首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Immunofluorescence studies on microtubule arrangement during the transition from prophase to metaphase in onion root cells are presented. The prophase spindle observed at late preprophase and prophase is composed of microtubules converged at two poles near the nuclear envelope; thin bundles of microtubules are tracable along the nuclear envelope. Prior to nuclear envelope breakdown diffuse tubulin staining occurs within the prophase nuclei. During nuclear envelope breakdown the prophase spindle is no longer identifiable and prominent tubulin staining occurs among the prometaphase chromosomes. Patches of condensed tubulin staining are observed in the vicinity of kinetochores. At advanced prometaphase kinetochore bundles of microtubules are present in some kinetochore regions. At metaphase the mitotic spindle is mainly composed of kinetochore bundles of microtubules; pole-to-pole bundles are scarce. Our observations suggest that the prophase spindle is decomposed at the time of nuclear envelope breakdown and that the metaphase spindle is assembled at prometaphase, with the help of kinetochore nucleating action.  相似文献   

2.
Summary Nuclear and microtubular cycles were studied in large heterophasic multinuclear cells induced in root tips ofTriticum turgidum by caffeine treatment. Multinuclear cells and cells with polyploid nuclei exhibited various configurations of multiple and complex preprophase microtubule (Mt) bands (PPBs), including helical ones. The developmental stages of PPBs in some heterophasic cells did not comply with the cell cycle stages of the associated nuclei, a fact indicating that these events are not directly controlled by the associated nuclei. The heterophasic cells exhibited asynchronous nuclei at different stages of mitosis. In cells displaying prophase and interphase nuclei, the prophase spindle was either absent or developed around both of them or developed around the prophase nuclei earlier than around the interphase ones. During prometaphase-metaphase of the advanced nuclei the lagging interphase nuclei were induced to form prematurely condensed chromosomes (PCCs) along with spindle formation around them. These observations suggest that the mitotic transition in heterophasic cells is delayed but is ultimately achieved due to the effect of the advanced nuclei, which induces a premature mitotic entry of the lagging nuclei. Although kinetochore Mt bundles were found associated with PCCs, their metaphase and anaphase spindles were abnormal resulting in abnormal or abortive anaphases. In some heterophasic cells, metaphase-anaphase transition did not take place simultaneously in different chromosome groups, signifying that the cells do not exit from the mitotic state after anaphase initiation of the advanced nuclei. Asynchronous pace of mitosis of different chromosome groups was also observed during anaphase and telophase. Implications of these observations in understanding plant cell cycle regulation are discussed.Abbreviations cdk cyclin dependent kinase - Mt microtubule - PCC prematurely condensed chromosome - PPB preprophase band  相似文献   

3.
The interaction between centrosomes and kinetochores was studied in multinucleate cells induced by Colcemid treatment or by random cell fusion. Except for prematurely condensed chromosomes (PCC) of the G2-phase, PCCs do not develop their own spindle area. Perhaps the maturation promoting factor (MPF) fails to activate these centrosomes. In such PCCs, the kinetochore-centrosome interaction was found to be non-specific: sometimes only a few chromosomes of a group could establish connections with centrosomes, sometimes chromosomes from the same PCC group developed microtubule (MT) attachment with different centrosomes (not the pair), and sometimes kinetochores of PCC groups failed to interact with MTs. These findings explain the abnormal mitotic behaviour of PCCs as seen in the light microscope. These PCCs develop micronuclei or normal nuclei by nuclear re-formation in telophase. All the different PCC groups revealed kinetochores with kinetochore plates. It was shown that transformation of presumptive kinetochores to a trilaminar kinetochore does not depend on nuclear envelope breakdown or on the degree of chromosome condensation. This may be induced by the MPF which may initiate different events like chromosome condensation, nuclear envelope breakdown and kinetochore transformation by secondary factors. Other observations like establishment of connections by different chromosome groups to a common centrosome, kinetochore attachment of PCCs to different centrosomes, interaction of one kinetochore with two centrosomes, kinetochores being stretched and bent to receive microtubules and finally the failure of some kinetochores to develop MT attachment, all strongly suggest that the kinetochores serve as the point of termination rather than the nucleation sites of kinetochore MTs.  相似文献   

4.
《The Journal of cell biology》1996,135(5):1207-1218
Xenopus egg extracts initiate DNA replication specifically at the dihydrofolate reductase (DHFR) origin locus with intact nuclei from late G1-phase CHO cells as a substrate, but at nonspecific sites when purified DNA is assembled by the extract into an embryonic nuclear structure. Here we show that late G1-phase CHO nuclei can be cycled through an in vitro Xenopus egg mitosis, resulting in the assembly of an embryonic nuclear envelope around G1-phase chromatin. Surprisingly, replication within these chimeric nuclei initiated at a novel specific site in the 5' region of the DHFR structural gene that does not function as an origin in cultured CHO cells. Preferential initiation at this unusual site required topoisomerase II-mediated chromosome condensation during mitosis. Nuclear envelope breakdown and reassembly in the absence of chromosome condensation resulted in nonspecific initiation. Introduction of condensed chromosomes from metaphase- arrested CHO cells directly into Xenopus egg extracts was sufficient to elicit assembly of chimeric nuclei and preferential initiation at this same site. These results demonstrate clearly that chromosome architecture can determine the sites of initiation of replication in Xenopus egg extracts, supporting the hypothesis that patterns of initiation in vertebrate cells are established by higher order features of chromosome structure.  相似文献   

5.
We investigated the influence of the cell cycle stage of the nuclear donor on prematurely condensed chromatin (PCC) and spindle morphology and on chromosome constitution in rabbit nuclear transplant embryos. The configuration of PCC following nuclear transplantation with G1, early S, and late S phase donor nuclei (G1, early S, and late S transplants, respectively) was characterized in whole mounts and chromosome spreads. In addition, the influence of the donor cell cycle stage on chromosome constitution in cleavage stage-manipulated embryos was determined. Within 2 h after fusion of the donor blastomere, the recipient oocyte cytoplasm was able to induce formation de novo of a metaphase plate associated with a spindle in G1, early S, and late S transplants. Metaphase chromosomes and spindle were intact in most cases of PCC in G1 transplants. However, these structures displayed minor abnormalities in early S transplants and gross abnormalities in late S transplants, such as incomplete or absent spindle formation and incomplete chromatin condensation. Normal chromosomes were present in G1 and early S transplants, whereas chromosome abnormalities were detected in late S transplants. The results indicate that morphology of prematurely condensed G1 and early S chromatin has a minor influence on chromosome constitution of manipulated embryos. That of late S chromatin, however, affects chromosome constitution in embryos and may account for reduced development of nuclear transplant embryos when late S phase donor nuclei are used.  相似文献   

6.
Haploid parthenogenetic embryos as well as fertilized mouse eggs were treated in vitro with 1–10 μM okadaic acid (OA) at the one-cell stage. Cytogenetic analysis detected that OA induces nuclear envelope breakdown (NEBD) and premature condensation of interphase chromosomes in pronuclei as well as in 2nd polar body (PB) nuclei. G1-, S-, and G2-type prematurely condensed chromosomes (PCC) were found in pronuclei of embryos of different age, which reflects their progression through the first cell cycle. In nuclei from 2nd PBs only G1- and S-type PCC were observed. Using the types of PCC as a criterion of different phases of the cell cycle, it was possible to estimate that in haploid parthenogenetic embryos G1-phase lasts until 5.5 hr post activation (hpa), S-phase takes from 4.5 to 9.5 hpa, and from 8.5 hpa G2-phase had started. Second PBs were found to be in G1-phase until 6.5 hpa and S-phase started in some as early as 5.5 hpa, but in most not before 7.5 hpa. Treatment with OA visualizes G1-chromosomes in pronuclei as well as in 2nd PBs, and it is easy to count the number of these chromosomes and recognize a T6 marker chromosome. The possibility to apply cytogenetic analysis of G1-chromosomes from 2nd PBs for a more accurate detection of maternal meiotic nondisjunction is discussed. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Multinucleate (MN) cells were induced in PtK1 cells by colcemid treatment. A large percentage of cells developed nuclear asynchrony both in relation to DNA synthesis and mitosis within one cell cycle. Asynchrony could be traced even in metaphase and anaphase cells in which interphase nuclei, PCC of S-phase nuclei and less condensed prophase-like chromosomes could be observed along with normally condensed chromosomes. The occurrence of such abnormalities in these large MN cells may be explained on the basis of an uneven distribution of inducer molecules of DNA synthesis and mitosis due to cytoplasmic compartmentation. The less condensed form of all the chromosomes except chromosome 4 could be traced in asynchronous metaphase. The failure of the less condensed chromosomes to undergo complete condensation does not always appear to result from late entry of nuclei containing these chromosomes into G2 phase. It is likely that chromosome 4 carries gene(s) for chromosome condensation, as this chromosome itself never appears in a less condensed form. The inducers for chromosome condensation may not always be available at equal concentrations to all chromosomes located in separate nuclei, thus they may sometimes fail to undergo complete condensation before other nuclei reach the end of prophase, when the nuclear envelopes of all nuclei present in the cell break down simultaneously.  相似文献   

8.
Electron microscopy of glutaraldehyde-osmium-fixed samples of haploid myxamoebae and diploid plasmodia of the myxomycete Physarum flavicomum Berk. reveal dissimilar spindle apparatus during mitosis in the two cell types. Myxamoebae exhibit an astral type of mitosis with centrioles at the poles and nuclear envelope breakdown during prophase. Plasmodial nuclei lack centrioles at mitosis and have an intranuclear spindle, with nuclear envelope persisting during the entire division. Coated vesicles are noted during prophase and telophase in myxamoebae and their role in spindle formation and dispersion is suggested.  相似文献   

9.
Mitosis in vegetative cells of the siphonocladalean algaBoergesenia forbesii (Harvey) Feldmann was investigated mainly by electron microscopy. The mitotic spindle was centric and closed. The interphase nucleus contained a spherical nucleolus. The nucleolus was slightly dispersed at prophase, but nucleolar materials remained during nearly all stages of mitosis. Kinetochores were evident on chromosomes. The polar regions of nuclear envelope had no fenestrae during mitosis. Anaphase separation of the chromosomes was asynchronous. Elongation of interzonal spindle at telophase separated the two daughter nuclei widely. The ultrastructural features of mitosis inB. forbesii revealed by the present investigation are compared with those of other siphonous and siphonocladous algae in the Ulvophyceae.  相似文献   

10.
The fusion of G0 human fibroblasts with PTK2 (Potorous tridactylis) cells resulted in the production of hybrid heterokaryotic cells which remained flat in cell division. These cells permitted studies of mitosis in living hybrid cells without the need for fixation and staining. The breakdown of nuclear envelopes during prophase in a hybrid heterokaryotic cell correlated with the onset of premature chromosome condensation (PCC) in other nuclei in the same cell. Nuclear morphology and autoradiography demonstrated that the nuclei exhibiting PCC were from the human parent cells. Observation of multinucleated PTK2-human hybrids in the later stages of mitosis showed that these cells normally produced three daughters instead of the usual two. Electron microscopic examination of dividing hybrid cells showed that the number of daughter cells was not related to the number of centrioles. Hybrid cells normally were found to contain many centriolar duplexes although not all of these structures were associated with active poles in mitosis. Cells with as many as six centriolar duplexes were found in mitosis. The configuration of the chromosomes in metaphase was found to be a more accurate indication of the number of daughters produced by a single division than the number of centrioles. Chromosome elimination in hybrid cells could also be visualized in PTK2-human hybrids. Lagging chromosomes were commonly observed during mitosis and were often trapped in the constricting midbody.  相似文献   

11.
Cdc34/Ubc3 is a ubiquitin-conjugating enzyme that functions in targeting proteins for proteasome-mediated degradation at the G1 to S cell cycle transition. Elevation of Cdc34 protein levels by microinjection of bacterially expressed Cdc34 into mammalian cells at prophase inhibited chromosome congression to the metaphase plate with many chromosomes remaining near the spindle poles. Chromosome condensation and nuclear envelope breakdown occurred normally, and chromosomes showed oscillatory movements along mitotic spindle microtubules. Most injected cells arrested in a prometaphase-like state. Kinetochores, even those of chromosomes that failed to congress, possessed the normal trilaminar plate ultrastructure. The elevation of Cdc34 protein levels in early mitosis selectively blocked centromere protein E (CENP-E), a mitotic kinesin, from associating with kinetochores. Other proteins, including two CENP-E-associated proteins, BubR1 and phospho-p42/p44 mitogen-activated protein kinase, and mitotic centromere-associated kinesin, cytoplasmic dynein, Cdc20, and Mad2, all exhibited normal localization to kinetochores. Proteasome inhibitors did not affect the prometaphase arrest induced by Cdc34 injection. These studies suggest that CENP-E targeting to kinetochores is regulated by ubiquitylation not involving proteasome-mediated degradation.  相似文献   

12.
When cells in mitosis are treated with nocodazole, a microtubule-disrupting drug, it can be shown in comparison to untreated cells that microtubules are responsible for the polarized formation of indentations, folds, tubes, and crypts of the nuclear envelope in prophase nuclei. No translocation of chromosomes within the nucleus takes place. Microtubules are not necessary for chromosome condensation, nuclear envelope breakdown, the formation of trilaminar kinetochores, and the orientation of sister-kinetochores within one chromosome in relation to each other. The orientation of kinetochores in relation to the mitotic poles, however, is mediated by microtubules. The data shown here support the working hypothesis about chromosome translocation in prophase nuclei which was presented in an earlier paper.  相似文献   

13.
Premature chromosome condensation and cell cycle analysis.   总被引:3,自引:0,他引:3  
The application of the phenomenon of premature chromosome condensation for cell cycle analysis in HeLa and CHO cells has been examined. Random populations of HeLa and CHO cells pulse labelled with H3-TdR were separately fused with mitotic HeLa cells using U.V. inactivated Sendai virus. The resulting prematurely condensed chromosomes (PCC) were scored and classified into G1, S and G2-PCC on the basis of both morphological and autoradiographic data, The results of this study indicated that the G1, S and G2 phase cells are equally susceptible to virus-induced fusion with mitotic cells and subsequent induction into PCC. Hence the PCC method for cell cycle analysis is both practical and accurate. This study also revealed that the process of chromosome decondensation initiated during the telophase of mitosis continues throughout the G1 period reaching an ultimate state of decondensation by the end of G1, at which point the fusion of such cells with those in mitosis yield PCC with the most diffused morphology instead of the discrete single stranded structures characteristic of early G1-PCC. Thus, the decondensation of chromatin during G1 appears to be a prerequisite for the subsequent initiation of DNA synthesis.  相似文献   

14.
Mitotic CHO cells and mouse testicular cells were fused with polyethylene glycol. Several types of prematurely condensed chromosomes were observed. From chromosome morphology it was possible to determine that most of the PCC represented mouse cells. Labeling of either the CHO cells in vitro or the testicular cells in vivo with 3H-TdR prior to fusion also demonstrated that the PCC were derived from the mouse cells. In some PCC, 20 chromosomes could be counted, the haploid number for mouse. It is assumed that these PCC were induced in mouse spermatid nuclei.  相似文献   

15.
BACKGROUND: Restructuring chromatin into morphologically distinct chromosomes is essential for cell division, but the molecular mechanisms underlying this process are poorly understood. Condensin complexes have been proposed as key factors, although controversial conclusions about their contribution to chromosome structure were reached by different experimental approaches in fixed cells or cell extracts. Their function under physiological conditions still needs to be defined. RESULTS: Here, we investigated the specific functions of condensin I and II in live cells by fluorescence microscopy and RNAi depletion. Photobleaching and quantitative time-lapse imaging showed that GFP-tagged condensin II bound stably to chromosomes throughout mitosis. By contrast, the canonical condensin I interacted dynamically with chromatin after completion of prophase compaction, reaching steady-state levels on chromosomes before congression. In condensin I-depleted cells, compaction was normal, but chromosomes were mechanically labile and unable to withstand spindle forces during alignment. However, normal levels of condensin II were not required for chromosome stability. CONCLUSIONS: We conclude that while condensin I seems dispensable for normal chromosome compaction, its dynamic binding after nuclear envelope breakdown locks already condensed chromatin in a rigid state required for mechanically stable spindle attachment.  相似文献   

16.
Using two cytological methods based on nuclear morphology, quinacrine dihydrochloride (QDH) staining and premature chromosome condensation (PCC), it has been possible to identify cell cyle positions within G1 of growing and arrested 3T3 cells. The fluorescent intensity of QDH-stained interphase cells appears to decrease as the cells pass from mitosis to S phase. Likewise, the length and thickness of prematurely condensed chromatids can be related to the cells' position within the G1 period. Data are presented that deal with three interrelated topics: (1) We determined by fluorometric measurements of nuclei from 3T3 cells that the visual observation of the decrease in QDH fluorescence during G1 reflects an actual decrease in total fluorescence and not a dispersion of the fluorescent chromatin in a larger nuclear area. (2) We correlated the results obtained by QDH staining with those of PCC on the same cell samples blocked in G1 by different conditions. Serum-starved and contact-inhibited cell nuclei had the highest intensity, hydroxyurea-treated ones had the lowest intensity, while that of isoleucine-deprived cells was in between. The same relative order of G1 positions was obtained based on PCC morphology. Thus, both methods monitor the state of chromatin condensation and can be used to identify cell cycle position within G1.(3) We showed with both methods that the states of chromatin resulting from the various G1 blocking conditions differ from each other.  相似文献   

17.
Summary This work examines mitosis in root-tip cells ofTriticum turgidum treated with the RNA synthesis inhibitor ethidium bromide, using tubulin immunolabeling and electron microscopy. The following aberrations were observed in ethidium bromideaffected cells: (1) incomplete chromatin condensation and nuclear-envelope breakdown; (2) delay of preprophase microtubule band maturation; (3) preprophase microtubule band assembly in cells displaying an interphase appearance of the nucleus; (4) prevention of the prophase spindle formation, caused by inhibition of perinuclear microtubule (Mt) formation and/or inability of the perinuclear Mts to assume bipolarity; (5) organization of an atypical metaphase spindle which is unable to arrange the chromosomes on the equatorial plane; (6) formation of an atypical perinuclear metaphase spindle in cells in which nuclear-envelope breakdown has been almost completely inhibited; (7) inhibition of the anaphase spindle formation as well as of anaphase chromosome movement; (8) disorganization of the atypical mitotic spindle during transition from mitosis to cytokinesis. The observations favor the following hypotheses. Nucleation of prophase spindle Mts is related to the mechanism that causes nuclear-envelope breakdown. The mitotic poles lack Mtnucleating and -organizing properties, and their function does not account for prophase and metaphase spindle assembly. The organization of the prophase spindle is not a prerequisite for the formation of the metaphase spindle; the metaphase spindle seems to be formed de novo by Mts nucleated on the nuclear envelope and/or in the immediate vicinity of chromosomes.Abbreviations 5-AU 5-aminouracil - EB ethidium bromide - EM electron microscopy - k-Mt kinetochore microtubule - Mt microtubule - MTOC microtubule-organizing center - NE nuclear envelope - NEB nuclear-envelope breakdown - PPB preprophase band of microtubules  相似文献   

18.
The objective of this study was to investigate whether G1 cells could enter S phase after premature chromosome condensation resulting from fusion with mitotic cells. HeLa cell synchronized in early G1, mid-G1, late G1, and G2 and human diploid fibroblasts synchronized in G0 and G1 phases were separately fused by use of UV-inactivated Sendai virus with mitotic HeLa cells. After cell fusion and premature chromosome condensation, the fused cells were incubated in culture medium containing Colcemid (0.05 micrograms/ml) and [3H]thymidine ([3H]ThdR) (0.5 microCi/ml; sp act, 6.7 Ci/mM). At 0, 2, 4, and 6 h after fusion, cell samples were taken to determine the initation of DNA synthesis in the prematurely condensed chromosomes (PCC) on the basis of their morphology and labeling index. The results of this study indicate that PCC from G0, G1, and G2 cells reach the maximum degree of compaction or condensation at 2 h after PCC induction. In addition, the G1-PCC from normal and transformed cells initiated DNA synthesis, as indicated by their "pulverized" appearance and incorporation of [3H]ThdR. Further, the initiation of DNA synthesis in G1-PCC occurred significantly earlier than in the mononucleate G1 cells. Neither pulverization nor incorporation of label was observed in the PCC of G0 and G2 cells. These findings suggest that chromosome decondensation, although not controlling the timing of a cell's entry into S phase, is an important step for the initiation of DNA synthesis. These data also suggest that the entry of a S phase may be regulated by cell cycle phase-specific changes in the permeability of the nuclear envelope to the inducers of DNA synthesis present in the cytoplasm.  相似文献   

19.
When vertebrate somatic cells are selectively irradiated in the nucleus during late prophase (<30 min before nuclear envelope breakdown) they progress normally through mitosis even if they contain broken chromosomes. However, if early prophase nuclei are similarly irradiated, chromosome condensation is reversed and the cells return to interphase. Thus, the G2 checkpoint that prevents entry into mitosis in response to nuclear damage ceases to function in late prophase. If one nucleus in a cell containing two early prophase nuclei is selectively irradiated, both return to interphase, and prophase cells that have been induced to returned to interphase retain a normal cytoplasmic microtubule complex. Thus, damage to an early prophase nucleus is converted into a signal that not only reverses the nuclear events of prophase, but this signal also enters the cytoplasm where it inhibits e.g., centrosome maturation and the formation of asters. Immunofluorescent analyses reveal that the irradiation-induced reversion of prophase is correlated with the dephosphorylation of histone H1, histone H3, and the MPM2 epitopes. Together, these data reveal that a checkpoint control exists in early but not late prophase in vertebrate cells that, when triggered, reverses the cell cycle by apparently downregulating existing cyclin-dependent kinase (CDK1) activity.  相似文献   

20.
Induction of DNA synthesis in embryonic chick red cells has been examined during the first and second cell cycles after fusion with HeLa cells synchronized in different parts of G1 and S-phase. The data indicate that: (i) the younger the embryonic blood the more rapidly the red cells are induced into DNA synthesis; (ii) the greater the ratio of HeLa to chick nuclei in the heterokaryon, the more rapidly the induction occurs; (iii) DNA synthesis in the chick nucleus can continue after the HeLa nucleus has left S-phase and entered either G2 or mitosis; (iv) the induction potential of late S-phase HeLa is somewhat lower than that of early or mid S-phase cells; (v) less than 10% of the chick DNA is replicated during the first cycle after fusion and only a small proportion (15%) of the chick nuclei approach the 4C value of DNA during the second cycle after fusion; (vi) the newly synthesized DNA is associated either with the condensed regions of the nucleus or with the boundaries between condensed and non-condensed regions; (vii) the chick chromosomes at the first and second mitosis after fusion are in the form of PCC prematurely condensed chromosomes); they are never fully replicated and are often fragmentary; (viii) DNA synthesis in the chick nuclei is accompanied by an influx of protein (both G1 and S-phase protein) from the HeLa component of the heterokaryon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号