首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 579 毫秒
1.
In most bacteria, inorganic sulfur is assimilated into cysteine, which provides sulfur for methionine biosynthesis via transsulfurylation. Here, cysteine is transferred to the terminal carbon of homoserine via its sulfhydryl group to form cystathionine, which is cleaved to yield homocysteine. In the enteric bacteria Escherichia coli and Salmonella enterica, these reactions are catalyzed by irreversible cystathionine-gamma-synthase and cystathionine-beta-lyase enzymes. Alternatively, yeast and some bacteria assimilate sulfur into homocysteine, which serves as a sulfhydryl group donor in the synthesis of cysteine by reverse transsulfurylation with a cystathionine-beta-synthase and cystathionine-gamma-lyase. Herein we report that the related enteric bacterium Klebsiella pneumoniae encodes genes for both transsulfurylation pathways; genetic and biochemical analyses show that they are coordinately regulated to prevent futile cycling. Klebsiella uses reverse transsulfurylation to recycle methionine to cysteine during periods of sulfate starvation. This methionine-to-cysteine (mtc) transsulfurylation pathway is activated by cysteine starvation via the CysB protein, by adenosyl-phosphosulfate starvation via the Cbl protein, and by methionine excess via the MetJ protein. While mtc mutants cannot use methionine as a sulfur source on solid medium, they will utilize methionine in liquid medium via a sulfide intermediate, suggesting that an additional nontranssulfurylation methionine-to-cysteine recycling pathway(s) operates under these conditions.  相似文献   

2.
A comparison of the rate of ethylene production by apple fruit to the methionine content of the tissue suggests that the sulfur of methionine has to be recycled during its continuous synthesis of ethylene. The metabolism of the sulfur of methionine in apple tissue in relation to ethylene biosynthesis was investigated. The results showed that in the conversion of methionine to ethylene the CH3S-group of methionine is first incorporated as a unit into S-methylcysteine. By demethylation, S-methylcysteine is metabolized to cysteine. Cysteine then donates its sulfur to form methionine, presumably through cystathionine and homocysteine. This view is consistent with the observation that cysteine, homoserine and homocysteine were all converted to methionine, in an order of efficiency from least to greatest. For the conversion to ethylene, methionine was the most efficient precursor, followed by homocysteine and homoserine. Based on these results, a methionine-sulfur cycle in relation to ethylene biosynthesis is presented.  相似文献   

3.
Methionine control of cephalosporin C formation   总被引:8,自引:0,他引:8  
DL -Norleucine, a nonsulfur analogue of methionine was found to markedly stimulate synthesis of cephalosporin C by Cephalosporium acremonium strain CW19 in three different chemically defined media. Methionine, but not norleucine, stimulated cephalosporin C biosynthesis in a crude medium. The lack of stimulation by norleucine in complex medium was shown to be due to lack of uptake of this amino acid by mycelia growing in such a medium. In defined media containing a suboptimal methionine concentration, norleucine stimulated antibiotic production up to the level reached by optimal methionine. At an optimal dose of methionine, norleucine elicited no further increase in cephalosporin C production, indicating that these two amino acids act by the same mechanism. The data strongly indicate that stimulation by methionine is not a function of its ability to donate sulfur for antibiotic formation. Methionine was found to neither repress nor inhibit cysteine metabolism.  相似文献   

4.
Engineering of cysteine and methionine biosynthesis in potato   总被引:10,自引:0,他引:10  
Summary. Methionine and cysteine, two amino acids containing reduced sulfur, are not only an important substrate of protein biosynthesis but are also precursors of various other metabolites such as glutathione, phytochelatines, S-adenosylmethionine, ethylene, polyamines, biotin, and are involved as methyl group donor in numerous cellular processes. While methionine is an essential amino acid due to an inability of monogastric animals and human beings to synthesise this metabolite, animals are still able to convert methionine consumed with their diet into cysteine. Thus, a balanced diet containing both amino acids is necessary to provide a nutritionally favourable food or feed source. Because the concentrations of methionine and cysteine are often low in edible plant sources, e.g. potato, considerable efforts in plant breeding and research have been and are still performed to understand the physiological, biochemical, and molecular mechanisms that contribute to their synthesis, transport, and accumulation in plants. During the last decade molecular tools have enabled the isolation of most of the genes involved in cysteine and methionine biosynthesis, and the efficient plant transformation technology has allowed the creation of transgenic plants that are altered in the activity of individual genes. The physiological analysis of these transgenic plants has contributed considerably to our current understanding of how amino acids are synthesised. We focused our analysis on potato (Solanum tuberosum cv. Désirée) as this plant provides a clear separation of source and sink tissues and, for applied purposes, already constitutes a crop plant. From the data presented here and in previous work we conclude that threonine synthase and not cystathionine gamma-synthase as expected from studies of Arabidopsis constitutes the main regulatory control point of methionine synthesis in potato. This article aims to cover the current knowledge in the area of molecular genetics of sulfur-containing amino acid biosynthesis and will provide new data for methionine biosynthesis in solanaceous plants such as potato. Received December 19, 2001 Accepted January 7, 2002  相似文献   

5.
It is possible to improve wool growth through increasing the supply of cysteine available for protein synthesis and cell division in the wool follicle. As mammals can only synthesis cysteine indirectly from methionine via trans-sulphuration, expression of transgenes encoding microbial cysteine biosynthesis enzymes could provide a more efficient pathway to cysteine synthesis in the sheep. If expressed in the rumen epithelium, the abundant sulphide, produced by ruminal microorganisms and normally excreted, could be captured for conversion to cysteine. This paper describes the characterisation of expression of the cysteine biosynthesis genes ofSalmonella typhimurium, cysE,cysM andcysK, and linkedcysEM,cysME andcysKE genes as transgenes in mice and sheep. The linked transgenes were constructed with each gene driven by a separate promoter, either with the Rous sarcoma virus long terminal repeat (RSVLTR) promoter or the mouse phosphoglycerate kinase-1 (mPgk-1) promoter, and with human growth hormone (hGH) polyadenylation sequences. Transgenesis of mice with the RSVLTR-cysE gene afforded tissue-specific, heritable expression of the gene. Despite high levels of expression in a number of tissues, extremely low levels of expression occurred in the stomach and small intestine. Results of a concurrent sheep transgenesis experiment using the RSVLTR-cysEM and-cysME linked transgenes revealed that the RSVLTR promoter was inadequate for expression in the rumen. Moreover, instability of transgenes containing the RSVLTR sequence was observed. Expression of mPgk-cysME and-cysKE linked transgenes in most tissues of the mice examined, including the stomach and small intestine, suggested this promoter to be a better candidate for expression of these transgenes in the analogous tissues of sheep. However, a subsequent sheep transgenesis experiment indicated that use of the mPgk-1 promoter, active ubiquitously and early in development, may be inappropriate for expression of the cysteine biosynthesis transgenes. In summary, these results indicate that enzymically active bacterial cysteine biosynthesis gene products can be coexpressed in mammalian cellsin vivo but that expression of the genes should be spatio-temporally restricted to the adult sheep rumen epithelium.  相似文献   

6.
The path of unspecific incorporation of selenium in Escherichia coli   总被引:2,自引:0,他引:2  
The path of unspecific selenium incorporation into proteins was studied in Escherichia coli mutants blocked in the biosynthesis of cysteine and methionine or altered in its regulation. Selenium incorporation required all enzymatic steps of cysteine biosynthesis except sulfite reduction, indicating that intracellular reduction of selenite occurs nonenzymatically. Cysteine (but not methionine) supplementation prevented unspecific incorporation of selenium by repressing cysteine biosynthesis. On the other hand, when the biosynthesis of cysteine was derepressed in regulatory mutants, selenium was incorporated to high levels. These findings and the fact that methionine auxotrophic strains still displayed unspecific incorporation show that selenium incorporation into proteins in E. coli occurs mainly as selenocysteine. These findings also provide information on the labeling conditions for incorporating 75Se only and specifically into selenoproteins. Received: 2 May 1997 / Accepted: 23 June 1997  相似文献   

7.
8.
Sulfur metabolism in Cephalosporium acremonium was investigated using a mutant, 8650+/ OAH?/SeMeR, which could not convert cysteine or inorganic sulfur to methionine. The production of cephalosporin by the mutant depended on the amount of S-sulfocysteine in a chemically defined medium supplemented with a low level of methionine sufficient to support optimal growth. S-Sulfocysteine was detected in an extract of cells grown in the presence of sodium thiosulfate and l-serine. Furthermore, an NADPH-linked reduction of S-sulfocysteine to cysteine was demonstrated in a cell-free extract. These facts suggest that S-sulfocysteine is a direct precursor in cysteine biosynthesis in C. acremonium and an alternative pathway involving the compound is one of the most important ones in cephalosporin C production by this fungus.  相似文献   

9.
Hell R  Jost R  Berkowitz O  Wirtz M 《Amino acids》2002,22(3):245-257
Summary. Among the amino acids produced by plants cysteine plays a special role as a mediator between assimilatory sulfate reduction and provision of reduced sulfur for cell metabolism. Part of this characteristic feature is the presence of cysteine synthesis in plastids, mitochondria and cytosol. Plants are the major source of reduced sulfur for human and animal nutrition. Cysteine biosynthesis deserves special attention, since reduced sulfur is channelled from cysteine into many sulfur-containing compounds in food and feed. Recent investigations are reviewed that focus on structure and regulation of cysteine synthesis in the model plant Arabidopsis thaliana. These data indicate that cysteine synthesis is not just an intermediate reaction step but that it is part of a regulatory network that mediates between inorganic sulfur supply and the demand for reduced sulfur during plant growth and in response to environmental changes. Received December 3, 2001 Accepted December 21, 2001  相似文献   

10.
Protein obtained from several strains of Escherichia coli grown in the presence of [3,3′-14C]cystine contained the radiolabel in nearly all the other amino acids, suggesting catabolism of cysteine to pyruvic acid. Utilization in amino acid synthesis of the pyruvate thus generated can be blocked by growing the bacteria in a medium specifically enriched with most of the naturally occurring amino acids. Cysteine that is incorporated intact is diluted by de novo synthesis at low cystine concentrations; also, it was found that E. coli can use the sulfur of methionine for cysteine biosynthesis. Both of these latter two processes can be prevented by supplying an excess of exogenous cystine. This regiment leads to protein that is highly specifically labeled in the cysteine residues, with a minor amount (20–25%) of the label also appearing in alanine residues. Although this strategy was developed expressly for cysteine, it may be useful for incorporating other labeled amino acids that are also readily catabolized.  相似文献   

11.
Plant cell suspension cultures from Catharanthus roseus were investigated for their capability to dissimilate methionine or its analogs in order to reutilize the sulphane group for cysteine biosynthesis. Three steps have been described as prerequisites of this process: (a) oxidative degradation by the amino-acid oxidase of methionine giving rise to methanethiol production; (b) demethylation by methyltransferases leading to homocysteine and S-methylmethionine (c) replacement of the homocysteine sulphane sulphur by alkylthiol yielding methionine and free hydrogen sulphide. A reversal of the cystathionine pathway as a source of cysteine was ruled out because the cells lack cystathionine γ-lyase. The absence of this enzyme is compensated by the S-alkyl exchange of homocysteine with methylmercaptan. Hydrogen sulphide thus liberated is used for de novo synthesis of cysteine. The complete pathway can be catalyzed by the constitutive set of enzymes present in the higher plant.  相似文献   

12.
Plant infection is accompanied by an oxidative burst that produces free radicals of various natures. The approach that we exploited in this study was to increase the antioxidative potential of flax by genetic engineering. Overexpressing the yeast Met25 gene coding for O-acetylhomoserine-O-acetylserine (OAH-OAS) sulfhydrylase in flax resulted in a significant increase in cysteine and methionine biosynthesis. This overproduction of sulfur amino acids increases the synthesis of glutathione, a tripeptide containing cysteine. The increase in glutathione content in the transgenic plant increases its antioxidative potential, and thus improves the plant's protection against Fusarium infection.  相似文献   

13.
Despite the availability of genome data and recent advances in methionine regulation in Corynebacterium glutamicum, sulfur metabolism and its underlying molecular mechanisms are still poorly characterized in this organism. Here, we describe the identification of an ORF coding for a putative regulatory protein that controls the expression of genes involved in sulfur reduction dependent on extracellular methionine levels. C. glutamicum was randomly mutagenized by transposon mutagenesis and 7,000 mutants were screened for rapid growth on agar plates containing the methionine antimetabolite d,l-ethionine. In all obtained mutants, the site of insertion was located in the ORF NCgl2640 of unknown function that has several homologues in other bacteria. All mutants exhibited similar ethionine resistance and this phenotype could be transferred to another strain by the defined deletion of the NCgl2640 gene. Moreover, inactivation of NCgl2640 resulted in significantly increased methionine production. Using promoter lacZ-fusions of genes involved in sulfur metabolism, we demonstrated the relief of l-methionine repression in the NCgl2640 mutant for cysteine synthase, o-acetylhomoserine sulfhydrolase (metY) and sulfite reductase. Complementation of the mutant strain with plasmid-borne NCgl2640 restored the wild-type phenotype for metY and sulfite reductase.  相似文献   

14.
In the enteric bacteria Escherichia coli and Salmonella enterica, sulfate is reduced to sulfide and assimilated into the amino acid cysteine; in turn, cysteine provides the sulfur atom for other sulfur-bearing molecules in the cell, including methionine. These organisms cannot use methionine as a sole source of sulfur. Here we report that this constraint is not shared by many other enteric bacteria, which can use either cysteine or methionine as the sole source of sulfur. The enteric bacterium Klebsiella aerogenes appears to use at least two pathways to allow the reduced sulfur of methionine to be recycled into cysteine. In addition, the ability to recycle methionine on solid media, where cys mutants cannot use methionine as a sulfur source, appears to be different from that in liquid media, where they can. One pathway likely uses a cystathionine intermediate to convert homocysteine to cysteine and is induced under conditions of sulfur starvation, which is likely sensed by low levels of the sulfate reduction intermediate adenosine-5'-phosphosulfate. The CysB regulatory proteins appear to control activation of this pathway. A second pathway may use a methanesulfonate intermediate to convert methionine-derived methanethiol to sulfite. While the transsulfurylation pathway may be directed to recovery of methionine, the methanethiol pathway likely represents a general salvage mechanism for recovery of alkane sulfide and alkane sulfonates. Therefore, the relatively distinct biosyntheses of cysteine and methionine in E. coli and Salmonella appear to be more intertwined in Klebsiella.  相似文献   

15.
Enzymes implicated in cysteine and methionine metabolism such as cystathionine β‐lyase (CBL; EC 4.4.1.8), a pyridoxal‐5′‐phosphate (PLP)‐dependent carbon–sulfur lyase, have been shown to play a central role in the generation of sulfur compounds. This work describes the unprecedented cloning and characterization of the metC‐cystathionine β‐lyase from the axillary‐isolated strain Staphylococcus haemolyticus AX3, in order to determine its activity and its involvement in amino acid biosynthesis, and in the generation of sulfur compounds in human sweat. The gene contains a cysteine/methionine metabolism enzyme pattern, and also a sequence capable to effect β‐elimination. The recombinant enzyme was shown to cleave cystathionine into homocysteine and to convert methionine into methanethiol at low levels. No odor was generated after incubation of the recombinant enzyme with sterile human axillary secretions; sweat components were found to have an inhibitory effect. These results suggest that the generation of sulfur compounds by Staphylococci and the β‐lyase activity in human sweat are mediated by enzymes other than the metC gene or by the concerted activities of more than one enzyme.  相似文献   

16.
There are two alternative pathways leading to methionine synthesis in microorganisms: The transsulfuration pathway involves cystathionine as the intermediate and utilizes cysteine as the sulfur source, but the direct sulfhydrylation pathway bypasses cystathionine and uses inorganic sulfur instead. While most microorganisms synthesize methionine via either one of these pathways, Corynebacterium glutamicum utilizes both pathways, which appear to be fully functional. In C. glutamicum, each pathway is catalyzed by independent enzymes and is tightly regulated by methionine. Although the physiological significance of parallel pathways remains to be elucidated, their presence suggests metabolic flexibility and efficient adaptation of the organism to its environment.  相似文献   

17.
With the objective of studying the role of glutathione reductase (GR) in the accumulation of cysteine and methionine, we generated transgenic tobacco and Arabidopsis lines overexpressing the cytosolic AtGR1 and the plastidic AtGR2 genes. The transgenic plants had higher contents of cysteine and glutathione. To understand why cysteine levels increased in these plants, we also used gr1 and gr2 mutants. The results showed that the transgenic plants have higher levels of sulfite, cysteine, glutathione and methionine, which are downstream to adenosine 5′ phosphosulfate reductase (APR) activity. However, the mutants had lower levels of these metabolites, while the sulfate content increased. A feeding experiment using 34SO42– also showed that the levels of APR downstream metabolites increased in the transgenic lines and decreased in gr1 compared with their controls. These findings, and the results obtained from the expression levels of several genes related to the sulfur pathway, suggest that GR plays an essential role in the sulfur assimilation pathway by supporting the activity of APR, the key enzyme in this pathway. GR recycles the oxidized form of glutathione (GSSG) back to reduce glutathione (GSH), which serves as an electron donor for APR activity. The phenotypes of the transgenic plants and the mutants are not significantly altered under non‐stress and oxidative stress conditions. However, when germinating on sulfur‐deficient medium, the transgenic plants grew better, while the mutants were more sensitive than the control plants. The results give substantial evidence of the yet unreported function of GR in the sulfur assimilation pathway.  相似文献   

18.
Sulfate assimilation provides reduced sulfur for the synthesis of the amino acids cysteine and methionine and for a range of other metabolites. The key step in control of plant sulfate assimilation is the reduction of adenosine 5′-phosphosulfate to sulfite. The enzyme catalyzing this reaction, adenosine 5′phosphosulfate reductase (APR), is found as an iron sulfur protein in plants, algae, and many bacteria. In the moss Physcomitrella patens, however, a novel isoform of the enzyme, APR-B, has recently been discovered lacking the co-factor. To assess the function of the novel APR-B we used homologous recombination to disrupt the corresponding gene in P. patens. The knock-out plants were able to grow on sulfate as a sole sulfur source and the content of low molecular weight thiols was not different from wild type plants or plants where APR was disrupted. However, when treated with low concentrations of cadmium the APR-B knockout plants were more sensitive than both wild type and APR knockouts. In wild type P. patens, the two APR isoforms were not affected by treatments that strongly regulate this enzyme in flowering plants. The data thus suggest that in P. patens APS reduction is not the major control step of sulfate assimilation.  相似文献   

19.
Sulfur is an essential plant nutrient and is metabolized into the sulfur-containing amino acids (cysteine and methionine) and into molecules that protect plants against oxidative and environmental stresses. Although studies of thiol metabolism in the model plant Arabidopsis thaliana (thale cress) have expanded our understanding of these dynamic processes, our knowledge of how sulfur is assimilated and metabolized in crop plants, such as soybean (Glycine max), remains limited in comparison. Soybean is a major crop used worldwide for food and animal feed. Although soybeans are protein-rich, they do not contain high levels of the sulfur-containing amino acids, cysteine and methionine. Ultimately, unraveling the fundamental steps and regulation of thiol metabolism in soybean is important for optimizing crop yield and quality. Here we review the pathways from sulfur uptake to glutathione and homoglutathione synthesis in soybean, the potential biotechnology benefits of understanding and modifying these pathways, and how information from the soybean genome may guide the next steps in exploring this biochemical system.  相似文献   

20.
The multiple copies of the chloroplast genome (plastome) are condensed and organized into nucleoids by a set of proteins. One of these, the DNA-binding protein DCP68 from soybean, has previously been shown to compact DNA and to inhibit DNA synthesis in vitro. N-terminal amino acid analysis and the absorption spectrum of the purified protein suggest that DCP68 is the siroheme protein sulfite reductase, a ferredoxin-dependent enzyme that participates in sulfur assimilation for cysteine and methionine biosynthesis. The in vivoassociation of this protein with chloroplast nucleoids was confirmed by immuno-colocalization with antibodies against sulfite reductase from Arabidopsis thaliana. These results suggest that DCP68 is a bifunctional chloroplast protein that participates in reductive sulfur assimilation and plays a role in organellar nucleoid organization. The fact that dephosphorylation by alkaline phosphatase affects the binding of purified DCP68 to DNA in vitro might be indicative of the way the interaction of the protein with the nucleoid is regulated in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号