首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The lag time of an invasion is the delay between arrival of an introduced species and its successful spread in a new area. To date, most estimates of lag times for plants have been indirect or anecdotal, and these estimates suggest that plant invasions are often characterized by lag times of 50 years or more. No general estimates are available of lag times for tropical plant invasions. Historical plantings and documentation were used to directly estimate lag times for tropical plant invasions in Hawai''i.

Methodology/Principal Findings

Historical planting records for the Lyon Arboretum dating back to 1920 were examined to identify plants that have since become invasive pests in the Hawaiian Islands. Annual reports describing escape from plantings were then used to determine the lag times between initial plantings and earliest recorded spread of the successful invaders. Among 23 species that eventually became invasive pests, the average lag time between introduction and first evidence of spread was 14 years for woody plants and 5 years for herbaceous plants.

Conclusions/Significance

These direct estimates of lag times are as much as an order of magnitude shorter than previous, indirect estimates, which were mainly based on temperate plants. Tropical invaders may have much shorter lag times than temperate species. A lack of direct and deliberate observations may have also inflated many previous lag time estimates. Although there have been documented cases of long lag times due to delayed arrival of a mutualist or environmental changes over time, this study suggests that most successful invasions are likely to begin shortly after arrival of the plant in a suitable habitat, at least in tropical environments. Short lag times suggest that controlled field trials may be a practical element of risk assessment for plant introductions.  相似文献   

2.
Continental tropical ecosystems are generally viewed as less vulnerable to biological invasions than island ones. Their apparent resistance to invasive alien species is often attributed to their higher native biota diversity and complexity. However, with the increase of human activities and disturbances and the accelerate rate of introductions of plant species, these apparently resilient continental ecosystems are now experiencing alien plant naturalization and invasion events. In order to illustrate this emergent phenomenon, we compiled a list of all known introduced and naturalized plant species in French Guiana (Guiana Shield, South America). A total of 490 alien plants were recorded, about 34% of which are currently naturalized, mainly species belonging to the Acanthaceae and Fabaceae (Faboideae) in the Eudicotyledons, and Poaceae (grasses) and Arecaceae (palms) in the Monocotyledons. The coastal dry and wet savannas appears to be vulnerable to plant invasion (with 165 naturalized species, about 34% of the alien flora), especially by Acacia mangium (Mimosaceae) and Melaleuca quinquenervia (Myrtaceae) which are forming localized but dense monotypic stands. Both tree species, intentionnally introduced for reforestation, rehabilitation, and as garden ornamentals and have the potential to spread with increasing human disturbances The number and abundance of naturalized alien plants in the relatively undisturbed tropical lowland rainforests and savannas remains still very low. Therefore, surveillance, early detection, and eradication of potential plant invaders are crucial; moreover collaboration with neighbouring countries of the Guiana Shield is essential to prevent the introduction of potentially invasive species which are still not present in French Guiana.  相似文献   

3.
Trade plays a key role in the spread of alien species and has arguably contributed to the recent enormous acceleration of biological invasions, thus homogenizing biotas worldwide. Combining data on 60‐year trends of bilateral trade, as well as on biodiversity and climate, we modeled the global spread of plant species among 147 countries. The model results were compared with a recently compiled unique global data set on numbers of naturalized alien vascular plant species representing the most comprehensive collection of naturalized plant distributions currently available. The model identifies major source regions, introduction routes, and hot spots of plant invasions that agree well with observed naturalized plant numbers. In contrast to common knowledge, we show that the ‘imperialist dogma,’ stating that Europe has been a net exporter of naturalized plants since colonial times, does not hold for the past 60 years, when more naturalized plants were being imported to than exported from Europe. Our results highlight that the current distribution of naturalized plants is best predicted by socioeconomic activities 20 years ago. We took advantage of the observed time lag and used trade developments until recent times to predict naturalized plant trajectories for the next two decades. This shows that particularly strong increases in naturalized plant numbers are expected in the next 20 years for emerging economies in megadiverse regions. The interaction with predicted future climate change will increase invasions in northern temperate countries and reduce them in tropical and (sub)tropical regions, yet not by enough to cancel out the trade‐related increase.  相似文献   

4.
This study was aimed to determine the patterns as well as the effects of biological, anthropogenic, and climatic factors on plant invasions in China. About 270 volumes of national and regional floras were employed to compile a naturalized flora of China. Habit, life form, origin, distribution, and uses of naturalized plants were also analyzed to determine patterns on invasion. Correlations between biological, anthropogenic and climatic parameters were estimated at province and regional scales. Naturalized species represent 1% of the flora of China. Asteraceae, Fabaceae, and Poaceae are the dominant families, but Euphorbiaceae and Cactaceae have the largest ratios of naturalized species to their global numbers. Oenothera, Euphorbia, and Crotalaria were the dominant genera. Around 50% of exotic species were introduced intentionally for medicinal purposes. Most of the naturalized species originated in tropical America, followed by Asia and Europe. Number of naturalized species was significantly correlated to the number of native species/log area. The intensity of plant invasion showed a pattern along climate zones from mesic to xeric, declining with decreasing temperature and precipitation across the nation. Anthropogenic factor, such as distance of transportation, was significantly correlated to plant invasions at a regional scale. Although anthropogenic factors were largely responsible for creating opportunities for exotic species to spread and establish, the local biodiversity and climate factors were the major factors shaping the pattern of plant invasions in China. The warm regions, which are the hot spots of local biodiversity, and relatively developed areas of China, furthermore, require immediate attentions.  相似文献   

5.
To protect the remaining biodiversity on tropical islands it is important to predict the elevational ranges of non-native species. We evaluated two hypotheses by examining land snail faunas on the eastern (windward) side of the island of Hawaii: (1) the latitude of a species' native region can be used to predict its potential elevational range and (2) non-native temperate species, which experience greater climatic fluctuations in their native range, are more likely to become established at higher elevations and to extend over larger elevational ranges than non-native tropical species. All non-native tropical species were distributed patchily among sites ≤500 m and occupied small elevational ranges, whereas species introduced from temperate regions occupied wide elevational ranges and formed a distinct fauna spanning elevations 500–2000 m. Most native land snail species and ecosystems occur >500 m in areas dominated by temperate non-native snail and slug species. Therefore, knowing the native latitudinal region of a non-native species is important for conservation of tropical island ecosystems because it can be translated into potential elevational range if those species are introduced. Because temperate species will survive in tropical locales particularly at high elevation, on many tropical islands the last refuges of the native species, preventing introduction of temperate species should be a conservation priority.  相似文献   

6.
Biological invasions often have contrasting consequences with reports of invasions decreasing diversity at small scales and facilitating diversity at large scales. Thus, previous literature has concluded that invasions have a fundamental spatial scale‐dependent relationship with diversity. Whether the scale‐dependent effects apply to vertebrate invaders is questionable because studies consistently report that vertebrate invasions produce different outcomes than plant or invertebrate invasions. Namely, vertebrate invasions generally have a larger effect size on species richness and vertebrate invaders commonly cause extinction, whereas extinctions are rare following invertebrate or plant invasions. In an agroecosystem invaded by a non‐native ungulate (i.e., feral swine, Sus scrofa), we monitored species richness of native vertebrates in forest fragments ranging across four orders of magnitude in area. We tested three predictions of the scale‐dependence hypothesis: (a) Vertebrate species richness would positively increase with area, (b) the species richness y‐intercept would be lower when invaded, and (c) the rate of native species accumulation with area would be steeper when invaded. Indeed, native vertebrate richness increased with area and the species richness was 26% lower than should be expected when the invasive ungulate was present. However, there was no evidence that the relationship was scale dependent. Our data indicate the scale‐dependent effect of biological invasions may not apply to vertebrate invasions.  相似文献   

7.
Cold environments at high elevation and high latitude are often viewed as resistant to biological invasions. However, climate warming, land use change and associated increased connectivity all increase the risk of biological invasions in these environments. Here we present a summary of the key discussions of the workshop ‘Biosecurity in Mountains and Northern Ecosystems: Current Status and Future Challenges’ (Flen, Sweden, 1–3 June 2015). The aims of the workshop were to (1) increase awareness about the growing importance of species expansion—both non-native and native—at high elevation and high latitude with climate change, (2) review existing knowledge about invasion risks in these areas, and (3) encourage more research on how species will move and interact in cold environments, the consequences for biodiversity, and animal and human health and wellbeing. The diversity of potential and actual invaders reported at the workshop and the likely interactions between them create major challenges for managers of cold environments. However, since these cold environments have experienced fewer invasions when compared with many warmer, more populated environments, prevention has a real chance of success, especially if it is coupled with prioritisation schemes for targeting invaders likely to have greatest impact. Communication and co-operation between cold environment regions will facilitate rapid response, and maximise the use of limited research and management resources.  相似文献   

8.

Aim

Tolerance of species to extreme temperatures largely determines their distribution and vulnerability to climate change. We examined thermal tolerance in tropical and temperate alpine plants, testing the hypotheses that: (a) temperate plants are resistant to more extreme temperatures and have an overall wider thermal tolerance breadth (TTB); (b) TTB in temperate plants is wider than TTB in tropical plants during the entire growing season; (c) resistance to frost and heat varies during the season in temperate plants but not in tropical plants; (d) TTB of a species predicts its latitudinal range.

Location

Tropical (Ecuador, Bolivia) and temperate (USA, Austria) mountains.

Time period

Four periods of the growing season (2014, 2016–2019).

Major taxa

Ninety-six vascular plant species.

Methods

We employed the electrolyte leakage method to estimate the temperature resistance, that is, the temperature at which 50% tissue injury (Lt50) occurs in leaves. We used phylogenetic linear mixed-effect models in a Bayesian framework to test for differences between the plant groups.

Results

Temperate and tropical plants do not differ in their temperature resistance. The four hypotheses are rejected since: (a) temperate plants do not have significantly wider overall TTB compared to tropical plants, (b) TTB of temperate plants is wider than TTB of tropical plants only at the end of the temperate summer, (c) seasonal acclimation is observed in both plant groups, (d) the latitudinal range of the plants is not related to TTB.

Main conclusions

The lack of TTB differences between temperate and tropical alpine plants is consistent with trends observed in ectothermic animals, which suggests a general latitudinal pattern in high-elevation poikilotherm organisms. Limited acclimation capacity to cope with long freezing exposures restricts the occurrence of tropical alpine species to thermally aseasonal environments making them particularly vulnerable to climate change.  相似文献   

9.
Several recent studies have shown that plant invasions can occur in resource-poor and relatively undisturbed habitats. It is, therefore, important to investigate whether and how life-history traits of species invasive in such habitats differ from those of species that are only invasive in disturbed and resource rich habitats. We compared the growth of seedlings of native and invasive tree species from nutrient-poor secondary forests in the tropical Seychelles. We hypothesised that the relative performance of the two groups would change predictably along resource gradients, with native species performing better at low levels of resource availability and invasive species performing better at higher levels. To test this hypothesis, we performed a common garden experiment using seedlings of six invasive and seven native tree species grown under three levels of light (65, 11 and 3.5% of ambient light) and two of nutrients (low and high). Due to large variation among species, differences in growth rates (RGR) were not significant among seedlings of the native and the invasive species. However, seedlings of the invasive species showed higher specific leaf areas (SLA) and higher leaf nutrient contents than seedlings of the native species. They also exhibited greater plasticity in biomass and nutrient allocation (i.e., greater plasticity in LAR, RSR and leaf nutrient contents) in response to varying resource availability. However, differences between the mean values of these parameters were generally small compared with variation within groups. We conclude that successful invaders on nutrient-poor soils in the Seychelles are either stress-tolerant, possessing growth traits similar to those of the native species, or fast-growing but adapted to nutrient-poor soils. In contrast, the more typical, fast-growing alien species with no particular adaptations to nutrient-poor soils seem to be restricted to relative nutrient-rich sites in the lowlands. The finding—that some introduced species thrive in resource-poor habitats—suggests that undisturbed habitats with low resource availability may be less resistant to plant invasions than was previously supposed.  相似文献   

10.
WU Yu-Hu 《Plant Diversity》2007,29(3):265-276
The Chaqia-Gonghe Basin and its contiguous zone is situated in eastern Qinghai of China, between latitude 34°45′- 37°00′N and longitude 98°45′- 101°30′E . Ranging from 2 800m to 5 305 m in altitude, the total area is about 38 300km2 . Its climate is continental or plateau-continental one . There are 854 species of native seed plants belonging to 59 families and 277 genera there , which occupied 37. 37% of the total species, 54 . 53% of the total genera and 65. 56% of the total families in Qinghai respectively . The floristic characteristics of the native seed plants are as follows : ( 1) Number of species and woody ones there are poor . (2) At generic level, the flora is temperate in nature, dominated by north temperate elements especially the typical elements from the warm and cold zone of Eurasia , but also with some elements of warm, cold warm and alpine ones . (3 ) The area is a margin of distribution for many species or genera especially for tropical ones, and thus , the flora of the area is clearly marginal in nature . (4) Floristic-geographically , it is a converged and transitional region for the Qinghai-Tibetan Plateau Alpine Flora , Loess Plateau Warm Flora , as well as East Asia Alpine Desert Flora. (5 ) It is a part of the Tangute Flora . (6 ) It is a key area to divide the subregions in the flora of Qinghai on the Tangute Area .  相似文献   

11.
The mechanisms underlying elevation patterns in species and phylogenetic diversity remain a central issue in ecology and are vital for effective biodiversity conservation in the mountains. Gongga Mountain, located in the southeastern Qinghai–Tibetan Plateau, represents one of the longest elevational gradients (ca. 6,500 m, from ca. 1,000 to 7,556 m) in the world for studying species diversity patterns. However, the elevational gradient and conservation of plant species diversity and phylogenetic diversity in this mountain remain poorly studied. Here, we compiled the elevational distributions of 2,667 native seed plant species occurring in Gongga Mountain, and estimated the species diversity, phylogenetic diversity, species density, and phylogenetic relatedness across ten elevation belts and five vegetation zones. The results indicated that species diversity and phylogenetic diversity of all seed plants showed a hump‐shaped pattern, peaking at 1,800–2,200 m. Species diversity was significantly correlated with phylogenetic diversity and species density. The floras in temperate coniferous broad‐leaved mixed forests, subalpine coniferous forests, and alpine shrublands and meadows were significantly phylogenetically clustered, whereas the floras in evergreen broad‐leaved forests had phylogenetically random structure. Both climate and human pressure had strong correlation with species diversity, phylogenetic diversity, and phylogenetic structure of seed plants. Our results suggest that the evergreen broad‐leaved forests and coniferous broad‐leaved mixed forests at low to mid elevations deserve more conservation efforts. This study improves our understanding on the elevational gradients of species and phylogenetic diversity and their determinants and provides support for improvement of seed plant conservation in Gongga Mountain.  相似文献   

12.
Through intentional and accidental introduction, more than 100 species of alien Ichneumonidae and Braconidae (Hymenoptera) have become established in the Hawaiian Islands. The extent to which these parasitoid wasps have penetrated native wet forests was investigated over a 1,765 m elevation gradient on windward Hawai’i Island. For >1 year, malaise traps were used to continuously monitor parasitoid abundance and species richness in nine sites over three elevations. A total of 18,996 individuals from 16 subfamilies were collected. Overall, the fauna was dominated by aliens, with 44 of 58 species foreign to the Hawaiian Islands. Ichneumonidae was dominant over Braconidae in terms of both diversity and abundance, comprising 67.5% of individuals and 69.0% of species collected. Parasitoid abundance and species richness varied significantly with elevation: abundance was greater at mid and high elevations compared to low elevation while species richness increased with increasing elevation, with all three elevations differing significantly from each other. Nine species purposely introduced to control pest insects were found, but one braconid, Meteorus laphygmae, comprised 98.0% of this assemblage, or 28.3% of the entire fauna. Endemic species, primarily within the genera Spolas and Enicospilus, were collected almost exclusively at mid- and high-elevation sites, where they made up 22.1% and 36.0% of the total catch, respectively. Overall, 75.9% of species and 96.0% of individuals are inferred to parasitize Lepidoptera larvae and pupae. Our results support previous data indicating that alien parasitoids have deeply penetrated native forest habitats and may have substantial impacts on Hawaiian ecosystems.  相似文献   

13.
Plant–plant interactions are increasingly recognized as a key driver of community organization and ecosystem processes in alpine environments. However, patterns and mechanisms of plant–plant interactions remain largely uncharacterized in tropical alpine ecosystems (TAE) which represent as much as 10% of the total surface area of alpine ecosystems worldwide. In this paper, we review (1) the ecological and environmental features that are specific to TAE in comparison with other alpine ecosystems, (2) the existing literature on plant–plant interactions in TAE, and (3) whether patterns and mechanisms of plant–plant interactions established in extratropical alpine zones can be extended to TAE. TAE are located predominantly in South America, East Africa, and South-East Asia where they show a unique combination of environmental characteristics, such as absence of persisting snow cover, high frequency of diurnal freeze–thaw cycles and needle-ice activity, and a decrease in precipitation with increasing altitude. These environmental characteristics result in the presence of giant growth forms with a great architectural diversity. These biotic and abiotic characteristics influence the outcome of plant–plant interactions by imposing other types of environmental constraints than those found in extratropical alpine environments, and by potentially generating distinctive patterns of niche differentiation/complementarity between species and populations. To generalize the conceptual framework of plant–plant interactions in alpine environments, we advocate that TAE should be investigated more thoroughly by applying designs, methods and hypotheses that are used currently in temperate areas and by conducting studies along large latitudinal gradients that include tropical regions.  相似文献   

14.
Invasions of non-native species are considered to have significant impacts on native species, but few studies have quantified the direct effects of invasions on native community structure and composition. Many studies on the effects of invasions fail to distinguish between (1) differential responses of native and non-native species to environmental conditions, and (2) direct impacts of invasions on native communities. In particular, invasions may alter community assembly following disturbance and prevent recolonization of native species. To determine if invasions directly impact native communities, we established 32 experimental plots (27.5 m2) and seeded them with 12 native species. Then, we added seed of a non-native invasive grass (Microstegium vimineum) to half of the plots and compared native plant community responses between control and invaded plots. Invasion reduced native biomass by 46, 64, and 58%, respectively, over three growing seasons. After the second year of the experiment, invaded plots had 43% lower species richness and 38% lower diversity as calculated from the Shannon index. Nonmetric multidimensional scaling ordination showed a significant divergence in composition between invaded and control plots. Further, there was a strong negative relationship between invader and native plant biomass, signifying that native plants are more strongly suppressed in densely invaded areas. Our results show that a non-native invasive plant inhibits native species establishment and growth following disturbance and that native species do not gain competitive dominance after multiple growing seasons. Thus, plant invaders can alter the structure of native plant communities and reduce the success of restoration efforts.  相似文献   

15.
Screening systems for predicting invasive plants have been independently developed for the non-indigenous floras of North America, the South African fynbos, and Australia. To evaluate the performance of these screening systems outside the regions for which they were developed, we tested them for the non-indigenous flora of the Hawaiian Islands. When known invasive plant species in the Hawaiian Islands were evaluated using the North American and Australian systems, 82% and 93% of the species were predicted to be invasive, respectively, and the remainder were classified as requiring further study. The South African fynbos system correctly predicted only 60% of the invasive species in the Hawaiian Islands. All three screening systems correctly classified a majority of the non-invaders as non-invasive. The Australian system has several advantages over the other systems, including the highest level of correct identification of invaders (>90%), ability to evaluate non-woody plants, and ability to evaluate a species even when the answers to some questions are unknown. Nevertheless, with the Australian system, a large fraction of species known not to be invasive were recommended for further study before importing, so there remains room for improvement in identifying non-invasive species. Based on our results for the Hawaiian Islands and a previous evaluation in New Zealand, the Australian system appears to be a promising template for building a globally applicable system for screening out invasive plant introductions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
The ecological and economic advantages of preventing introduction of species likely to become invasive have increased interest in implementing effective screening tools. We compared the accuracy of the Australian Weed Risk Assessment (WRA) system with that across the six geographies in which it has been tested (New Zealand, Hawaii, Hawaii and Pacific Islands, Czech Republic, Bonin Islands and Florida). Inclusion in four of the tests of a secondary screening tool, developed to reduce the number of species requiring further evaluation, decreased the number of species with that outcome by over 60% on average. Averaging across all tests demonstrated that the WRA system accurately identified major invaders 90%, and non-invaders 70%, of the time. Examined differently, a species of unknown invasive potential is on average likely to be correctly accepted or rejected over 80% of the time for all of these geographies when minor invaders are categorized as invasive. Whereas increasing consistency in definitions and implementation would facilitate understanding of the general application of the WRA system, we believe that this tool functions similarly across islands and continents in tropical and temperate climates and has been sufficiently tested to be adopted as an initial screen for plant species proposed for introduction to a new geography.  相似文献   

17.
Seed predation can structure plant communities by imposing strong population controls on some species but not others. In this context, studies from various ecosystems report that native granivores selectively forage for seeds from native species over seeds from exotic invaders, which could disproportionately favor the establishment of invaders and facilitate their dominance in communities. However, few studies have connected selective foraging for native seeds to differential patterns of establishment among native and invasive species. Thus, the extent to which preferential foraging for native seeds favors the establishment of invasive plants is unclear. Here, we used experimental seed additions and exclosure treatments at five field sites distributed across?≈?80,000 km2 of the Great Basin Desert, USA to compare the effects of rodent foraging on the establishment of less-preferred cheatgrass (Bromus tectorum—an annual species native to Eurasia that is exotic and highly invasive across the Great Basin) and four species of more-preferred native grasses that commonly co-occur with cheatgrass. Rodent foraging reduced the establishment of each native species by at least 80% but had no effect on the establishment of cheatgrass, and this finding was consistent across study sites. Our results suggest that selective foraging for native species may favor the establishment of cheatgrass over native grasses, potentially exacerbating one of the most extensive plant invasions in North America.  相似文献   

18.
为了掌握目前红树林生物入侵研究实况, 基于ISI Web of Science数据库和HistCite文献分析软件, 我们进行了全面系统的文献检索与分析。结果显示, 国内外有关红树林生物入侵研究文献绝大部分针对植物入侵, 有关动物与微生物的研究寥寥无几; 研究区域集中于中国华南与东南沿海(尤其是珠江口、雷州半岛西侧)和美国东南海岸及夏威夷群岛。无瓣海桑(Sonneratia apetala)是否构成入侵, 一直备受争议, 有待更长远论证, 但须谨慎引种。互花米草(Spartina alterniflora)与微甘菊(Mikania micrantha)是世界性恶草, 生长迅速, 繁殖力强, 竞争与化感作用明显, 二者已在红树林生态系统中爆发入侵, 显著降低了红树林微生境质量, 并改变了底栖生物群落结构。Rhizophora mangle作为外来红树植物入侵夏威夷群岛, 改善了沉积条件, 丰富了底栖生物群落, 但需从全球尺度考察入侵后果。目前, 红树林生物入侵研究才刚起步, 针对性研究局限于入侵对红树林生态系统结构和功能产生的效应。相关入侵机制缺乏探索, 现有防治方法大多只是借鉴其他被入侵系统的防治方法。今后, 红树林生物入侵研究应持续加深入侵现状和入侵效应的探索与评价, 加快开展入侵机制和防治方法的研究应用, 以及对生态系统服务的影响评价。健全红树林生物入侵管理体系, 将在防治红树林生物入侵实践中发挥主导作用。  相似文献   

19.
The biogeography of naturalization in alien plants   总被引:9,自引:0,他引:9  
Aim  This paper reviews the main geographical determinants of naturalization in plants.
Location  Global.
Methods  Comparative studies of large data sets of alien floras are the main source of information on global patterns of naturalization.
Results  Temperate mainland regions are more invaded than tropical mainland regions but there seems to be no difference in invasibility of temperate and tropical islands. Islands are more invaded than the mainland. The number of naturalized species in temperate regions decreases with latitude and their geographical ranges increase with latitude. The number of naturalized species on islands increases with temperature. Naturalized species contribute to floristic homogenization, but the phenomenon is scale-dependent.
Main conclusions  Some robust patterns are evident from currently available data, but further research is needed on several aspects to advance our understanding of the biogeography of naturalization of alien plants. For example, measures of propagule pressure are needed to determine the invasibility of communities/ecosystems/regions. The patterns discussed in this paper are derived largely from numbers and proportions of naturalized species, and little is known about the proportion of introduced species that become naturalized. Further insights on naturalization rates, i.e. the proportion of aliens that successfully naturalize within regions, and on geographical and other determinants of its variation would provide us with better understanding of the invasion process. Comparative studies, and resulting generalizations, are almost exclusively based on numbers of species, but alien species differ in their impact on native biodiversity and ecosystem processes.  相似文献   

20.
It has been shown in some cases that nitrogen (N) addition to soil will increase abundance of plant invaders because many invaders have traits that promote rapid growth in response to high resource supply. Similarly, it has been suggested, and sometimes shown, that decreasing soil N via carbon (C) additions can facilitate native species recovery. Yet all species are unlikely to respond to resource supply in the same way. We asked how soil nutrients and competition affect native and exotic woody species in a restoration experiment where we added N or C, and crossed soil manipulation with the manipulation of dominant exotic grass abundance in a Hawaiian subtropical woodland. We related changes in survival and growth of outplanted individuals to native/exotic status and plant traits. As a group, N-fixers showed reduced survival compared to non-fixers in response to added N, with Morella faya (exotic) and Acacia koa (native) having dramatic negative responses. Among non-fixers, species with greater foliar %N had more positive survival responses to increasing soil N. Specific leaf area was not predictive of responses to nutrients or competition. In general, responses to carbon addition were weak, although reducing competition from existing exotic grasses was beneficial for all outplanted species, with N-fixers showing the most positive response. We conclude that commonly used restoration strategies to clear exotic species or lower soil resources with C addition will most greatly benefit N-fixing species, which themselves may be unwanted invaders. Thus statements about the influence of increased soil N on invasions should be carefully dissected by considering the traits (such as N-fixation status) of the regional species pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号