首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
  • 1.1. The inhibition kinetics of sheep brain butyrylcholinesterase (BChE) (acylcholine acylhydrolase, EC 3.1.1.8) by Cd2+ and Zn2+ has been studied.
  • 2.2. Ks has been determined as 0.14mM. Cd2+ and Zn2+ were the hyperbolic mixed-type inhibitors of BChE. Ca2+ and Mg2+ had no effect on the enzyme activity in the experimental conditions.
  • 3.3. But when the enzyme was inhibited by 0.1 mM Cd2+ or Zn2+, Ca2+ and Mg2+ reactivated the inhibited form of BChE.
  相似文献   

2.
Bisphosphonates (BPs) are drugs widely used in the treatment of various bone diseases. BPs localize to bone mineral, and their concentration in resorption lacunae could reach almost milimolar levels. Bone alkaline phosphatase (ALP) is a membrane-bound exoenzyme that has been implicated in bone formation and mineralization. In this study, we investigated the possible direct effect of three N-containing BPs (alendronate, pamidronate, and zoledronate) on the specific activity of bone ALP obtained from an extract of UMR106 rat osteosarcoma cells. Enzymatic activity was measured by spectrophotometric detection of p-nitrophenol product and by in situ visualization of ALP bands after an electrophoresis on cellulose acetate gels. Because ALP is a metalloprotein that contains Zn2+ and Mg2+, both of which are necessary for catalytic function, we also evaluated the participation of these divalent cations in the possible effect of BPs on enzymatic activity. All BPs tested were found to dose-dependently inhibit spectrophotometrically measured ALP activity (93–42% of basal) at concentrations of BPs between 10−5 M and 10−4 M, the order of potency being zoledronate ≊ alendronate > pamidronate. However, coincubation with excess Zn2+ or Mg2+ completely abolished this inhibitory effect. Electrophoretic analysis rendered very similar results: namely a decrease in the enzymatic activity of the bone-ALP band by BPs and a reversion of this inhibition by divalent cations. This study shows that N-containing BPs directly inhibit bone-ALP activity, in a concentration range to which this exoenzyme is probably exposed in vivo. In addition, this inhibitory effect is most possibly the result of the chelation of Zn2+ and Mg2+ ions by BPs.  相似文献   

3.
An ATPase activity stimulated by divalent ions (Mg2+, Ca2+, Mn2+, Zn2+) has been observed in intact hamster fibroblasts cultured in vitro (BHK line). Such activity has been determined by the incubation (30 min at 37°C) of washed cell suspensions (about 1 mg of proteins) in a medium containing 100 mM NaCl, 20 mM KCl, 15 mM Tris—HCl (pH 7.4), 10 mM NaHCO3, 5 mM glucose and equimolar concentrations of ATP and divalent cation. Mg2+-ATPase activity is insensitive to ouabain and lacks specificity towards nucleoside triphosphate substrates. AMP and ADP are not hydrolyzed under these conditions. Apparent Km of 0.76 mM and Vmax of 1.46 μmol Pi · mg proteins?1 · h?1 have been calculated for Mg-ATP complex. This ATPase is an ectoenzyme, therefore its activity could be used as a suitable index of the action of chemicals like chromium compounds known for their cytotoxic effects on membrane functions.Salts of trivalent (CrCl3) and hexavalent (K2Cr2O7) chromium at concentrations ranging from 1 mM to 5 mM inhibit Mg2+-ATPase. The inhibition by K2Cr2O7 is observed after pretreatment of the cells with this compound followed by its absence from the assay medium “per se” for Mg2+-ATPase, and it is referred to the alterations of membrane bound enzyme structures by the oxidizing hexavalent chromium. The inhibition by CrCl3 is mainly evident when this compound is present in the incubation medium, and is referred to the interaction of trivalent chromium with Mg2+-ATP as it is partially reversed by increasing Mg2+-ATP concentration.  相似文献   

4.
Butyrylcholinesterase (BChE, EC 3.1.1.8) has been purified about 6600-fold from human serum with a procedure including ammonium sulfate fractionation (55–70%) with acid step at pH 4.5 and procainamide–Sepharose 4B affinity chromatography. The purified enzyme exhibited negative cooperativity with respect to butyrylthiocholine (BTCh) binding at pH 7.5. KS was found to be 0.128±0.012 mM. Inhibition kinetics of the enzyme by Cd2+, Zn2+ and Al3+ were studied in detail. The 1/v vs 1/[BTCh] plots in the absence (control plot) and in the presence of different concentrations of cations intersected above 1/[BTCh]-axis. The data were analyzed by means of a nonlinear curve fitting program. The results demonstrated that all of the three cations are the linear mixed-type inhibitors of BChE. Ca2+ and Mg2+ had no effect on the enzyme activity in the experimental conditions. But when the enzyme was inhibited by 0.5 mM Cd2+ or Zn2+, Ca2+ and Mg2+ partially reactivated the inhibited allosteric form of BChE. Results were compared with data obtained from brain BChE purified from sheep.  相似文献   

5.
Summary In reconstituted rabbit skeletal muscle (Ca2+ + Mg2+)-ATPase proteoliposomes, Ca2+-uptake is decreased by more than 90% with T2 cleavage (Arg-198). However, no difference in the ATP dependence of hydrolysis activity is seen between SR and trypsin-treated SR. A large decrease in E-P formation and hydrolysis activity of the enzyme appear only at T3 cleavage, which represents the cleavage of A1 fragment to A1a + A1b forms. The disappearance of hydrolysis activity due to digestion is prior to the disappearance of E-P formation. No significant difference is found in the passive Ca2+ efflux between control SR and tryptically digested SR in the absence of Mg+ ruthenium red or in the presence of ATP. However, the passive Ca2+ efflux rate for tryptically digested SR is much larger than control SR in the presence of Mg2+ + ruthenium red. These results show that the Ca2+ channel cannot be closed after trypsin digestion of SR membranes by the presence of the Ca2+ channel inhibitors, Mg2+ and ruthenium red. In the reconstituted ATPase proteoliposomes, the Ca2+ efflux rates are the same regardless of digestion (T2); also, efflux is not affected by the presence or absence of Mg2+ + ruthenium red. These results indicate that T2 cleavage causes uncoupling of the Ca2+-pump from ATP hydrolytic activity.A theoretical model is developed in order to fit the extent of tryptic digestion of the A fragment of the (Ca2+ + Mg2+)-ATPase polypeptide with the loss of Ca2+-transport. Fits of the theoretical equations to the data are consistent with that Ca2+-transport system appears to require a dimer of the polypeptide (Ca2+ + Mg2+)-ATPase.  相似文献   

6.
Magnesium has been investigated as a biodegradable metallic material. Increased concentrations of Mg2+ around magnesium implants due to biodegradation contribute to its satisfactory osteogenic capacity. However, the mechanisms underlying this process remain elusive. We propose that activation of the PI3K/Akt signalling pathway plays a role in the Mg2+-enhanced biological behaviours of osteoblasts. To test this hypothesis, 6, 10 and 18 mM Mg2+ was used to evaluate the stimulatory effect of Mg2+ on osteogenesis, which was assessed by evaluating cell adhesion, cell viability, ALP activity, extracellular matrix mineralisation and RT-PCR. The expression of p-Akt was also determined by western blotting. The results showed that 6 and 10 mM Mg2+ elicited the highest stimulatory effect on cell adhesion, cell viability and osteogenic differentiation as evidenced by cytoskeletal staining, MTT assay results, ALP activity, extracellular matrix mineralisation and expression of osteogenic differentiation-related genes. In contrast, 18 mM Mg2+ had an inhibitory effect on the behaviour of osteoblasts. Furthermore, 10 mM Mg2+ significantly increased the phosphorylation of Akt in osteoblasts. Notably, the aforementioned beneficial effects produced by 10 mM Mg2+ were abolished by blocking the PI3K/Akt signalling pathway through the addition of wortmannin. In conclusion, these results demonstrate that 6 mM and 10 mM Mg2+ can enhance the behaviour of osteoblasts, which is at least partially attributed to activation of the PI3K/Akt signalling pathway. Furthermore, a high concentration (18 mM Mg2+) showed an inhibitory effect on the biological behaviour of osteoblasts. These findings advance the understanding of cellular responses to biodegradable metallic materials and may attract greater clinical interest in magnesium.  相似文献   

7.
8.
9.
Much less attention has been paid to Zn2+ in artificial cerebrospinal fluid (ACSF), i.e., extracellular medium, used for in vitro slice experiments than divalent cations such as Ca2+. Approximately 2 mM Ca2+ is added to conventional ACSF from essentiality of Ca2+ signaling in neurons and glial cells. However, no Zn2+ is added to it, even though the importance of Zn2+ signaling in them is recognizing. On the other hand, synaptic Zn2+ homeostasis is changed during brain slice preparation. Therefore, it is possible that not only neuronal excitation but also synaptic plasticity such as long-term potentiation is modified in ACSF without Zn2+, in which original physiology might not appear. The basal (static) levels of intracellular (cytosolic) Zn2+ and Ca2+ are not significantly different between brain slices prepared with conventional ACSF without Zn2+ and pretreated with ACSF containing 20 nM ZnCl2 for 1 h. In the case of mossy fiber excitation, however, presynaptic activity assessed with FM 4–64 is significantly suppressed in the stratum lucidum of brain slices pretreated with ACSF containing Zn2+, indicating that hippocampal excitability is enhanced in brain slices prepared with ACSF without Zn2+. The evidence suggests that low nanomolar concentration of Zn2+ is necessary for ACSF. Furthermore, exogenous Zn2+ has opposite effect on LTP induction between in vitro and in vivo experiments. It is required to pay attention to extracellular Zn2+ concentration to understand synaptic function precisely.  相似文献   

10.
Dolomite collected from Surat Thani Province in Thailand was investigated for use as a sorbent for the removal of divalent heavy metal cations from an aqueous solution. The sorbent had a surface area of 2.46 m2/g and a pH of zero point charge (pHzpc) of 9.2. Batch sorption was used to examine the effect of the pH (pH 3–7) on the sorption capacity of Cd2+, Pb2+ and Zn2+, alone or together as an equimolar mixture at various concentrations. Alone, each heavy metal cation was adsorbed faster at a higher pH, where the sorption of Cd2+ and Pb2+ fitted a Langmuir isotherm, but Zn2+ sorption best fitted a Freundlich isotherm. Under equimolar competitive sorption, the sorption capacity of each cation was decreased by 75.8% (0.29–0.07 mM/g), 82.8% (0.53–0.09 mM/g), and 95.7% (0.84–0.04 mM/g) for Cd2+, Pb2+ and Zn2+, respectively, compared to that with the respective single cation. Desorption of these heavy metal cations from dolomite was low, with an average desorption level of 0.06–17.4%. Furthermore, since dolomite is readily available and rather cheap, it is potentially suitable for use as an efficient sorbent to sorb Cd2+ and Pb2+, and perhaps Zn2+, from contaminated water.  相似文献   

11.
To expand our knowledge about the relationship of nitrogen use efficiency and glutamine synthetase (GS) activity in the mangrove plant, a cytosolic GS gene from Avicennia marina has been heterologously expressed in and purified from Escherichia coli. Synthesis of the mangrove GS enzyme in E. coli was demonstrated by functional genetic complementation of a GS deficient mutant. The subunit molecular mass of GSI was ~40 kDa. Optimal conditions for biosynthetic activity were found to be 35 °C at pH 7.5. The Mg2+-dependent biosynthetic activity was strongly inhibited by Ni2+, Zn2+, and Al3+, whereas was enhanced by Co2+. The apparent K m values of AmGLN1 for the substrates in the biosynthetic assay were 3.15 mM for glutamate, and 2.54 mM for ATP, 2.80 mM for NH4 + respectively. The low affinity kinetics of AmGLN1 apparently participates in glutamine synthesis under the ammonium excess conditions.  相似文献   

12.
The Ca2+/Mg2+ ATPase of the rat heart sarcolemmal particles was solublized with Triton X-100 after treating the membranes with trypsin and purified by high speed centrifugation, ammonium sulfate fractionation, hydrophobic chromatography and gel filtration. The purified enzyme was seen as a single protein band in nondenaturing polyacrylamide gel electrophoresis and its molecular weight by gel filtration was found to be about 240000. The enzyme utilized Ca-ATP or Mg-ATP as a substrate with high affinity sites (Km = 0.12 – 0.16 mM) and low affinity sites (Km = 1 mM). The enzyme also utilized CTP, GTP, ITP, UTP and ADP as substrates but at a lower rate in comparison to ATP. The enzyme was activated by Ca2+ (Ka = 0.4 mM) and Mg2+ (Ka = 0.2 mM) as well as by other cations in the order Ca2– > Mg2+ > Mn2+ > Sr2+ > Ba2+ > Ni2+ > Cu2+. The ATPase activity in the presence of Ca2+ was markedly inhibited by Mg2+, Mn2+, Ni2+ and Cu2+ whereas the monovalent cations such as Na+ and K+ were without effect. The enzyme did not exhibit Ca2+ stimulated Mg2+ dependent ATPase activity and was insensitive to calmodulin, ouabain, verapamil, D-600, oligomycin, azide and vanadate. Optimum pH for Ca2+ or Mg2+ ATPase activity was 8.5 – 9.0. In view of the possible ectoenzyme nature of the ATPase, its role in adenine nucleotide and Ca2+ metabolism in the myocardium is discussed.  相似文献   

13.
The (Ca2+ + Mg2+-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2+-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2+-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2+- and Mg2+-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

14.
The specific activity of (Na+ + Mg2+)-dependent ATPase is three times greater in the microsomes of sea-water eels than in freshwater eels; the specific activity is one quarter of that of (Na+ + K+ + Mg2+)-dependent ATPase in both cases.(Na+ + Mg2+)-dependent ATPase is optimally active in a medium containing 8 mM NaCl, 4 mM MgCI2, 4 mM ATP, pH 8.8 and at 30 °C; the enzyme is inhibited by ouabain, by NaCl concentrations > 100 mM and by treatment with urea.It is concluded that the (Na+ + Mg2+)-dependent ATPase activity of gills arises from the presence of a (Na+ + K+ + Mg2+)-dependent ATPase.  相似文献   

15.
The magnesium buffer coefficient (B Mg) was calculated for BC3H-1 cells from the rise in cytosolic Mg2+ activity observed when magnesium was released from ATP after iodoacetate (IAA) and NaCN treatment. The basal cytosolic Mg2+ activity (0.54±0.1 mM) measured with mag-fura-2 doubled when 4.54 mM magnesium was liberated from ATP:B Mg was 12.9 indicating that a 1 mM increase in Mg2+ activity requires an addition of about 13 mM magnesium. The accuracy of this value depends on these assumptions: (a) all of the magnesium released from ATP stayed in the cells; (b) the rise in Mg2+ was not secondary to pH-induced changes inB Mg; (c) mag-fura-2 measured Mg2+ and not Ca2+; and (d) the accuracy of the mag-fura-2 calibration. Total magnesium did not change in response to IAA/CN treatment, thus the change in Mg2+ activity reflected a redistribution of cell magnesium. pH changes induced by NH4Cl pulse and removal had little effect on Mg2+ activity and the changes were slower than and opposite to pH-induced changes in Ca2+ activity measured by fura-2. Ca2+ responses were temporally uncopled from Mg2+ responses when the cells were treated with IAA only and in no cases did Ca2+ levels rise above 1 M, showing that the mag-fura-2 is responding to Mg2+. Additional studies demonstrated that 90% of the mag-fura-2 signal was cytosolic in origin. The remaining non-diffusible mag-fura-2 either was bound to cytosolic membranes or sequestered in organelles with the fluorescence characteristics of the Mg2+-complexed form, even when cytosolic free Mg2+ activity was approximately 0.5 mM. This bound mag-fura-2 would appear to increase the Kd and thus clearly limits the accuracy of our estimmate forB Mg. Despite this limitation, we demonstrate that Mg2+ is tightly regulated in face of large changes in extracellular Mg2+, and that the interplay observed between pH, Ca2+ and Mg2+ activities strongly supports the hypothesis that these factors interact through a shared buffer capacity of the cell.  相似文献   

16.
The anomeric composition and mutarotation rates of fructose 1,6-bisphosphate were determined in the presence of 100 mm KCl at pH 7.0 by 31P NMR. At 23 and 37 °C the solution contains (15 ± 1)% of the α anomer. The anomeric rate constants at 37 °C are (4.2 ± 0.4) s?1 for the β → α anomerization and (14.9 ± 0.5) s?1 for the reverse reaction. A D2O effect between 2.1 and 2.6 was found. From acid base titration curves it appeared that the pK values of the phosphate groups range from 5.8 to 6.0. Mg2+ and Zn2+ bind preferentially to the 1-phosphate in the α-anomeric position. Zn2+ has a higher affinity for this phosphate group than Mg2+ has. At increasing pH the fraction α anomer decreases slightly. At increasing Mg2+/fructose 1,6-bisphosphate ratios the fraction α anomer increases till 19% at a ratio of 20. Proton and probably Mg2+ binding decreases the anomerization rate. The time-averaged preferred orientation of the 1-phosphate along the C1O1 bond of the α conformer is strongly pH dependent, gauche rotamers being predominant at pH 9.4. In the presence of divalent cations the orientation is biased toward trans. A mechanistic model is proposed to explain the Zn2+, Mg2+, and pH-dependent behavior of the gluconeogenic enzyme fructose 1,6-bisphosphatase.  相似文献   

17.
The modulation by internal free [Mg2+] of spontaneous calcium release events (Ca2+ “sparks”) from the sarcoplasmic reticulum (SR) was studied in depolarized notched frog skeletal muscle fibers using a laser scanning confocal microscope in line-scan mode (x vs. t). Over the range of [Mg2+] from 0.13 to 1.86 mM, decreasing the [Mg2+] induced an increase in the frequency of calcium release events in proportion to [Mg2+]−1.6. The change of event frequency was not due to changes in [Mg-ATP] or [ATP]. Analysis of individual SR calcium release event properties showed that the variation in event frequency induced by the change of [Mg2+] was not accompanied by any changes in the spatiotemporal spread (i.e., spatial half width or temporal half duration) of Ca2+ sparks. The increase in event frequency also had no effect on the distribution of event amplitudes. Finally, the rise time of calcium sparks was independent of the [Mg2+], indicating that the open time of the SR channel or channels underlying spontaneous calcium release events was not altered by [Mg2+] over the range tested. These results suggest that in resting skeletal fibers, [Mg2+] modulates the SR calcium release channel opening frequency by modifying the average closed time of the channel without altering the open time. A kinetic reaction scheme consistent with our results and those of bilayer and SR vesicle experiments indicates that physiological levels of resting Mg2+ may inhibit channel opening by occupying the site for calcium activation of the SR calcium release channel.  相似文献   

18.
Amidases catalyze the hydrolysis of amides to free carboxylic acids and ammonia. Hyperthermophilic archaea are a natural reservoir of various types of thermostable enzymes. Here, we report the purification and characterization of an amidase from Pyrococcus yayanosii CH1, the first representative of a strict-piezophilic hyperthermophilic archaeon that originated from a deep-sea hydrothermal vent. An open reading frame that encoded a putative member of the nitrilase protein superfamily was identified. We cloned and overexpressed amiE in Escherichia coli C41 (DE3). The purified AmiE enzyme displayed maximal activity at 85 °C and pH 6.0 (NaH2PO4–Na2HPO4) with acetamide as the substrate and showed activity over the pH range of 4–8 and the temperature range of 4–95 °C. AmiE is a dimer and active on many aliphatic amide substrates, such as formamide, acetamide, hexanamide, acrylamide, and l-glutamine. Enzyme activity was induced by 1 mM Ca2+, 1 mM Al3+, and 1–10 mM Mg2+, but strongly inhibited by Zn2+, Cu2+, Ni2+, and Fe3+. The presence of acetone and ethanol significantly decreased the enzymatic activity. Neither 5 % methanol nor 5 % isopropanol had any significant effect on AmiE activity (99 and 96 % retained, respectively). AmiE displayed amidase activity although it showed high sequence homology (78 % identity) with the known nitrilase from Pyrococcus abyssi. AmiE is the most characterized archaeal thermostable amidase in the nitrilase superfamily. The thermostability and pH-stability of AmiE will attract further studies on its potential industrial applications.  相似文献   

19.
Kinetics and inhibition of Na+/K+-ATPase and Mg2+-ATPase activity from rat synaptic plasma membrane (SPM), by separate and simultaneous exposure to transition (Cu2+, Zn2+, Fe2+ and.Co2+) and heavy metals (Hg2+and Pb2+) ions were studied. All investigated metals produced a larger maximum inhibition of Na+/K+-ATPase than Mg2+-ATPase activity. The free concentrations of the key species (inhibitor, MgATP2 ? , MeATP2 ? ) in the medium assay were calculated and discussed. Simultaneous exposure to the combinations Cu2+/Fe2+ or Hg2+/Pb2+caused additive inhibition, while Cu2+/Zn2+ or Fe2+/Zn2+ inhibited Na+/K+-ATPase activity synergistically (i.e., greater than the sum metal-induced inhibition assayed separately). Simultaneous exposure to Cu2+/Fe2+ or Cu2+/Zn2+ inhibited Mg2+-ATPase activity synergistically, while Hg2+/Pb2+ or Fe2+/Zn2+ induced antagonistic inhibition of this enzyme. Kinetic analysis showed that all investigated metals inhibited Na+/K+-ATPase activity by reducing the maximum velocities (Vmax) rather than the apparent affinity (Km) for substrate MgATP2-, implying the noncompetitive nature of the inhibition. The incomplete inhibition of Mg2+-ATPase activity by Zn2+, Fe2+ and Co2+ as well as kinetic analysis indicated two distinct Mg2+-ATPase subtypes activated in the presence of low and high MgATP2 ? concentration. EDTA, L-cysteine and gluthathione (GSH) prevented metal ion-induced inhibition of Na+/K+-ATPase with various potencies. Furthermore, these ligands also reversed Na+/K+-ATPase activity inhibited by transition metals in a concentration-dependent manner, but a recovery effect by any ligand on Hg2+-induced inhibition was not obtained.  相似文献   

20.
The effects of regional and global ischemia on cellular electrical activity and on arrhythmias induced by reperfusion were studied at different Mg2+ concentrations (Mg2+ o, 0, 1.2, and 4.8 mM) in perfused rat hearts. Surface electrograms and transmembrane potentials were recorded during control, 10 min of ischemia (perfusion arrest or coronary ligation), and reperfusion. Increasing Mg2+ o from 0-4.8 mM decreased heart rate, did not alter action potential morphology, and had a strong antiarrhythmic action on reperfusion following coronary ligation. At low and normal Mg2+ o, the incidence of tachyarrhythmias was between 70 and 80%. Global ischemia led to progressive atrioventricular block and the final ventricular beating rate was similar at all Mg2+ o despite unequal initial values. The severity of arrhythmias was similar to that found after regional ischemia in Mg2+ o = 0, but much lower at normal and high Mg2+ o. The resting depolarization induced by coronary ligation decreased as Mg2+ o was raised, but such a relation was not seen during global ischemia where the depolarization was less marked. The action potential duration did not vary with the ventricular rate between 160 and 380 beats per min but increased considerably when sinus rate was markedly slowed (40 to 80 bpm) by raising Mg2+ o to 9.6 mM. Our data show that a high Mg2+ o exerts a strong protection against reperfusion arrhythmias regardless of the type of ischemia. Modulation of the sinus rhythm by Mg2+ may contribute to its protective effect by decreasing K+ o accumulation and Na+ i loading during ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号