首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孙婷婷  倪鑫 《生命的化学》2007,27(2):133-135
血清和糖皮质激素调节的蛋白激酶(SGK)是一种新发现的丝/苏氨酸蛋白激酶,与其他蛋白激酶显著不同的是.SGK的转录、活性和在细胞内定位受到不同因素的调节,是多种胞内信号途径的交汇点,参与了细胞存活与凋亡、离子通道调节等过程,与高血压、糖尿病性肾病等疾病密切相关。  相似文献   

2.
植物蔗糖非发酵-1相关蛋白激酶家族研究进展   总被引:1,自引:0,他引:1  
蛋白质磷酸化与去磷酸化过程在细胞的信号转导网络中起关键的作用,是生物体中普遍存在的一种调节机制。植物中的蛋白激酶通过磷酸化和去磷酸化在调节ABA信号传导、能量缺失反应和非生物胁迫反应过程中有着重要的作用。其中,植物蔗糖非发酵-1相关蛋白激酶(sucrose non-fermenting-1-related protein kinase,SnRK)是植物蛋白激酶家族中一个重要家族,它们与酵母中的SNF1(sucrose non-fermenting-1,SNF1)和哺乳动物中的AMPK(AMP-activated protein kinase,AMPK)同源,具有与它们相似和自身独特的功能,根据其氨基酸序列的同源性和表达模式的差异可分为3个亚组:SnRK1、SnRK2和SnRK3。目前,在拟南芥、水稻、豆科植物、高粱以及苔藓植物等基因组中都发现了大量的SnRK蛋白激酶,它们广泛参与了植物的生长发育、病虫害防御、ABA和非生物胁迫等各种信号的应答反应。  相似文献   

3.
以大豆幼苗初生叶为材料研究了衰老过程中质膜蛋白激酶自磷酸化状态和催化活性的变化。结果发现质膜上一个57kD的蛋白激酶分子上有多个自磷酸化位点,而且自磷酸化反应能提高该酶催化组蛋白H1磷酸化的激酶活力。进一步的研究表明诱导衰老处理造成的57kD蛋白激酶自磷酸化状态的变化,可能对调节它在衰老过程中催化活性的变化起重要作用;而外源6-BA预处理则能够维持57kD蛋白激酶体内高自磷酸化状态,保持该激酶在衰老过程中的催化活力。对衰老和6-BA处理过程中质膜上39和47kD蛋白激酶自磷酸化状态变化的研究表明,这两种激酶可能参与大豆叶片对6-BA刺激信号的传导和/或应答反应过程。  相似文献   

4.
蛋白质转录后的磷酸化/去磷酸化可逆修饰,是调节控制蛋白质的酶学活性或生物学功能的重要途径。使蛋白质磷酸化的酶称为磷酸基转移酶或蛋白激酶。首先发现的是糖元磷酸化酶。目前已知用磷酸化/去磷酸化方式调节酶活性的酶类达三十多个。蛋白激酶还能催化许多非酶蛋白的磷酸化。多数蛋白激酶的活性是通过与相应特异的调节因子相互作用控制的。这些特异的调节因子常是细胞外信号的接续信使。据此可将蛋白激酶分为如下几类: 1.依赖cAMP的;2.依赖cGMP的;3.  相似文献   

5.
双组分系统——细胞识别渗透胁迫信号的感应器   总被引:3,自引:0,他引:3  
双组分系统是广泛存在于原核和真核细胞中的信号转导系统.主要由组氨酸蛋白激酶(HPK)和响应调节蛋白(RR)两个组分组成. 双组分系统信号通路一般包括信号的输入、HPK自身磷酸化、RR磷酸化、信号输出等环节.对双组分系统信号转导机制及其在渗透胁迫信号识别和传导中的作用进行了综述.  相似文献   

6.
血清和糖皮质激素调节蛋白激酶(SGK)家族参与调节生长因子和激素的信号转导.为了研究SGK家族成员SGK2α在细胞中的功能,构建了真核表达质粒pEGFP-N1-SGK2α并瞬时转染HEK293细胞,通过激光共聚焦显微镜观察发现融合蛋白SGK2α-GFP主要定位于细胞浆,免疫共沉淀实验发现SGK2α与糖原合成激酶3β(GSK3β)存在相互作用.利用PCDNA6-V5-HisB-SGK2α质粒转染肝癌BEL7402细胞,建立稳定表达SGK2α蛋白的细胞系,通过细胞增殖实验发现,SGK2α的过表达使BEL7402细胞生长速度减慢、细胞倍增时间延长.裸鼠成瘤实验发现,与对照组细胞相比表达SGK2α的BEL7402细胞在裸鼠中的成瘤能力明显降低.免疫印迹实验证实,SGK2α的过表达不影响GSK3β的表达,但却使β-catenin和Cyclin D1的表达下调.提示影响Wnt/β-catenin信号通路关键分子的表达可能是外源性SGK2α蛋白过表达抑制BEL7402细胞增殖的分子机制.  相似文献   

7.
以大豆幼苗初生叶为材料研究了衰老过程中质膜蛋白激酶自磷酸化状态和催化活性的变化,结果发现质膜上一个57kD的蛋白激酶分子上有多个自磷酸化位点,而且自磷酸化反应能提高该酶催化组蛋白H1磷酸化的激酶活力。进一步的研究表明诱导衰老处理造成的57kD蛋白激酶自磷酸化状态的变化,可能对调节它在衰老过程中催化活性的变化起重要作用;而外源6-BA预处理则能够维持57kD蛋白激酶体内高自磷酸化状态,保持该激酶在衰老过程中的催化活力。对衰老和6-BA过程中质膜上39和47kD蛋白激酶自磷酸化状态变化的研究表明,这两种激酶可能参与大豆叶片对6-BA刺激信号的传导和/或应答反应过程。  相似文献   

8.
PP2A的结构和功能新进展   总被引:1,自引:0,他引:1  
PP2A是一种丝/苏氨酸磷蛋白磷酸酶,通过可逆性磷酸化使已磷酸化激活的蛋白质脱磷酸,在信号传导中承担负性调节的作用。由一个催化亚基和两个调节亚基构成。:PP2A是一种多功能性酶,底物为众多体内的转录因子和蛋白激酶;酵母,果蝇和小鼠的动物模型的研究中已经发现PP2A在细胞周期调控,形态以及发育中的作用;同时它又在信号转导的级联反应中与其他磷酸化酶和激酶相互作用,构成调节大分子调控下游信号的转导。催化亚基活性主要由转录后水平磷酸化和甲基化的状态调控。  相似文献   

9.
核糖体S6蛋白激酶(ribosomal S6 kinase,RSK)是细胞信号传导通路中的重要成员。1985年Erikson和Mailer在非洲爪蟾卵中发现一种90kD的蛋白激酶,它可以使40S核糖体亚单位S6蛋白发生磷酸化,从而促进某些mRNA的翻译,在调节细胞生长和增殖过程中起重要作用。这种蛋白激酶被命名为RSK或p90rsk。后来发现该蛋白是丝裂原激活蛋白激酶(mitogen—activated protein kinases,MAPKs)的下游底物,可以被MAPKs磷酸化激活,因此,又称为MAPKAP—K1(mitogen—activated protein kinase—activated protein kinase-1)。迄今为止,人们已经发现了4种RSK亚型,它们在高等真核细胞中广泛表达。随着研究的逐步深入,人们发现RSK在多种生命活动中发挥重要作用,包括调节基因转录、参与细胞周期调控、促进细胞增殖和分化、调节细胞生存和凋亡以及参与学习和记忆的形成等。本将简要介绍RSK的结构、激活机制、信号传导通路,以及对细胞功能的调节。  相似文献   

10.
IAA对小麦胚芽鞘质膜蛋白磷酸化的影响   总被引:1,自引:0,他引:1  
磷酸化/脱磷酸化机制是众多信号过程中的重要环节,很多信号物质被细胞受体识别后引发蛋白激酶和蛋白磷酸酶活性变化,通过磷酸化/脱磷酸化进一步调节多种酶活性而产生各种生理效应。在对生长素IAA的信号转导的研究中,发现IAA处理的小麦胚芽鞘质膜蛋白中蛋白激酶的活性和蛋白磷酸化程度都发生改变,并找到两种受到调节的蛋白激酶。钙离子通道抑制剂LaCl3阻断了IAA的这种作用,表明Ca%2+参与了IAA的信号转导  相似文献   

11.
IAA对小麦胚芽鞘质膜蛋白磷酸化的影响   总被引:1,自引:0,他引:1  
磷酸化/ 脱磷酸化机制是众多信号转导过程中的重要环节,很多信号物质被细胞受体识别后引发蛋白激酶和蛋白磷酸酶活性变化,通过磷酸化/ 脱磷酸化进一步调节多种酶活性而产生各种生理效应。在对生长素IAA 的信号转导的研究中,发现IAA 处理的小麦胚芽鞘质膜蛋白中蛋白激酶的活性和蛋白磷酸化程度都发生改变,并找到两种受到调节的蛋白激酶。钙离子通道抑制剂LaCl3 阻断了IAA 的这种作用,表明Ca2+参与了IAA的信号转导过程。  相似文献   

12.
王霞  孙丹凤  房静远 《遗传》2006,28(12):1585-1590
mTOR(mammalian target of rapamycin)是雷帕霉素在哺乳动物细胞内作用的蛋白激酶, 通过PI3K/Akt信号磷酸化激活而调控细胞分裂、促进转录、信号翻译等, mTOR抑制剂具有抗肿瘤和免疫抑制的潜力, 已进入临床II期试验。DNA甲基化可沉默基因转录, 组蛋白磷酸化的动态变化主要影响信号传导通路中相关基因的转录, DNA甲基化和组蛋白共价修饰以及RNA干扰技术都是表观遗传修饰的方式, 可以调节mTOR信号途径蛋白激酶的表达, 激活或抑制mTOR也可以影响DNA甲基化和组蛋白磷酸化等。本文将对mTOR信号途径与表观遗传关系的研究进展作一综述。  相似文献   

13.
植物类受体蛋白激酶的研究进展   总被引:3,自引:0,他引:3  
植物类受体蛋白激酶(receptor-like protein kinase,RLKs)通过胞外结构域识别病原信号分子,发生磷酸化、去磷酸化反应而开启或关闭下游靶蛋白,调节植物固有免疫反应,诱导抗病防御反应.目前对植物类受体蛋白激酶的功能、信号传导和配体识别等方面的研究已成为该领域的重点.本文对近年来国内外有关植物类受体蛋白激酶的结构、功能及其在植物抗病防御反应中的作用研究进行综述,为今后进一步深入研究植物类受体蛋白激酶的生理生化功能及应用提供参考.  相似文献   

14.
植物在遭受外界逆境胁迫时,体内的信号传导系统能够感知、传递逆境胁迫信号,并引起各种生理生化反应以适应环境。植物蛋白激酶在信号感知、传导以及基因的表达调控中起重要的作用。蛋白激酶在信号传导过程的功能是磷酸化修饰目的蛋白,而磷酸化的实现需要蛋白质之间相互作用。本文从植物蛋白激酶的结构、分类、与激素信号传导之间的关系等方面进行了系统的阐述,对蛋白激酶介导的植物抗性与发育的最新研究进展进行了系统的总结,为解析蛋白激酶在植物生长发育中的抗逆机理提供依据。  相似文献   

15.
信号传导途径新热点:直接效应物模式跨膜信号传导途径的通常模式,是生长因子与受体作用后,使其受体的酪氨酸蛋白激酶活化。活化后的酪氨酸蛋白激酶使磷脂酶CY活化;或是酪氨酸蛋白激酶使某些蛋白质因子磷酸化,转而引起原癌基因产物c-Ras蛋白活化。蛋白激酶C与...  相似文献   

16.
蛋白质I是一种集中在突触部位的神经元特有的蛋白质,存在于绝大多数(也可能是全部)突触前神经末梢中。它是一种cAMP和Ca~(2 )/钙调制素依赖式蛋白激酶。为测定冲动传导能否调节蛋白质I的磷酸化,作者用新西兰白兔颈上神经节进行了蛋白质I磷酸化的定量研究。  相似文献   

17.
成纤维细胞生长因子23(FGF23)是一种骨源性激素,它作用于其主要靶器官-肾脏,参与调节磷、钙和钠的重吸收以及活性维生素D(1,25(OH)2D)的合成。在近端肾小管,FGF23通过激活胞外信号调节激酶-1/2(ERK1/2)和血清/糖皮质激素调节激酶-1(SGK1)级联信号传导,使Na+/H+交换调节辅因子(NHERF)-1磷酸化,随后导致钠磷协同转运蛋白(Na Pi)-2a内在化和降解,从而抑制磷重吸收;FGF23通过下调1α-羟化酶表达,同时上调24-羟化酶表达,从而抑制1,25(OH)2D合成。在远端肾小管,FGF23通过激活赖氨酸缺陷型蛋白激酶-4(WNK4),上调上皮钙离子通道TRPV5(瞬时性受体阳离子电位通道亚家族V成员5)和Na+:Cl-协同转运蛋白(NCC)的顶膜表达,从而促进钙和钠的重吸收。临床中发现,由于遗传性和获得性原因导致的血FGF23浓度异常与慢性肾脏病(CKD)及其并发症密切相关。  相似文献   

18.
蛋白质可逆磷酸化是调节细胞生理功能的主要机制之一。任何状态下的蛋白质磷酸化水平实际上反映了催化该过程的蛋白激酶(PK)和蛋白磷酸酶(PPase)相对活性之间的平衡。尽管PK激活的信号传导途径及它们调控离子能道的机制比较清楚,但PPase的作用却长期被忽视。近年来,随着特异PPase抑制剂的发掘和利用,PPase在膜通道调控中的重要性逐渐被认识并引起人们重视。研究通道电流和PPase的关系不仅可阐明  相似文献   

19.
糖原合酶激酶3(glycogen synthase kinase 3,GSK-3)是一种丝/苏氨酸蛋白激酶,是细胞内多种信号转导通路中的重要成分。GSK-3活性受多种机制调节,其磷酸化是研究最多的调节方式。GSK-3广泛表达于神经系统,参与神经极性和突触再生、突触可塑性形成、神经炎症和神经稳态的调控。  相似文献   

20.
蛋白质可逆磷酸化涉及到几乎所有细胞活动的调节.着重探讨了影响蛋白激酶作用专一性的几个因素和磷酸化影响蛋白质功能的结构基础及作用机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号