulated by UV radiation. The ability of photosystem II (PSII) to resist damage by UVB was tested periodically during the acclimation period by exposing samples to a defined UVB dose in the lab. Changes in chlorophyll fluorescence (Fv/Fm and effective quantum yield, φII) indicated that PSII function was inhibited during the initial stage of acclimation but gradually improved with time. No difference among screening treatments was detected except in spring for the samples acclimating to PAR + UVA + UVB. In this treatment Fv/Fm and φII were significantly lower than in the other treatments. During the first week of each experiment, growth rates were also significantly reduced by UVB. The reductions occurred despite maximum MAA content, indicating an incomplete protection of photosynthetic and growth-related processes.  相似文献   

14.
Aim: To assess the efficiency of a medium‐pressure UV reactor under full‐scale water treatment plant (WTP) conditions on the infectivity of Cryptosporidium parvum oocysts in an Naval Medical Research Institute (NMRI) suckling mice infectivity model. Methods and Results: Six/seven‐day‐old mice were administered orally 2–10 × 104Cryptosporidium parvum oocysts. Compared with nonirradiated oocysts, 40 mJ cm?2 UV irradiation of ingested oocysts resulted 7 days later in a 3·4–4·0 log10 reduction in the counts of small intestine oocysts, using a fluorescent flow cytometry assay. Conclusion: Present data extend to industrial conditions previous observations of the efficiency of UV irradiation against Cryptosporidium parvum oocyst in vivo development. Significance and Impact of the study: Present results suggest that in WTP conditions, a medium‐pressure UV reactor is efficient in reducing the infectivity of Cryptosporidium parvum oocysts, one of the most resistant micro‐organisms present in environmental waters.  相似文献   

15.
We evaluated the effects of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles (NPs) preilluminated with ultraviolet light on Escherichia coli and Bacillus subtilis. The experiments were conducted using three different types of light: visible, Ultraviolet A (UVA, 315–400 nm), and Ultraviolet B (UVB, 280–315 nm). The bacteria were exposed to NPs, either as liquid suspensions for growth inhibition assays or on agar plates for colony forming unit (CFU) assays. We found that the ZnO NPs were more toxic when preilluminated with UVA or UVB light than with visible light in both growth inhibition and CFU assays. TiO2 NPs were not toxic to the bacteria under UVA or UVB preillumination conditions. The photo-dissolution of ZnO NPs increased with UV preillumination, which could explain the observed toxicity of ZnO NPs. We detected oxidative stress elicited by photoactive nanoparticles by measuring superoxide dismutase activity. The results of this study show that the toxicity of photoactive nanoparticles can be increased by UV preillumination by dissolution of toxic ions, which suggests the potential for preillumination-dependent toxicity of nanoparticles on soil environments in low light or darkness.  相似文献   

16.
BackgroundSchistosomiasis is a parasitic disease that is transmitted by skin contact with waterborne schistosome cercariae. Mass drug administration with praziquantel is an effective control method, but it cannot prevent reinfection if contact with cercariae infested water continues. Providing safe water for contact activities such as laundry and bathing can help to reduce transmission. In this study we examine the direct effect of UV light on Schistosoma mansoni cercariae using ultraviolet light-emitting diodes (UV LEDs) and a low-pressure (LP) mercury arc discharge lamp.MethodologyS. mansoni cercariae were exposed to UV light at four peak wavelengths: 255 nm, 265 nm, 285 nm (UV LEDs), and 253.7 nm (LP lamp) using bench scale collimated beam apparatus. The UV fluence ranged from 0–300 mJ/cm2 at each wavelength. Cercariae were studied under a stereo-microscope at 0, 60, and 180 minutes post-exposure and the viability of cercariae was determined by assessing their motility and morphology.ConclusionVery high UV fluences were required to kill S. mansoni cercariae, when compared to most other waterborne pathogens. At 265 nm a fluence of 247 mJ/cm2 (95% confidence interval (CI): 234–261 mJ/cm2) was required to achieve a 1-log10 reduction at 0 minutes post-exposure. Cercariae were visibly damaged at lower fluences, and the log reduction increased with time post-exposure at all wavelengths. Fluences of 127 mJ/cm2 (95% CI: 111–146 mJ/cm2) and 99 mJ/cm2 (95% CI: 85–113 mJ/cm2) were required to achieve a 1-log10 reduction at 60 and 180 minutes post-exposure at 265 nm. At 0 minutes post-exposure 285 nm was slightly less effective, but there was no statistical difference between 265 nm and 285 nm after 60 minutes. The least effective wavelengths were 255 nm and 253.7 nm. Due to the high fluences required, UV disinfection is unlikely to be an energy- or cost-efficient water treatment method against schistosome cercariae when compared to other methods such as chlorination, unless it can be demonstrated that UV-damaged cercariae are non-infective using alternative assay methods or there are improvements in UV LED technology.  相似文献   

17.
Summary Two different strains ofSaccharomyces cerevisiae, one diploid wild type and one haploid mutant deficient in excision repair were irradiated with laser pulses in the range 308 nm to 380 nm after 8-MOP treatment. Both the shoulder (Dq) and the final slope (Do) of the inactivation curves were dependent on wavelength which showed a broad minimum around 355 nm. No differences in inactivation were recorded after pulsed irradiations between the repetition rates of 5 Hz and 35 Hz. Irradiations with pulses of the energy density from 0.1 mJ/cm2 up to 26 mJ/cm2 resulted in a final slope increasing with pulse energy density. This was in contrast to the effects of irradiation alone.Abbreviations 8-MOP 8-methoxypsoralen - UV ultraviolet - PUVA therapy withPsoralen plusUV-A  相似文献   

18.
Mammalian skin incorporates a local equivalent of the hypothalamic–pituitary–adrenal (HPA) axis that is critical in coordinating homeostatic responses against external noxious stimuli. Ultraviolet radiation B (UVB) is a skin-specific stressor that can activate this cutaneous HPA axis. Since C57BL/6 (B6) and DBA/2J (D2) strains of mice have different predispositions to sensorineural pathway activation, we quantified expression of HPA axis components at the gene and protein levels in skin incubated ex vivo after UVB or sham irradiation. Urocortin mRNA was up-regulated after all doses of UVB with a maximum level at 50 mJ/cm2 after 12 h for D2 and at 200 mJ/cm2 after 24 h for B6. Proopiomelanocortin mRNA was enhanced after 6 h with the peak after 12 h and at 200 mJ/cm2 for both genotypes of mice. ACTH levels in tissue and media increased after 24 h in B6 but not in D2. UVB stimulated β-endorphin expression was higher in D2 than in B6. Melanocortin receptor 2 mRNA was stimulated by UVB in a dose-dependent manner, with a peak at 200 mJ/cm2 after 12 h for both strains. The expression of Cyp11a1 mRNA — a key mitochondrial P450 enzyme in steroidogenesis, was stimulated at all doses of UVB irradiation, with the most pronounced effect after 12–24 h. UVB radiation caused, independently of genotype, a dose-dependent increase in corticosterone production in the skin, mainly after 24 h of histoculture. Thus, basal and UVB stimulated expression of the cutaneous HPA axis differs as a function of genotype: D2 responds to UVB earlier and with higher amplitude than B6, while B6 shows prolonged (up to 48 h) stress response to a noxious stimulus such as UVB.  相似文献   

19.
Androgenesis is a form of uniparental reproduction leading to progenies inheriting only the paternal set of chromosomes. It has been achieved with variable success in a number of freshwater species and can be attained by artificial fertilization of genetically inactivated eggs following exposure to gamma (γ), X-ray or UV irradiation (haploid androgenesis) and by restoration of diploidy by suppression of mitosis using a pressure or thermal shock. The conditions for the genetic inactivation of the maternal genome in the European sea bass (Dicentrarchus labrax L.) were explored using different combinations of UV irradiation levels and durations. UV treatments significantly affected embryo survival and generated a wide range of developmental abnormalities. Despite the wide range of UV doses tested (from 7.2 to 720 mJ.cm−2), only one dose (60 mJ.cm−2.min−1 with 1 min irradiation) resulted in a small percentage (14%) of haploid larvae at hatching in the initial trials as verified by flow cytometry. Microsatellite marker analyses of three further batches of larvae produced by using this UV treatment showed a majority of larvae with variable levels of paternal and maternal contributions and only one larva displaying pure paternal inheritance. The results are discussed also in the context of an assessment of the UV-absorbance characteristics of egg extracts in this species that revealed the presence of gadusol, a compound structurally related to mycosporine-like amino acids (MAAs) with known UV-screening properties.  相似文献   

20.
High-energy wavelengths in the ultraviolet-B (UVB, 280-315 nm) and the UVA (315-400-nm) portion of the spectrum are harmful to terrestrial and aquatic organisms. Interestingly, UVA is also involved in the repair of UV induced damage. Organisms living in shallow coral reef environments possess UV absorbing compounds, such as mycosporine-like amino acids, to protect them from UV radiation. While it has been demonstrated that exposure to UV (280-400 nm) affects the UV absorbance of fish mucus, whether the effects of UV exposure vary between UVB and UVA wavelengths is not known. Therefore, we investigated whether the UVB, UVA, or photosynthetically active radiation (PAR, 400-700 nm) portions of the spectrum affected the UV absorbance of epithelial mucus and Fulton’s body condition index of the cleaner fish Labroides dimidiatus. We also compared field-measured UV absorbance with laboratory based high-performance liquid chromatography measurements of mycosporine-like amino acid concentrations. After 1 week, we found that the UV absorbance of epithelial mucus was higher in the UVB+UVA+PAR treatment compared with the UVA+PAR and PAR only treatments; after 2 and 3 weeks, however, differences between treatments were not detected. After 3 weeks, Fulton’s body condition index was lower for fish in the UVB+UVA+PAR compared with PAR and UVA+PAR treatments; furthermore, all experimentally treated fish had a lower Fulton’s body condition index than did freshly caught fish. Finally, we found a decrease with depth in the UV absorbance of mucus of wild-caught fish. This study suggests that the increase in UV absorbance of fish mucus in response to increased overall UV levels is a function of the UVB portion of the spectrum. This has important implications for the ability of cleaner fish and other fishes to adjust their mucus UV protection in response to variations in environmental UV exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号