首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Plant growth enhancing effects of arbuscular mycorrhizal (AM) fungi are suitably quantified by comparisons of mycorrhizal and non-mycorrhizal plant growth responses to added phosphorus (P). The ratio between the amounts of added P required for the same yield of mycorrhizal and non-mycorrhizal plants is termed the relative effectiveness of the mycorrhiza. Variation in this relative effectiveness was examined for subterranean clover grown on a high P-fixing soil. Plants were either left non-mycorrhizal or inoculated with one of three AM fungal species with well-characterised differences in external hyphal spread. With no P added, plants from all treatments produced <10% of their maximum growth achieved at non-limiting P supply. The growth response of non-mycorrhizal plants was markedly sigmoid. Mycorrhizal growth responses were not sigmoid but their shape was two-phased. The first phase was an asymptotic approach to 25–30% of maximum growth, followed by a second asymptotic rise to maximum growth. Growth effects of Glomus invermaium and Acaulospora laevis were quite similar. Plants in these treatments produced up to four times greater shoot dry biomass than non-mycorrhizal plants. Scutellospora calospora was less effective. The relative effectiveness of AM fungi varied with the level of P application. This is expected to apply to all soils on which a sigmoid response is obtained for growth of non-mycorrhizal plants. In a simple approximation the relative effectiveness was calculated to range from 1.46 to 15.57. Shoot P contents were increased by up to 25 times by A. laevis, significantly more than by the other two fungi. The further mycelial spread of this fungus is thought to have contributed to its relatively greater effect on plant P content.  相似文献   

2.
Toxic metal accumulation in soils of agricultural interest is a serious problem needing more attention, and investigations on soil–plant metal transfer must be pursued to better understand the processes involved in metal uptake. Arbuscular mycorrhizal (AM) fungi are known to influence metal transfer in plants by increasing plant biomass and reducing metal toxicity to plants even if diverging results were reported. The effects of five AM fungi isolated from metal contaminated or non-contaminated soils on metal (Cd, Zn) uptake by plant and transfer to leachates was assessed with Medicago truncatula grown in a multimetallic contaminated agricultural soil. Fungi isolated from metal-contaminated soils were more effective to reduce shoot Cd concentration. Metal uptake capacity differed between AM fungi and depended on the origin of the isolate. Not only fungal tolerance and ability to reduce metal concentrations in plant but also interactions with rhizobacteria affected heavy metal transfer and plant growth. Indeed, thanks to association with nodulating rhizobacteria, one Glomus intraradices inoculum increased particularly plant biomass which allowed exporting twofold more Cd and Zn in shoots as compared to non-mycorrhizal treatment. Cd concentrations in leachates were variable among fungal treatments, but can be significantly influenced by AM inoculation. The differential strategies of AM fungal colonisation in metal stress conditions are also discussed.  相似文献   

3.
Gazey C  Abbott LK  Robson AD 《Mycorrhiza》2004,14(6):355-362
Arbuscular mycorrhizal (AM) fungi occur in all agricultural soils but it is not easy to assess the contribution they make to plant growth under field conditions. Several approaches have been used to investigate this, including the comparison of plant growth in the presence or absence of naturally occurring AM fungi following soil fumigation or application of fungicides. However, treatments such as these may change soil characteristics other than factors directly involving AM fungi and lead to difficulties in identifying the reason for changes in plant growth. In a glasshouse experiment, we assessed the contribution of indigenous AM fungi to growth of subterranean clover in undisturbed cores of soil from two agricultural field sites (a cropped agricultural field at South Carrabin and a low input pasture at Westdale). We used the approach of estimating the benefit of AM fungi by comparing the curvature coefficients ( C) of the Mitscherlich equation for subterranean clover grown in untreated field soil, in field soil into which inoculum of Glomus invermaium was added and in soil fumigated with methyl bromide. It was only possible to estimate the benefit of mycorrhizas using this approach for one soil (Westdale) because it was the only soil for which a Mitscherlich response to the application of a range of P levels was obtained. The mycorrhizal benefit ( C of mycorrhizal vs. non-mycorrhizal plants or C of inoculated vs. uninoculated plants) of the indigenous fungi corresponded with a requirement for phosphate by plants that were colonised by AM fungi already present in the soil equivalent to half that required by non-mycorrhizal plants. This benefit was independent of the plant-available P in the soil. There was no additional benefit of inoculation on plant growth other than that due to increased P uptake. Indigenous AM fungi were present in both soils and colonised a high proportion of roots in both soils. There was a higher diversity of morphotypes of mycorrhizal fungi in roots of plants grown in the Westdale soil than in the South Carrabin soil that had a history of high phosphate fertilizer use in the field. Inoculation with G. invermaium did not increase the level of colonisation of roots by mycorrhizal fungi in either soil, but it replaced approximately 20% of the root length colonised by the indigenous fungi in Westdale soil at all levels of applied P. The proportion of colonised root length replaced by G. invermaium in South Carrabin soil varied with the level of application of P to the soil; it was higher at intermediate levels of recently added soil P.  相似文献   

4.
Ultramafic soils at Bandalup Hill (Western Australia) are characterised by high concentrations of Ni and low levels of P. Amongst the plant species that can sustain such hostile conditions, Hakea verrucosa F. Muell from a non-mycorrhizal family (Proteaceae) would be expected to rely on cluster roots to access P. However, the acidification of ultramafic soils by cluster roots might increase the dissolution of soil Ni, and therefore its availability to plants. Symbiosis with mycorrhizal fungi, on the other hand, might help to reduce the uptake of Ni by H. verrucosa. Therefore, the aim of this study was to investigate the mycorrhizal status of H. verrucosa, and assess any contribution from mycorrhizal fungi to its growth and nutrient status. Seedlings of H. verrucosa were first grown in undisturbed ultramafic soil cores from Bandalup Hill for 8 weeks to assess the presence of mycorrhizal fungi in their roots. In a second experiment, H. verrucosa seedlings were grown in the same ultramafic soil that was either steamed or left untreated. Seedlings were inoculated with an arbuscular mycorrhizal (AM) fungal consortium from Bandalup Hill. Fungal hyphae, vesicles, as well as intracellular arbuscules and hyphal coils were observed in the cluster roots of H. verrucosa in both experiments. In the first experiment, 57% of the root length was colonized by AM fungi. Seedlings had high (between 1.4 and 1.9) shoot to root ratios and their roots had very few root hairs, despite growing in P-deficient soil. Steaming of the ultramafic soil increased the growth of seedlings and their nutrient uptake. Inoculation with AM fungi reduced the seedling growth in steamed ultramafic soil; however, it increased their shoot P and K concentration and also the shoot K content. The shoot Ni concentration of seedlings was not affected by the presence of AM fungi.  相似文献   

5.
Rising atmospheric carbon dioxide partial pressure (pCO2) and nitrogen (N) deposition are important components of global environmental change. In the Swiss free air carbon dioxide enrichment (FACE) experiment, the effect of altered atmospheric pCO2 (35 vs. 60 Pa) and the influence of two different N‐fertilization regimes (14 vs. 56 g N m?2 a?1) on root colonization by arbuscular mycorrhizal fungi (AMF) and other fungi (non‐AMF) of Lolium perenne and Trifolium repens were studied. Plants were grown in permanent monoculture plots, and fumigated during the growth period for 7 years. At elevated pCO2 AMF and non‐AMF root colonization was generally increased in both plant species, with significant effects on colonization intensity and on hyphal and non‐AMF colonization. The CO2 effect on arbuscules was marginally significant (P=0.076). Moreover, the number of small AMF spores (≤100 μm) in the soils of monocultures (at low‐N fertilization) of both plant species was significantly increased, whereas that of large spores (>100 μm) was increased only in L. perenne plots. N fertilization resulted in a significant decrease of root colonization in L. perenne, including the AMF parameters, hyphae, arbuscules, vesicles and intensity, but not in T. repens. This phenomenon was probably caused by different C‐sink limitations of grass and legume. Lacking effects of CO2 fumigation on intraradical AMF structures (under high‐N fertilization) and no response to N fertilization of arbuscules, vesicles and colonization intensity suggest that the function of AMF in T. repens was non‐nutritional. In L. perenne, however, AM symbiosis may have amended N nutrition, because all root colonization parameters were significantly increased under low‐N fertilization, whereas under high‐N fertilization only vesicle colonization was increased. Commonly observed P‐nutritional benefits from AMF appeared to be absent under the phosphorus‐rich soil conditions of our field experiment. We hypothesize that in well‐fertilized agricultural ecosystems, grasses benefit from improved N nutrition and legumes benefit from increased protection against pathogens and/or herbivores. This is different from what is expected in nutritionally limited plant communities.  相似文献   

6.
We studied the diversity of arbuscular mycorrhizal fungi (AMF) in semiarid grassland and the effect of long-term nitrogen (N) fertilization on this fungal community. Root samples of Bouteloua gracilis were collected at the Sevilleta National Wildlife Refuge (New Mexico, USA) from control and N-amended plots that have been fertilized since 1995. Small subunit rDNA was amplified using AMF specific primers NS31 and AM1. The diversity of AMF was low in comparison with other ecosystems, only seven operational taxonomic units (OTU) were found in B. gracilis and all belong to the genus Glomus. The dominant OTU was closely related to the ubiquitous G. intraradices/G. fasciculatum group. N-amended plots showed a reduction in the abundance of the dominant OTU and an increase in AMF diversity. The greater AMF diversity in roots from N-amended plots may have been the result of displacement of the dominant OTU, which facilitated detection of uncommon AMF. The long-term implications of AMF responses to N enrichment for plant carbon allocation and plant community structure remain unclear.  相似文献   

7.
Volatile organic compounds (VOCs) emitted by plant roots have important functions that can influence the rhizospheric environment. The aim of this study was to examine the effects of arbuscular mycorrhizal (AM) fungi on the profile of root VOCs. Sorghum (Sorghum bicolor) plants were grown in pots inoculated with either Glomus mosseae or Glomus intraradices, which formed mycorrhiza with the roots. Control plants were grown in pots inoculated with sterile inoculum and did not form mycorrhiza. Forty-four VOCs were determined using headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC-MS). Alkanes were the most abundant type of VOCs emitted by both mycorrhizal and non-mycorrhizal plants. Both the quantity and type of volatiles were dramatically altered by the presence of AM fungi, and these changes had species specificity. Compared with non-mycorrhizal plants, mycorrhizal plants emitted more alcohols, alkenes, ethers and acids but fewer linear-alkanes. The AM fungi also influenced the morphological traits of the host roots. The total root length and specific root length of mycorrhizal plants were significantly greater than those of non-mycorrhizal plants; however, both the incidence and length of root-hair were dramatically decreased. Our findings confirm that AM fungi can alter the profile of VOCs emitted by roots as well as the root morphology of sorghum plants, indicating that AM fungi have the potential to help plants adapt to and alter soil environments.  相似文献   

8.
Clethra barbinervis (Ericales), Cucumis sativus, and Lycopersicon esculentum were grown in soils collected from six different vegetation sites (cedar, cypress, larch, red pine, bamboo grass, and Italian ryegrass), and morphology and colonization preference of arbuscular mycorrhizal (AM) fungi were investigated by microscopic observation and PCR detection. C. barbinervis consistently formed Paris-type AM throughout the sites. C. sativus formed both Arum- and Paris-type AM with high occurrence of Arum-type AM. L. esculentum also formed both Arum- and Paris-type AM but with high occurrence of Paris-type AM. AM diversity within the same plant species was different among the sites. Detected AM diversity from AM spores in different site soils did not consistently reflect AM fungal diversity seen in test plants. Detected families were different, depending on test plants grown even in the same soil. AM fungi belonging to Glomaceae were consistently detected from roots of all test plants throughout the sites. Almost all the families were detected from roots of C. barbinervis and L. esculentum. On the other hand, only two or three families of AM fungi (Archaeosporaceae and/or Paraglomaceae and Glomaceae) but not two other families (Acaulosporaceae and Gigasporaceae) were detected from roots of C. sativus, indicating strong colonization preference of AM fungi to C. sativus among test plants. This study demonstrated that host plant species strongly influenced the colonization preference of AM fungi in the roots.  相似文献   

9.
Introduced, non-native organisms are of global concern, because biological invasions can negatively affect local communities. Arbuscular mycorrhizal (AM) fungal communities have not been well studied in this context. AM fungi are abundant in most soils, forming symbiotic root-associations with many plant species. Commercial AM fungal inocula are increasingly spread worldwide, because of potentially beneficial effects on plant growth. In contrast, some invasive plant species, such as the non-mycorrhizal Alliaria petiolata, can negatively influence AM fungi. In a greenhouse study we examined changes in the structure of a local Canadian AM fungal community in response to inoculation by foreign AM fungi and the manipulated presence/absence of A. petiolata. We expected A. petiolata to have a stronger effect on the local AM fungal community than the addition of foreign AM fungal isolates. Molecular analyses indicated that inoculated foreign AM fungi successfully established and decreased molecular diversity of the local AM fungal community in host roots. A. petiolata did not affect molecular diversity, but reduced AM fungal growth in the greenhouse study and in a in vitro assay. Our findings suggest that both introduced plants and exotic AM fungi can have negative impacts on local AM fungi.  相似文献   

10.
Syvertsen  James P.  Graham  James H. 《Plant and Soil》1999,208(2):209-219
We hypothesized that greater photosynthate supply at elevated [CO2] could compensate for increased below-ground C demands of arbuscular mycorrhizas. Therefore, we investigated plant growth, mineral nutrition, starch, and net gas exchange responses of two Citrus spp. to phosphorus (P) nutrition and mycorrhizas at elevated atmospheric [CO2]. Half of the seedlings of sour orange (C. aurantium L.) and ‘Ridge Pineapple’ sweet orange (C. sinensis L. Osbeck) were inoculated with the arbuscular mycorrhizal (AM) fungus, Glomus intraradices Schenck and Smith and half were non-mycorrhizal (NM). Plants were grown at ambient or 2X ambient [CO2] in unshaded greenhouses for 11 weeks and fertilized daily with nutrient solution either without added P or with 2 mM P in a low-P soil. High P supply reduced AM colonization whereas elevated [CO2] counteracted the depressive effect of P on intraradical colonization and vesicle development. Seedlings grown at either elevated [CO2], high P or with G. intraradices had greater growth, net assimilation of CO2 (A CO2) in leaves, leaf water-use efficiency, leaf dry wt/area, leaf starch and carbon/nitrogen (C/N) ratio. Root/whole plant dry wt ratio was decreased by elevated [CO2], P, and AM colonization. Mycorrhizal seedlings had higher leaf-P status but lower leaf N and K concentrations than nonmycorrhizal seedlings which was due to growth dilution effects. Starch in fibrous roots was increased by elevated [CO2] but reduced by G. intraradices, especially at low-P supply. In fibrous roots, elevated [CO2] had no effect on C/N, but AM colonization decreased C/N in both Citrus spp. grown at low-P supply. Overall, there were no species differences in growth or A CO2. Mycorrhizas did not increase plant growth at ambient [CO2]. At elevated [CO2], however, mycorrhizas stimulated growth at both P levels in sour orange, the more mycorrhiza-dependent species, but only at low-P in sweet orange, the less dependent species. At low-P and elevated [CO2], colonization by the AM fungus increased A CO2 in both species but more so in sour orange than in sweet orange. Leaf P and root N concentrations were increased more and root starch level was decreased less by AM in sour orange than in sweet orange. Thus, the additional [CO2] availability to mycorrhizal plants increased CO2 assimilation, growth and nutrient uptake over that of NM plants especially in sour orange under P limitation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Fungal control of nitrous oxide production in semiarid grassland   总被引:2,自引:0,他引:2  
Fungi are capable of both nitrification and denitrification and dominate the microbial biomass in many soils. Recent work suggests that fungal rather than bacterial pathways dominate N transformation in desert soils. We evaluated this hypothesis by comparing the contributions of bacteria and fungi to N2O production at control and N fertilized sites within a semiarid grassland in central New Mexico (USA). Soil samples were taken from the rhizosphere of blue grama (B. gracilus) and the microbiotic crusts that grow in open areas between the bunch grasses. Soils incubated at 30% or 70% water holding capacity, were exposed to one of three biocide treatments (control, cycloheximide or streptomycin). After 48 h, N2O and CO2 production were quantified along with the activities of several extracellular enzymes. N2O production from N fertilized soils was higher than that of control soils (165 vs. 41 pmol h−1 g−1), was higher for crust soil than for rhizosphere soil (108 vs. 97 pmol h−1 g−1), and increased with soil water content (146 vs. 60 pmol h−1 g−1). On average, fungicide (cycloheximide) addition reduced N2O production by 85% while increasing CO2 production by 69%; bactericide (streptomycin) reduced N2O by 53% with mixed effects on CO2 production. N2O production was significantly correlated with C and N mineralization potential as measured by assays for glycosidic and proteolytic enzymes, and with extractable nitrate and ammonium. Our data indicate that fungal nitrifier denitrification and bacterial autotrophic nitrification dominate N transformation in this ecosystem and that N2O production is highly sensitive to soil cover, N deposition and moisture.  相似文献   

12.
Changes in soil nutrient availability during long‐term ecosystem development influence the relative abundances of plant species with different nutrient‐acquisition strategies. These changes in strategies are observed at the community level, but whether they also occur within individual species remains unknown. Plant species forming multiple root symbioses with arbuscular mycorrhizal (AM) fungi, ectomycorrhizal (ECM) fungi, and nitrogen‐(N) fixing microorganisms provide valuable model systems to examine edaphic controls on symbioses related to nutrient acquisition, while simultaneously controlling for plant host identity. We grew two co‐occurring species, Acacia rostellifera (N2‐fixing and dual AM and ECM symbioses) and Melaleuca systena (AM and ECM dual symbioses), in three soils of contrasting ages (c. 0.1, 1, and 120 ka) collected along a long‐term dune chronosequence in southwestern Australia. The soils differ in the type and strength of nutrient limitation, with primary productivity being limited by N (0.1 ka), co‐limited by N and phosphorus (P) (1 ka), and by P (120 ka). We hypothesized that (i) within‐species root colonization shifts from AM to ECM with increasing soil age, and that (ii) nodulation declines with increasing soil age, reflecting the shift from N to P limitation along the chronosequence. In both species, we observed a shift from AM to ECM root colonization with increasing soil age. In addition, nodulation in A. rostellifera declined with increasing soil age, consistent with a shift from N to P limitation. Shifts from AM to ECM root colonization reflect strengthening P limitation and an increasing proportion of total soil P in organic forms in older soils. This might occur because ECM fungi can access organic P via extracellular phosphatases, while AM fungi do not use organic P. Our results show that plants can shift their resource allocation to different root symbionts depending on nutrient availability during ecosystem development.  相似文献   

13.
It has been suggested that enrichment of atmospheric CO2 should alter mycorrhizal function by simultaneously increasing nutrient‐uptake benefits and decreasing net C costs for host plants. However, this hypothesis has not been sufficiently tested. We conducted three experiments to examine the impacts of CO2 enrichment on the function of different combinations of plants and arbuscular mycorrhizal (AM) fungi grown under high and low soil nutrient availability. Across the three experiments, AM function was measured in 14 plant species, including forbs, C3 and C4 grasses, and plant species that are typically nonmycorrhizal. Five different AM fungal communities were used for inoculum, including mixtures of Glomus spp. and mixtures of Gigasporaceae (i.e. Gigaspora and Scutellospora spp.). Our results do not support the hypothesis that CO2 enrichment should consistently increase plant growth benefits from AM fungi, but rather, we found CO2 enrichment frequently reduced AM benefits. Furthermore, we did not find consistent evidence that enrichment of soil nutrients increases plant growth responses to CO2 enrichment and decreases plant growth responses to AM fungi. Our results show that the strength of AM mutualisms vary significantly among fungal and plant taxa, and that CO2 levels further mediate AM function. In general, when CO2 enrichment interacted with AM fungal taxa to affect host plant dry weight, it increased the beneficial effects of Gigasporaceae and reduced the benefits of Glomus spp. Future studies are necessary to assess the importance of temperature, irradiance, and ambient soil fertility in this response. We conclude that the affects of CO2 enrichment on AM function varies with plant and fungal taxa, and when making predictions about mycorrhizal function, it is unwise to generalize findings based on a narrow range of plant hosts, AM fungi, and environmental conditions.  相似文献   

14.
Five co-occurring plant species from an annual mediterranean grassland were grown in monoculture for 4 months in pots inside open-top chambers at the Jasper Ridge Biological Preserve (San Mateo County, California). The plants were exposed to elevated atmospheric CO2 and soil nutrient enrichment in a complete factorial experiment. The response of root-inhabiting non-mycorrhizal and arbuscular mycorrhizal fungi to the altered resource base depended strongly on the plant species. Elevated CO2 and fertilization altered the ratio of non-mycorrhizal to mycorrhizal fungal colonization for some plant species, but not for others. Percent root infection by non-mycorrhizal fungi increased by over 500% for Linanthus parviflorus in elevated CO2, but decreased by over 80% for Bromus hordeaceus. By contrast, the mean percent infection by mycorrhizal fungi increased in response to elevated CO2 for all species, but significantly only for Avena barbata and B. hordeaceus. Percent infection by mycorrhizal fungi increased, decreased, or remained unchanged for different plant hosts in response to fertilization. There was evidence of a strong interaction between the two treatments for some plant species and non-mycorrhizal and mycorrhizal fungi. This study demonstrated plant species- and soil fertility-dependent shifts in below-ground plant resource allocation to different morpho-groups of fungal symbionts. This may have consequences for plant community responses to elevated CO2 in this California grassland ecosystem. Received: 2 June 1997 / Accepted: 22 August 1997  相似文献   

15.
Broomsedge (Andropogon virginicus L.) is a dominant grass revegetating many abandoned coal-mined lands in West Virginia, USA. Residual soils on such sites are often characterized by low pH, low nutrients, and high aluminium. Experiments were conducted to assess the resistance of broomsedge to limited phosphorus (Pi) availability and to investigate the role that arbuscular mycorrhizal (AM) fungi play in aiding plant growth under low Pi conditions. Pregerminated mycorrhizal and non-mycorrhizal seedlings were grown in a sand-culture system with nutrient solutions containing Pi concentrations ranging from 10 to 100 microM for 8 weeks. Non-mycorrhizal plants exhibited severe inhibition of growth under Pi limitation (<60 microM). Colonization by AM fungi (combined Glomus clarum Nicolson & Schenck and Gigaspora gigantea (Nicol. & Gerd.) Gerd. & Trappe) greatly enhanced host plant growth at low Pi concentrations, but did not benefit growth when Pi was readily available (100 microM). In comparison to non-mycorrhizal plants, mycorrhizal plants had higher phosphorus use efficiency at low Pi concentrations and maintained nearly constant tissue nutrient concentrations across the gradient of Pi concentrations investigated. Manganese (Mn) and sodium (Na) accumulated in shoots of non-mycorrhizal plants under Pi limitation. Mycorrhizal plants exhibited lower instantaneous Pi uptake rates and significantly lower C(min) values compared to non-mycorrhizal plants. These patterns suggest that the symbiotic association between broomsedge roots and AM fungi effectively maintains nutrient homeostasis through changes in physiological properties, including nutrient uptake, allocation and use. The mycorrhizal association is thus a major adaptation that allows broomsedge to become established on infertile mined lands.  相似文献   

16.

Aims

This study aimed to determine the effect of arbuscular mycorrhizal (AM) fungi and phosphorus (P) supply levels on β-carotene concentrations in sweet potato (Ipomoea batatas L.) tubers.

Methods

Two commercial AM fungal isolates of Glomus intraradices (IFP Glintra) and Glomus mosseae (IFP Glm) which differ in their life cycles were used. Sweet potato plants were grown in a horizontal split-root system that consisted of two root compartments. A root-free fungal compartment that allowed the quantification of mycelial development was inserted into each root compartment. The two root compartments were inoculated either with the same or with different AM isolates, or remained free of mycorrhizal propagules. Each fungal treatment was carried out in two P supply levels.

Results

In the low P supply level, mycorrhizal colonization significantly increased β-carotene concentrations in sweet potato tubers compared with the non-mycorrhizal plants. Glomus intraradices appeared to be more efficient in increasing β-carotene concentrations than G. mosseae. Dual inoculation of the root system with the two mycorrhizal fungi did not result in a higher increase in tuber β-carotene concentrations than inoculation with the single isolates. Improved P nutrition led to higher plant tuber biomass but was not associated with increased β-carotene concentrations.

Conclusions

The results indicate a remarkable potential of mycorrhizal fungi to improve β-carotene concentrations in sweet potato tubers in low P fertilized soils. These results also suggest that β-carotene metabolism in sweet potato tubers might be specifically activated by root mycorrhizal colonization.  相似文献   

17.
Carbon (C) sequestration potential of biochar should be considered together with emission of greenhouse gases when applied to soils. In this study, we investigated CO2 and N2O emissions following the application of rice husk biochars to cultivated grassland soils and related gas emissions tos oil C and nitrogen (N) dynamics. Treatments included biochar addition (CHAR, NO CHAR) and amendment (COMPOST, UREA, NO FERT). The biochar application rate was 0.3% by weight. The temporal pattern of CO2 emissions differed according to biochar addition and amendments. CO2 emissions from the COMPOST soils were significantly higher than those from the UREA and NO FERT soils and less CO2 emission was observed when biochar and compost were applied together during the summer. Overall N2O emission was significantly influenced by the interaction between biochar and amendments. In UREA soil, biochar addition increased N2O emission by 49% compared to the control, while in the COMPOST and NO FERT soils, biochar did not have an effect on N2O emission. Two possible mechanisms were proposed to explain the higher N2O emissions upon biochar addition to UREA soil than other soils. Labile C in the biochar may have stimulated microbial N mineralization in the C-limited soil used in our study, resulting in an increase in N2O emission. Biochar may also have provided the soil with the ability to retain mineral N, leading to increased N2O emission. The overall results imply that biochar addition can increase C sequestration when applied together with compost, and might stimulate N2O emission when applied to soil amended with urea.  相似文献   

18.
The adaptation capacity of olive trees to different environments is well recognized. However, the presence of microorganisms in the soil is also a key factor in the response of these trees to drought. The objective of the present study was to elucidate the effects of different arbuscular mycorrhizal (AM) fungi coming from diverse soils on olive plant growth and water relations. Olive plants were inoculated with native AM fungal populations from two contrasting environments, that is, semi‐arid – Freila (FL) and humid – Grazalema (GZ) regions, and subjected to drought stress. Results showed that plants grew better on GZ soil inoculated with GZ fungi, indicating a preference of AM fungi for their corresponding soil. Furthermore, under these conditions, the highest AM fungal diversity was found. However, the highest root hydraulic conductivity (Lpr) value was achieved by plants inoculated with GZ fungi and growing in FL soil under drought conditions. So, this AM inoculum also functioned in soils from different origins. Nine novel aquaporin genes were also cloned from olive roots. Diverse correlation and association values were found among different aquaporin expressions and abundances and Lpr, indicating how the interaction of different aquaporins may render diverse Lpr values.  相似文献   

19.
A pot experiment was conducted to examine the effects of three different arbuscular mycorrhizal fungi, Glomus mosseae, G. deserticola and Gigaspora gergaria, on growth and nutrition of wheat (Triticum aestivium L. cv. Henta) plants grown in saline soil. Under saline condition, mycorrhizal inoculation significantly increased growth responses, nutrient contents, acid and alkaline phosphatases, proline and total soluble protein of wheat plants compared to non-mycorrhizal ones. Those stimulations were related to the metabolic activity of the each mycorrhizal fungus. The localization of succinate dehydrogenase “SDH” (as a vital stain for the metabolically active fungus) in the arbuscular mycorrhizal fungi was variable. In general, mycorrhizal shoot plant tissues had significantly higher concentrations of P, N, K and Mg but lower Na concentration than those of non-mycorrhizal plants. In saline soil, growth and nutrition of wheat plants showed a high degree of dependency on mycorrhizal fungi (especially G. mosseae). The use of the nitroblue tetrazolium chloride method as a vital stain for SDH activity showed that all the structures of mycorrhizal infections in the wheat plant estimated by the trypan blue staining (non-vital stain) were not metabolically active. Interestingly, the reduction in Na uptake along with associated increases in P, N and Mg absorption and high proline, phosphatase activities and chlorophyll content in the mycorrhizal plants could be important for salt alleviation in plants growing in saline soils.  相似文献   

20.
An experiment was set up to investigate the role of arbuscular mycorrhiza (AM) in utilization of P from organic matter during mineralization in soil. Cucumber (Cucumis sativus L.) inoculated with one of two AM fungi or left uninoculated were grown for 30 days in cross-shaped PVC pots. One of two horizontal compartments contained 100 g soil (quartz sand: clay loam, 1:1) with 0.5 g ground clover leaves labelled with32P. The labelled soil received microbial inoculum without AM fungi to ensure mineralization of the added organic matter. The labelling compartment was separated from a central root compartment by either 37 m or 700 m nylon mesh giving only hyphae or both roots and hyphae, respectively, access to the labelled soil. The recovery of32P from the hyphal compartment was 5.5 and 8.6% for plants colonized withGlomus sp. andG. caledonium, respectively, but only 0.6 % for the non-mycorrhizal controls. Interfungal differences were not related to root colonization or hyphal length densities, which were lowest forG. caledonium. Both fungi depleted the labelled soil of NaHCO3-extractable P and32P compared to controls. A 15–25% recovery of32P by roots was not enhanced in the presence of mycorrhizas, probably due to high root densities in the labelled soil. The experiment confirms that AM fungi differ in P uptake characteristics, and that mycorrhizal hyphae can intercept some P immobilization by other microorganisms and P-sorbing clay minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号