首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Traditional NSAIDs, selective cyclooxygenase (COX)-2 inhibitors, and inhibitors of nitric oxide synthase (NOS) impair the healing of preexisting gastric ulcers. However, the role of COX-1 (with or without impairment of COX-2) and the interaction between COX and NOS isoforms during healing are less clear. Thus we investigated healing and regulation of COX and NOS isoforms during ulcer healing in COX-1 and COX-2 deficiency and inhibition mouse models. In this study, female wild-type COX-1(-/-) and COX-2(-/-) mice with gastric ulcers induced by cryoprobe were treated intragastrically with vehicle, selective COX-1 (SC-560), COX-2 (celecoxib, rofecoxib, and valdedoxib), and unselective COX (piroxicam) inhibitors. Ulcer healing parameters, mRNA expression, and activity of COX and NOS were quantified. Gene disruption or inhibition of COX-1 did not impair ulcer healing. In contrast, COX-2 gene disruption and COX-2 inhibitors moderately impaired wound healing. More severe healing impairment was found in dual (SC-560 + rofecoxib) and unselective (piroxicam) COX inhibition and combined COX impairment (in COX-1(-/-) mice with COX-2 inhibition and COX-2(-/-) mice with COX-1 inhibition). In the ulcerated repair tissue, COX-2 mRNA in COX-1(-/-) mice, COX-1 mRNA in COX-2(-/-) mice, and, remarkably, NOS-2 and NOS-3 mRNA in COX-impaired mice were more upregulated than in wild-type mice. This study demonstrates that COX-2 is a key mediator in gastric wound healing. In contrast, COX-1 has no significant role in healing when COX-2 is unimpaired but becomes important when COX-2 is impaired. As counterregulatory mechanisms, mRNA of COX and NOS isoforms were increased during healing in COX-impaired mice.  相似文献   

2.
Limited clinical and experimental studies indicate that nonsteroidal anti-inflammatory drugs (NSAIDs) may inhibit gastric cancer growth. However, the mechanisms involved are not completely understood and cannot be explained by COX-2 inhibition alone. MAPK signaling pathway is essential for cell proliferation, but the effect of NSAIDs on MAPK activity and phosphorylation in gastric cancer has never been studied. Since increased and unregulated cell proliferation and reduced cell apoptosis are important features of cancer growth, we studied whether NS-398, a selective COX-2 inhibitor and/ or indomethacin (IND), a non-selective NSAID: 1) inhibit gastric cancer cell proliferation, 2) whether this inhibition is mediated via MAPK (ERK2), and 3) whether NSAIDs enhance apoptosis in gastric cancer cells. Human gastric epithelial cells (MKN28) derived from gastric tubular adenocarcinoma were cultured and treated with either vehicle, IND (0.25-0.5mM) or NS-398 (50-100 microM) for 6, 16, 24 and 48h. Studies: 1) Cellular proliferation was determined by 3H-thymidine uptake. 2) MAPK activity was measured by incorporation of radiolabeled phosphate into myelin basic protein. 3) Apoptosis was evaluated using TUNEL assay. IND and NS-398 significantly inhibited the proliferation of MKN28 cells at 24h by 3.5 - 5 fold (p<0.002) and at 48h by 2.5 - 10 fold (p<0.02). Both NSAIDs also significantly inhibited ERK2 activity: IND >53% inhibition, NS-398, 100 microM >72% inhibition; all p<0.05. Both IND and NS-398 significantly increased apoptotic index. In conclusion, IND and NS-398 significantly inhibit proliferation and growth of human gastric cancer cell line MKN28. This effect is mediated by NSAID-induced inhibition of MAPK (ERK2) kinase signaling pathway, essential for cell proliferation. NSAIDs also increase apoptosis in MKN28 cells. In addition to inhibiting cyclooxygenase, NSAIDs inhibit phosphorylating enzymes--kinases essential for signaling cell proliferation.  相似文献   

3.
Nonsteroidal anti-inflammatory drugs (NSAIDs), including both traditional nonselective NSAIDs and the selective cyclo-oxygenase (COX)-2 inhibitors, are among the most widely used medications in the USA. Traditional NSAIDs, although effective at relieving pain and inflammation, are associated with a significant increase in the risk for gastrointestinal adverse events. Throughout the 1990s these events were estimated to result in approximately 100,000 hospitalizations and 16,500 deaths each year nationally. Recent studies have indicated that the risk for serious NSAID gastropathy has declined substantially during the past decade as a result of a number of factors, including lower doses of NSAIDs, the use of gastroprotective agents such as proton pump inhibitors and misoprostol, and the introduction of the selective COX-2 inhibitors. One therapeutic approach that may reduce the risk for gastrointestinal side effects associated with traditional NSAIDs while retaining their efficacy is the inclusion of co-therapy with a proton pump inhibitor; these agents inhibit acid secretion and have been demonstrated to promote ulcer healing in patients with NSAID-related gastric ulcers. Alternatively, COX-2 selective agents have been used to treat patients at high risk for such events. Both nonselective and selective COX-2 inhibitors have now been shown to be associated with an increased risk for cardiovascular events. These studies, together with the outcomes of the recent US Food and Drug Administration decision to require 'black box' warnings regarding potential cardiovascular risks associated with NSAIDs, suggest that the use of COX-2 inhibitors as the sole strategy for gastroprotection in patients with arthritis and other pain syndromes must be reconsidered, particularly among those at risk for cardiovascular events.  相似文献   

4.
Nitric oxide (NO) causes apoptosis and dedifferentiation of articular chondrocytes by the modulation of extracellular signal-regulated kinase (ERK), p38 kinase, and protein kinase C (PKC) alpha and -zeta. In this study, we investigated the effects and mechanisms of non-steroidal anti-inflammatory drugs (NSAIDs), such as indomethacin, ketoprofen, ibuprofen, sulindac sulfide, and flurbiprofen, in NO-induced apoptosis and dedifferentiation of articular chondrocytes. We found that all of the examined NSAIDs inhibited apoptosis and dedifferentiation. NO production in chondrocytes caused activation of ERK-1/2 and p38 kinase, which oppositely regulate apoptosis and dedifferentiation. NO production also caused inhibition of PKCalpha and -zeta independent of and dependent on, respectively, p38 kinase, which is required for apoptosis and dedifferentiation. Among the signaling molecules modulated by NO, NSAIDs blocked NO-induced activation of p38 kinase, potentiated ERK activation, and blocked inhibition of PKCalpha and -zeta. NSAIDs also inhibited some of the apoptotic signaling that is downstream of p38 kinase and PKC, such as NFkappaB activation, p53 accumulation, and caspase-3 activation. The inhibitory effects of NSAIDs on apoptosis and dedifferentiation were independent of the inhibition of cyclooxygenase (COX)-2 and prostaglandin E(2) (PGE(2)) production, as evidenced by the observation that specific inhibition of COX-2 activity and PGE(2) production or exogenous PGE(2) did not affect NO-induced apoptosis and dedifferentiation. Taken together, our results indicate that NSAIDs block NO-induced apoptosis and dedifferentiation of articular chondrocytes by the modulation of ERK, p38 kinase, and PKCalpha and -zeta in a manner independent of their ability to inhibit COX-2 and PGE(2) production.  相似文献   

5.
Occurrence of gastrointestinal damage and delayed healing of pre-existing ulcer are commonly observed in association with clinical use of nonsteroidal antiinflammatory drugs (NSAIDs). We examined the effects of NS-398, the cyclooxygenase (COX)-2 selective inhibitor, and nitric oxide (NO)- releasing aspirin (NCX-4016) on gastric mucosal ulcerogenic and healing responses in experimental animals, in comparison with those of nonselective COX inhibitors such as indomethacin and aspirin. Indomethacin and aspirin given orally were ulcerogenic by themselves in rat stomachs, while either NS-398 or NCX-4016 was not ulcerogenic at the doses which exert the equipotent antiinflammatory action with indomethacin or aspirin. Among these NSAIDs, only NCX-4016 showed a dose-dependent protection against gastric lesions induced by HCl/ethanol in rats. On the other hand, the healing of gastric ulcers induced in mice by thermal-cauterization was significantly delayed by repeated administration of these NSAIDs for more than 7 days, except NCX-4016. Gastric mucosal prostaglandin contents were reduced by indomethacin, aspirin and NCX-4016 in both normal and ulcerated mucosa, while NS-398 significantly decreased prostaglandin generation only in the ulcerated mucosa. Oral administration of NCX-4016 in pylorus-ligated rats and mice increased the levels of NO metabolites in the gastric contents. In addition, both NS-398 and NCX-4016 showed an equipotent anti-inflammatory effect against carrageenan-induced paw edema in rats as compared with indomethacin and aspirin. These results suggest that both indomethacin and aspirin are ulcerogenic by themselves and impair the healing of pre-existing gastric ulcers as well. The former action is due to inhibition of COX-1, while the latter effect may be accounted for by inhibition of COX-2 and mimicked by NS-398, the COX-2 selective NSAID. NCX-4016, despite inhibiting both COX-1 and COX-2, protects the stomach against damage and preserves the healing response of gastric ulcers, probably because of the beneficial action of NO.  相似文献   

6.
7.
NSAIDs are prescribed widely but have rare serious gastrointestinal side effects. More recently, adverse cardiovascular effects of these drugs have also been recognized, leading to the withdrawal of some agents and continuing uncertainty about the best approach for patients requiring NSAID therapy. Proton pump inhibitors (PPIs) provide potent and long-lasting inhibition of gastric acid secretion and have proven efficacy in healing NSAID-associated ulcers, including those with continued exposure to NSAIDs. PPIs have also shown efficacy in reducing the risk of ulcerations due to NSAID use compared with NSAIDs alone in randomized controlled trials (RCTs) where endoscopic ulcers are used as the primary endpoint, albeit a surrogate marker for clinical ulcers and complications. Large RCT outcome trials comparing patients exposed to NSAIDs with and without PPI co-therapy have not been performed, but adequately powered RCTs in high-risk patients demonstrate that PPI + nonselective NSAID provides similar rates of symptomatic ulcer recurrence rates as the use of a cyclooxygenase (COX)-2 selective inhibitor. A RCT in high-risk patients with previous ulcer complications supports the additive bene3 t of two risk-reducing strategies, as ulcer complication recurrence was eliminated in high-risk patients who were given a COX-2 selective agent with a PPI. Helicobacter pylori, an independent risk factor for ulcers, should be sought out and eradicated in patients at increased gastrointestinal risk, typically those with an ulcer history. Following H. pylori eradication, however, patients remain at risk and co-therapy with a PPI is recommended. NSAID medication selection should consider both the individual patients' gastrointestinal and cardiovascular risks.  相似文献   

8.
R Pai  I L Szabo  A Q Giap  H Kawanaka  A S Tarnawski 《Life sciences》2001,69(25-26):3055-3071
Re-epithelialization is essential for gastrointestinal ulcer and cutaneous wound healing. It requires epithelial cell migration and proliferation, processes that are stimulated by epidermal growth factor (EGF), and dependent on the cell cytoskeleton. Activation of Src and focal adhesion kinase (FAK) has been implicated in EGF-stimulated cell migration. Nonsteroidal anti-inflammatory drugs (NSAIDs) (both nonselective and Cox2-selective) interfere with ulcer healing and re-epithelialization in vitro and in vivo, but the cellular targets and mechanisms remain unexplored forming the basis of this study. Using a wounded gastric epithelial cell monolayer model, we demonstrated that NSAIDs reduce both basal and epidermal growth factor (EGF)-induced re-epithelialization, and that this action involves disruption of actin stress fiber formation, reduced c-Src activity, decreased phosphorylation of focal adhesion kinase (FAK), tensin and their cellular re-distribution. There was a strong correlation between NSAIDs-mediated inhibitory effect on re-epithelialization and loss of stress fibers and reduced tensin signal. Furthermore, NSAIDs significantly reduced EGF-stimulated c-Src association with FAK. These findings suggest that NSAIDs can directly affect the cell cytoskeleton and signaling pathways essential for re-epithelialization.  相似文献   

9.
We examined the regulation of matrix metalloproteinase (MMP) production by mitogen-activated protein kinases and cyclooxygenases (COXs) in fibroblast-like synoviocytes (FLSCs). IL-1beta and TNF-alpha stimulated FLSC extracellular signal-regulated kinase (ERK) activation as well as MMP-1 and -13 release. Pharmacologic inhibitors of ERK inhibited MMP-1, but not MMP-13 expression. Whereas millimolar salicylates inhibited both ERK and MMP-1, nonsalicylate COX and selective COX-2 inhibitors enhanced stimulated MMP-1 release. Addition of exogenous PGE(1) or PGE(2) inhibited MMP-1, reversed the effects of COX inhibitors, and inhibited ERK activation, suggesting that COX-2 activity tonically inhibits MMP-1 production via ERK inhibition by E PGs. Exposure of FLSCs to nonselective COX and selective COX-2 inhibitors in the absence of stimulation resulted in up-regulation of MMP-1 expression in an ERK-dependent manner. Moreover, COX inhibition sufficient to reduce PGE levels increased ERK activity. Our data indicate that: 1) ERK activation mediates MMP-1 but not MMP-13 release from FLSCs, 2) COX-2-derived E PGs inhibit MMP-1 release from FLSCs via inhibition of ERK, and 3) COX inhibitors, by attenuating PGE inhibition of ERK, enhance the release of MMP-1 by FLSC.  相似文献   

10.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used in the treatment of arthritis and pain. However, their long-term use is limited by gastrointestinal (GI) side effects such as gastric ulcers. NSAIDs act by inhibiting an enzyme called cyclooxygenase. Cyclooxygenase (COX) catalyses the generation of prostaglandins from arachidonic acid. Two isoforms of the enzyme exist--COX-1 and COX-2--both of which are targets for NSAIDs. Although they are associated with GI toxicity, NSAIDs have important antithrombotic and anti-inflammatory effects. The GI injury has been attributed to COX-1 inhibition and the anti-inflammatory effects to COX-2 inhibition. As COX-2 is traditionally viewed as an inducible enzyme, selective inhibition of COX-2 by 'coxibs' (selective COX-2 inhibitors) has been employed to achieve anti-inflammatory and analgesic effects without GI side effects. However, recently there have been suggestions that chronic administration of coxibs might increase the risk of cardiovascular events, such as atherosclerosis, compared with traditional NSAIDs. In vascular disease, there is increased expression of both COX-1 and COX-2, resulting in enhanced prostaglandin generation. The specific role of COX-1 and COX-2 in vascular regulation is still unknown but such knowledge is essential for the effective use of coxibs. Although more evidence is pointing to selective COX-1 inhibition as a therapeutic measure in inflammatory atherosclerosis, there are some studies that suggest that inhibition of COX-2 might have a potential benefit on atherosclerosis.  相似文献   

11.
Role of cyclooxygenase isoforms in gastric mucosal defence.   总被引:7,自引:0,他引:7  
A complex system of interacting mediators exists in the gastric mucosa to strengthen its resistance against injury. In this system prostaglandins play an important role. Prostaglandin biosynthesis is catalysed by the enzyme cyclooxygenase (COX), which exists in two isoforms, COX-1 and COX-2. Initially the concept was developed that COX-1 functions as housekeeping enzyme, whereas COX-2 yields prostaglandins involved in pathophysiological reactions such as inflammation. In the gastrointestinal tract, the maintenance of mucosal integrity was attributed exclusively to COX-1 without a contribution of COX-2 and ulcerogenic effects of non-steroidal anti-inflammatory drugs (NSAIDs) were believed to be the consequence of inhibition of COX-1. Recent findings, however, indicate that both COX-1 and COX-2 either alone or in concert contribute to gastric mucosal defence. Thus, in normal rat gastric mucosa specific inhibition of COX-1 does not elicit mucosal lesions despite near-maximal suppression of gastric prostaglandin formation. When a selective COX-2 inhibitor which is not ulcerogenic when given alone is added to the COX-1 inhibitor, severe gastric damage develops. In contrast to normal gastric mucosa which requires simultaneous inhibition of COX-1 and COX-2 for breakdown of mucosal resistance, in the acid-challenged rat stomach inhibition of COX-1 alone results in dose-dependent injury which is further increased by additional inhibition of COX-2 enzyme activity or prevention of acid-induced up-regulation of COX-2 expression by dexamethasone. COX-2 inhibitors do not damage the normal or acid-challenged gastric mucosa when given alone. However, when nitric oxide formation is suppressed or afferent nerves are defunctionalized, specific inhibition of COX-2 induces severe gastric damage. Ischemia-reperfusion of the gastric artery is associated with up-regulation of COX-2 but not COX-1 mRNA. COX-2 inhibitors or dexamethasone augment ischemia-reperfusion-induced gastric damage up to four-fold, an effect abolished by concurrent administration of 16,16-dimethyl-PGE(2). Selective inhibition of COX-1 is less effective. Furthermore, COX-2 inhibitors antagonize the protective effect of a mild irritant or intragastric peptone perfusion in the rat stomach, whereas the protection induced by chronic administration of endotoxin is mediated by COX-1. Finally, an important function of COX-2 is the acceleration of ulcer healing. COX-2 is up-regulated in chronic gastric ulcers and inhibitors of COX-2 impair the healing of ulcers to the same extent as non-selective NSAIDs. Taken together, these observations show that both COX isoenzymes are essential factors in mucosal defence with specific contributions in various physiological and pathophysiological situations.  相似文献   

12.
13.
Inhibitors of prostaglandin production, designated as classical non-steroidal anti-inflammatory drugs (NSAIDs) and acting on the base of non-selective inhibition of cyclooxygenases, have been found in numerous studies to potentiate recovery of perturbed haematopoiesis by removing the negative feedback control mediated by prostaglandins. However, classical NSAIDs show pronounced undesirable gastrointestinal side effects, which limits the possibility of their utilization for various pathophysiological states including myelosuppression. Specific cyclooxygenase-2 (COX-2) inhibitors, targeted at selective inhibition of this inducible cyclooxygenase isoform and having much better gastrointestinal side effect profile, have been found in recent studies to retain the haematopoiesis-stimulating effects of classical NSAIDs. These results suggest that the indication spectrum of selective COX-2 inhibitors may be extended to the indication of myelosuppression of various etiology. Combining the anti-tumour and haematopoiesis-stimulating activities in a single COX-2 inhibitor may have a positive clinical impact.  相似文献   

14.
Cyclooxygenase-2 (COX-2), a key enzyme in arachidonic acid metabolism, is overexpressed in many cancers. Inhibition of COX-2 by nonsteroidal anti-inflammatory drugs (NSAIDs) reduces the risk of cancer development in humans and suppresses tumor growth in animal models. The anti-cancer effect of NSAIDs seems to involve suppression of tumor angiogenesis, but the underlying mechanism is not completely understood. Integrin alpha V beta 3 is an adhesion receptor critically involved in mediating tumor angiogenesis. Here we show that inhibition of endothelial-cell COX-2 by NSAIDs suppresses alpha V beta 3-dependent activation of the small GTPases Cdc42 and Rac, resulting in inhibition of endothelial-cell spreading and migration in vitro and suppression of fibroblast growth factor-2-induced angiogenesis in vivo. These results establish a novel functional link between COX-2, integrin alpha V beta 3 and Cdc42-/Rac-dependent endothelial-cell migration. Moreover, they provide a rationale to the understanding of the anti-angiogenic activity of NSAIDs.  相似文献   

15.
Conventional 'nonselective' nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used for the treatment of pain and inflammation; however, the potential gastrointestinal risks associated with their use can be a cause for concern. In response to the adverse effects that can accompany nonselective NSAID use, selective cyclo-oxygenase (COX)-2 inhibitors were developed to target the COX-2 isoenzyme, thus providing anti-inflammatory and analgesic benefits while theoretically sparing the gastroprotective activity of the COX-1 isoenzyme. Data from large-scale clinical trials have confirmed that the COX-2 inhibitors are associated with substantial reductions in gastrointestinal risk in the majority of patients who do not receive aspirin. However, some or all of the gastrointestinal benefit of COX-2 inhibitors may be lost in patients who receive low, cardioprotective doses of aspirin, and recent evidence suggests that some of these agents, at some doses, may be associated with an increased risk for cardiovascular adverse events compared with no therapy. The risks and benefits of conventional NSAIDs and of COX-2 inhibitors must be weighed carefully; in clinical practice many patients who might benefit from NSAID or COX-2 therapy are likely to be elderly and at relatively high risk for gastrointestinal and cardiovascular adverse events. These patients are also more likely to be taking low-dose aspirin for cardiovascular prophylaxis and over-the-counter NSAIDs for pain. Identifying therapies that provide relief from arthritis related symptoms, confer optimum cardioprotection, and preserve the gastrointestinal mucosa is complex. Factors to consider include the interference of certain NSAIDs with the antiplatelet effects of aspirin, differences in the adverse gastrointestinal event rates among nonselective NSAIDs and selective COX-2 inhibitors, emerging data regarding the relative risks for cardiovascular events associated with these drugs, and the feasibility and cost of co-therapy with proton pump inhibitors.  相似文献   

16.
The cyclooxygenases (COX-1 and COX-2) are membrane-associated, heme-containing homodimers that generate prostaglandin H2 from arachidonic acid (AA) in the committed step of prostaglandin biogenesis and are the targets for nonsteroidal anti-inflammatory drugs (NSAIDs). N-(2-cyclohexyloxy-4-nitrophenyl) methanesulfonamide (NS-398) was the first in a series of isoform-selective drugs designed to preferentially inhibit COX-2, with the aim of ameliorating many of the toxic gastrointestinal side effects caused by conventional NSAID inhibition. We determined the X-ray crystal structure of murine COX-2 in complex with NS-398 utilizing synchrotron radiation to 3.0 A resolution. NS-398 binds in the cyclooxygenase channel in a conformation that is different than that observed for other COX-2-selective inhibitors, such as celecoxib, with no discernible penetration into the side pocket formed in COX-2 by the isoform-specific substitutions of I434V, H513R, and I523V. Instead, the methanesulfonamide moiety of NS-398 interacts with the side chain of Arg-120 at the opening of the cyclooxygenase channel, similar to that observed for acidic, nonselective NSAIDs such as indomethacin and flurbiprofen. Our structure validates inhibitor studies that identified Arg-120 as a molecular determinant for time-dependent inhibition of COX-2 by NS-398.  相似文献   

17.
Angiogenesis is crucial to all types of wound healing, including gastric ulcer healing. The most potent promoter of angiogenesis is vascular endothelial growth factor (VEGF). We hypothesized that a 15-amino acid peptide designed to mimic the angiogenic action of VEGF would accelerate gastric ulcer healing. Gastric ulcers were induced in mice by serosal application of acetic acid. Treatment with the VEGF mimetic accelerated gastric ulcer healing when administered orally or intraperitoneally, at a dose of 50 ng/kg or greater. Such healing was not observed when the reverse sequence pentadecapeptide or the full-length VEGF protein was administered. Contrary to our hypothesis, the VEGF mimetic did not significantly increase angiogenesis in the ulcerated stomach. The enhancement of ulcer healing by the VEGF mimetic occurred independently of cyclooxygenase-2 (COX-2) activity but was blocked by inhibitors of inducible nitric oxide synthase (iNOS). These results demonstrate that a VEGF mimetic is a potent stimulus for gastric ulcer healing, even when given orally. The effects of the mimetic were independent of stimulatory effects on angiogenesis and COX-2 activity but were dependent on iNOS-derived NO production.  相似文献   

18.
Pan MR  Chang HC  Hung WC 《Cellular signalling》2008,20(6):1134-1141
Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to inhibit cancer cell growth, induce apoptosis and decrease tumor metastasis. We have previously reported that a NSAID NS398 repressed the expression of matrix metalloproteinase-2 (MMP-2) via inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. In this study, we investigate the underlying mechanism of this inhibition. In vitro kinase assay indicated that NS398 could not directly inhibit c-Raf, MEK1 and ERK enzymatic activity. We found that NS398 increased the inhibitory phosphorylation of Ser259 in c-Raf, attenuated membrane recruitment of c-Raf and inhibited Ras/c-Raf interaction to attenuate activation of this kinase. This is a general effect for NSAIDs because sulindac sulfide, aspirin and indomethacin also inhibited the binding of c-Raf to Ras. Immunofluorescent staining verified that NS398 reduced the serum-induced membrane recruitment of c-Raf in cells. However, overexpression of constitutively active c-Raf only partly reversed NS398-induced inhibition of MMP-2 expression. Interestingly, we found that NS398 up-regulated the expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) and MKP-3. Block of MKP activity by sodium orthovanadate also partly counteracted the inhibitory effect of NS398. Overexpression of constitutively active c-Raf and treatment of sodium orthovanadate together completely reversed the inhibition of MMP-2 by NS398. Taken together, we conclude that NS398 and other NSAIDs act via inhibition of Ras/c-Raf interaction and up-regulation of MKPs to suppress the ERK-mediated signaling.  相似文献   

19.
VEGF is a highly specific stimulator of endothelial cells and may play an important role in angiogenesis in the process of tissue regeneration. We previously showed that cyclooxygenase-2 (COX-2) expressed in mesenchymal cells of the ulcer bed is involved in the ulcer repair process. To clarify the role of COX-2 in angiogenesis during gastric ulcer healing, we investigated the relation between COX-2 expression and VEGF production in human gastric fibroblasts in vivo and in vitro. Gastric fibroblasts were cultured in RPMI 1640 with and without IL-1alpha or IL-1beta in the presence or absence of NS-398, a selective COX-2 inhibitor. Supernatant VEGF and PGE(2) concentrations were measured by enzyme-linked immunosorbent assay. COX-2 expression in fibroblasts was determined by Western blot analysis. VEGF and COX-2 expression in surgical resections of human gastric ulcer tissue was examined immunohistochemically. IL-1 dose dependently enhanced VEGF release in cultured gastric fibroblasts after a 24-h stimulation. IL-1 also stimulated PGE(2) production in gastric fibroblasts via COX-2 induction. NS-398 significantly suppressed VEGF and PGE(2) release from IL-1-stimulated gastric fibroblasts; concurrent addition of PGE(2) restored NS-398-inhibited VEGF release. COX-2 and VEGF immunoreactivity were colocalized in fibroblast-like cells in the ulcer bed of gastric tissues. These results suggest that COX-2 plays a key role in VEGF production in gastric fibroblasts stimulated by IL-1 in vitro and that angiogenesis induced by the COX-2-VEGF pathway might be involved in gastric ulcer healing.  相似文献   

20.
Cyclooxygenase is the key enzyme in the biosynthesis of prostanoids, biologically active substances involved in several physiological processes and also in pathological conditions such as inflammation. It has been well known for 10 years that this enzyme exists under two forms: a constitutive (COX-1) and an inducible form (COX-2). Both enzymes are sensitive to inhibition by conventional non-steroidal anti-inflammatory drugs (NSAIDs). Observations were made that COX-1 was mainly involved in homeostatic processes, while the COX-2 expression was associated with pathological conditions leading to the development of COX-2 selective inhibitors. Several methods have been reported for the evaluation of the COX-1 and COX-2 inhibitory potency and selectivity of conventional or COX-2 selective NSAIDs. In this study, we evaluated the COXs inhibitory profile of both conventional NSAIDs and COX-2 selective inhibitors using two different in vitro methods: the first test was performed using purified enzymes while the second method consisted of a whole blood assay. The results obtained with reference drugs in these two assays will be discussed and compared in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号