首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The membrane-anchored heparin-binding EGF-like growth factor precursor (proHB-EGF)/diphtheria toxin receptor (DTR) belongs to a class of transmembrane growth factors and physically associates with CD9/DRAP27 which is also a transmembrane protein. To evaluate the biological activities of proHB-EGF/DTR as a juxtacrine growth factor and the biological significance of its association with CD9/DRAP27, the mitogenic activity of proHB-EGF/DTR was analyzed using stable transfectants of mouse L cells expressing both human proHB-EGF/DTR and monkey CD9/DRAP27, or either one alone. Juxtacrine activity was assayed by measuring the ability of cells in co-culture to stimulate DNA synthesis in an EGF receptor ligand dependent cell line, EP170.7. LH-2 cells expressing human proHB-EGF/DTR stimulated EP170.7 cell growth moderately. However, LCH-1 cells, a stable co-transfectant expressing both human proHB-EGF/DTR and monkey CD9/DRAP27 cDNAs, dramatically unregulated the juxtacrine growth factor activity of proHB-EGF/DTR approximately 25 times over that of LH-2 cells even though both cell types expressed similar levels of proHB-EGF/DTR on the cell surface. Anti-CD9/DRAP27 antibodies which were not able to neutralize the mitogenic activity of soluble HB-EGF suppressed LCH-1 cell juxtacrine growth activity to the same extent as did anti-HB-EGF neutralizing antibodies and CRM 197, specific inhibitors of human HG-EGF. These findings suggest that optimal expression of the juxtacrine growth activity of proHB-EGF/DTR requires co-expression of CD9/DRAP27. These studies also indicate that growth factor potentiation effects which have been observed previously for soluble growth factors also occurs at the level of cell surface associated growth factors.  相似文献   

2.
Heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) is a member of the EGF family of growth factors. The membrane-anchored form of HB-EGF (proHB-EGF) is mitogenically active to neighboring cells as well as being a precursor of the soluble form. In addition to its mitogenic activity, proHB-EGF has the property of binding to diphtheria toxin (DT), serving as the specific receptor for DT. Tetramembrane-spanning protein CD9, a member of the TM4 superfamily, is physically associated with proHB-EGF at the cell surface and up-regulates both mitogenic and DT binding activities of proHB-EGF. To understand this up-regulation mechanism, we studied essential regions of both CD9 and proHB-EGF for up-regulation. Immunoprecipitation experiments revealed that not only CD9 but also other TM4 proteins including CD63, CD81, and CD82 associate with proHB-EGF on the cell surface. However, these TM4 proteins did not up-regulate DT binding activity of proHB-EGF. Transfection of a series of chimeric constructs comprising CD9 and CD81 showed that the major extracellular domain of CD9 is essential for up-regulation. Assays of DT binding activity and juxtacrine mitogenic activity of the deletion mutants of proHB-EGF and chimeric molecules, derived from proHB-EGF and TGF-alpha, showed that the essential domain of proHB-EGF for up-regulation is the EGF-like domain. These results indicate that the interaction of the extracellular domains of both molecules is important for up-regulation.  相似文献   

3.
Heparin-binding EGF-like growth factor: a juxtacrine growth factor   总被引:14,自引:0,他引:14  
Heparin-binding EGF-like growth factor (HB-EGF), which belongs to the EGF-family growth factors, is synthesized as a membrane-anchored form (proHB-EGF). Proteolytic cleavage of proHB-EGF at the extracellular domain yields the soluble form of HB-EGF (sHB-EGF). ProHB-EGF is not only the precursor molecule for sHB-EGF but also a biologically active molecule itself. Recent studies indicate that proHB-EGF has unique properties distinct from the soluble form. ProHB-EGF forms a complex with membrane proteins including a tetramembrane spanning protein: CD9, an adhesion molecule integrin: 3β1, and heparan sulfate proteoglycans. The complex is localized at the cell–cell contact site, suggesting that proHB-EGF may function in cell-to-cell signaling by a juxtacrine mechanism. In an in vitro model system, proHB-EGF showed growth inhibitory activity, while sHB-EGF was growth stimulatory. Ectodomain shedding, conversion of the membrane-anchored form into the soluble form, is regulated by multiple signaling pathways. All these characteristics imply that proHB-EGF and sHB-EGF are used in different ways. In vivo functions of sHB-EGF and proHB-EGF have been largely undefined, but recent studies implicate them in a variety of physiological processes including blastocyst implantation and wound healing.  相似文献   

4.
CD9 is a protein with 4 transmembrane domains, and functions as a cell surface antigen. We have previously reported that CD9 functions as an up-regulator of membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) activity, which is a potent mitogen as well as a soluble HB-EGF. Anti-CD9 antibodies can neutralize the juxtacrine activity of proHB-EGF when both CD9 and proHB-EGF are coexpressed. We demonstrated here: (1) the CD9 gene was transcribed and translated in the cultured human keratinocytes; (2) anti-CD9 antibody inhibited the approximately 50% growth of human keratinocytes in culture; (3) CD9 was coprecipitated with proHB-EGF and membrane-anchored amphiregulin (proAR), and (4) the transient coexpression of CD9 with proHB-EGF or proAR in mouse L cells up-regulated their juxtacrine growth factor activities. These results suggest that CD9 would make a heterodimer and/or trimer complex with proHB-EGF and proAR, and might cooperate with proHB-EGF and proAR for human keratinocyte growth in a juxtacrine manner. J. Cell. Physiol. 171:291–298, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
6.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is synthesized as a membrane-anchored protein, known as proHB-EGF. ProHB-EGF is cleaved by metalloproteases through a process referred to as 'ectodomain shedding', resulting in the formation of soluble HB-EGF. Both proHB-EGF and soluble HB-EGF are biologically active; the former acts on neighbouring cells through juxtacrine signalling, whereas the latter can move to distant locations. Elevated HB-EGF expression has been observed in ovarian and some other cancers. CRM197, a diphtheria toxin (DT) mutant, binds directly to the epidermal growth factor (EGF)-like domain and represses the mitogenic activity of HB-EGF. Recently, monoclonal antibodies (mAbs) specific for human HB-EGF were generated by immunizing HB-EGF-deficient mice with human HB-EGF (Hamaoka et al. (2010) J. Biochem. 148, 55-69). Most of the mAbs can bind to the EGF-like domain of HB-EGF, but fail to inhibit the mitogenic activity of soluble HB-EGF. However, some mAbs prevented the ectodomain shedding of proHB-EGF and inhibited the proliferation of EGF receptor-expressing cells stimulated by proHB-EGF-expressing cells. Hamaoka et al. showed that CRM197 prevents the ectodomain shedding of proHB-EGF. Thus, these mAbs function as specific inhibitors for the ectodomain shedding of HB-EGF and may be useful for treating cancers exhibiting elevated levels of HB-EGF.  相似文献   

7.
Vero cell heparin-binding epidermal growth factor-like growth factor (HB-EGF) is synthesized as a 20- to 30-kDa membrane-anchored HB-EGF precursor (proHB-EGF). Localization and processing of proHB-EGF, both constitutive and 12-O-tetradecanoylphorbol 13-acetate (TPA)-inducible, was examined in Vero cells overexpressing recombinant HB-EGF (Vero H cells). Flow cytometry and fluorescence immunostaining demonstrated that Vero cell proHB-EGF is cell surface-associated and localized at the interface of cell to cell contact. Cell surface biotinylation and immunoprecipitation detected a 20- to 30-kDa heterogeneous proHB-EGF species. Vero H cell surface proHB-EGF turned over constitutively with a half-life of 1.5 h. Some of the 20- to 30-kDa cell surface-associated proHB-EGF was processed and a 14-kDa species of bioactive HB-EGF was released slowly, but most of the proHB-EGF was internalized, displaying a diffuse immunofluorescent staining pattern and accumulation of proHB-EGF in endosomes. Addition of TPA induced a rapid processing of proHB-EGF at a Pro148-Val149 site with a half-life of 7min. The TPA effect was abrogated by the protein kinase C inhibitors, staurosporine and H7. Kinetic analysis showed that loss of cell surface proHB-EGF is maximal at 30 min after addition of TPA and that proHB-EGF is resynthesized and the initial cell surface levels are regained within 12-24 h. Loss of cell surface proHB-EGF was concomitant with appearance of 14- and 19-kDa soluble HB-EGF species in conditioned medium. Vero H cell-associated proHB-EGF is a juxtacrine growth factor for EP170.7 cells in coculture. Processing of proHB-EGF resulted in loss of juxtacrine activity and a simultaneous increase in soluble HB-EGF paracrine mitogenic activity. It was concluded that processing regulates HB-EGF bioactivity by converting it from a cell-surface juxtacrine growth factor to a processed, released soluble paracrine growth factor.  相似文献   

8.
The tetra-membrane-spanning protein CD9 forms a complex with a membrane-anchored heparin binding epidermal growth factor-like growth factor (HB-EGF) and integrin alpha3beta1 in some human and monkey cell lines. We show here the immunohistochemical distribution of CD9, HB-EGF, and integrin alpha3beta1 in normal human tissues. Distribution of CD9, HB-EGF, and integrin alpha3beta1 was similar in various tissues, including transitional epithelium, squamous epithelium, thyroid follicular epithelium, adrenal cortex, testis, smooth muscle, and stromal fibrous tissue. However, distribution of the three proteins did not coincide in some tissues, such as lung, liver, kidney, gastric and intestinal epithelium, pancreas, salivary gland, and ovary. In striated muscle, including cardiac muscle, CD9 was present not in the muscle cells themselves but in the endomysium and perimysium, whereas HB-EGF was distributed in the muscle cells themselves. CD9 was distributed in the myelin, but HB-EGF was found in the axon of the peripheral and central nervous systems. Coincident distribution of integrin alpha3beta1 with others was not observed in muscles and neural tissues. In conclusion, there is a possibility of complex formation and functional cooperation of CD9 with HB-EGF and/or integrin alpha3beta1 in several tissues.  相似文献   

9.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an activating ligand for the EGF receptor (HER1/ErbB1) and the high-affinity receptor for diphtheria toxin (DT) in its transmembrane form (proHB-EGF). HB-EGF was immunolocalized within human benign and malignant prostatic tissues, using monospecific antibodies directed against the mature protein and against the cytoplasmic domain of proHB-EGF. Prostate carcinoma cells, normal glandular epithelial cells, undifferentiated fibroblasts, and inflammatory cells were not decorated by the anti-HB-EGF antibodies; however, interstitial and vascular smooth muscle cells were highly reactive, indicating that the smooth muscle compartments are the major sites of synthesis and localization of HB-EGF within the prostate. In marked contrast to prostatic epithelium, proHB-EGF was immunolocalized to seminal vesicle epithelium, indicating differential regulation of HB-EGF synthesis within various epithelia of the reproductive tract. HB-EGF was not overexpressed in this series of cancer tissues, in comparison to the benign tissues. In experiments with LNCaP human prostate carcinoma cells, HB-EGF was similar in potency to epidermal growth factor (EGF) in stimulating cell growth. Exogenous HB-EGF and EGF each activated HER1 and HER3 receptor tyrosine kinases and induced tyrosine phosphorylation of cellular proteins to a similar extent. LNCaP cells expressed detectable but low levels of HB-EGF mRNA; however, proHB-EGF was detected at the cell surface indirectly by demonstration of specific sensitivity to DT. HB-EGF is the first HER1 ligand to be identified predominantly as a smooth muscle cell product in the human prostate. Further, the observation that HB-EGF is similar to EGF in mitogenic potency for human prostate carcinoma cells suggests that it may be one of the hypothesized stromal mediators of prostate cancer growth. J. Cell. Biochem. 68:328-338, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Loss of cell-matrix adhesion is often associated with acute epithelial injury, suggesting that "anoikis" may be an important contributor to cell death. Resistance against anoikis is a key characteristic of transformed cells. When nontransformed epithelia are injured, activation of the epidermal growth factor (EGF) receptor (EGFR) by paracrine/autocrine release of soluble ligands can induce a prosurvival program, but there is generally evidence for concomitant dedifferentiation. The EGFR ligand, heparin-binding EGF-like growth factor (HB-EGF), is synthesized as a membrane-anchored precursor that can activate the EGFR via juxtacrine signaling or can be released and act as a soluble growth factor. In Madin-Darby canine kidney cells, expression of membrane-anchored HB-EGF increases cell-cell and cell-matrix adhesion. Therefore, these studies were designed to test the effects of juxtacrine HB-EGF signaling upon cell survival and epithelial integrity when cells are denied proper cell-matrix interactions. Cells expressing a noncleavable mutated form of membrane-anchored HB-EGF demonstrated increased survival from anoikis, formed larger cell aggregates, and maintained epithelial characteristics even following prolonged detachment from the substratum. Physical association between membrane-anchored HB-EGF and EGFR was observed. Signaling studies indicated synergistic effects of EGFR activation and phosphatidylinositol 3-kinase signaling to regulate apoptotic and survival pathways. In contrast, although administration of exogenous EGF partially suppressed anoikis in wild type cells, it also led to an increased expression of mesenchymal markers, suggesting dedifferentiation. Taken together, we propose a novel role for membrane-anchored HB-EGF in the cytoprotection of epithelial cells.  相似文献   

11.
Cytotrophoblasts of the anchoring villi convert during human placentation from a transporting epithelium to an invasive, extravillous phenotype that expresses a distinct repertoire of adhesion molecules. Developing extravillous trophoblasts accumulate heparin-binding EGF-like growth factor (HB-EGF), a multifunctional cytokine, which binds HER1 and HER4 of the human EGF receptor (HER/ErbB) family. HB-EGF is downregulated in placentae of women with preeclampsia, a disorder associated with deficient trophoblast invasion, raising important questions about its physiological impact on cytotrophoblasts. Addition of HB-EGF during explant culture of first-trimester chorionic villi enhanced extravillous trophoblast differentiation and invasive activity. Using a first-trimester human cytotrophoblast line, the potential for autocrine and paracrine regulation of the developing trophoblast was established based on the expression of all four HER isoforms, as well as HB-EGF and related growth factors. HB-EGF did not alter proliferation, but initiated extravillous differentiation, with decreased alpha6 integrin expression, increased alpha1, and elevated cell migration. Function-blocking antibodies against EGF family members reduced basal cell motility and antibody inhibition of either HER1 or HER4 ligation prevented HB-EGF-induced integrin switching. We conclude that HER-mediated autocrine and paracrine signaling by HB-EGF or other EGF family members induces cytotrophoblast differentiation to an invasive phenotype.  相似文献   

12.
Cell-matrix and cell-cell junctions cross-talk together, and these two junctions cooperatively regulate cell movement, proliferation, adhesion, and polarization. However, the mechanism of this cross-talk remains unknown. An immunoglobulin-like cell-cell adhesion molecule nectin first trans-interacts with each other to form cell-cell adhesion and induces activation of Rap1, Cdc42, and Rac small G proteins through c-Src. Trans-interacting nectin then recruits another cell-cell adhesion molecule cadherin to the nectin-based cell-cell adhesion sites and forms adherens junctions (AJs). Here, we show that integrin alpha(v)beta3 functionally and physically associates with nectin. Integrin alpha(v)beta3 colocalized with nectin at the nectin-based cell-cell adhesion sites. The association of integrin alpha(v)beta3 with nectin was direct and was mediated through their extracellular regions. This interaction was necessary for the nectin-induced signaling. Focal adhesion kinase, which relays the integrin-initiated outside-in signals to the intracellular signaling molecules, was also involved in the nectin-induced signaling. During the formation of AJs, the high affinity form of integrin alpha(v)beta3 co-localized with nectin at the primordial cell-cell contact sites, and then after the establishment of AJs, this high affinity form of integrin alpha(v)beta3 was converted to the low affinity form, which continued to co-localize with nectin. Thus, integrin alpha(v)beta3 and nectin play pivotal roles in the cross-talk between cell-matrix and cell-cell junctions and the formation of cadherin-based AJs.  相似文献   

13.
All ligands of the epidermal growth factor (EGF) receptor (EGFR) are synthesized as membrane-anchored precursors. Previous work has suggested that some ligands, such as EGF, must be proteolytically released to be active, whereas others, such as heparin-binding EGF-like growth factor (HB-EGF) can function while still anchored to the membrane (i.e., juxtacrine signaling). To explore the structural basis for these differences in ligand activity, we engineered a series of membrane-anchored ligands in which the core, receptor-binding domain of EGF was combined with different domains of both EGF and HB-EGF. We found that ligands having the N-terminal extension of EGF could not bind to the EGFR, even when released from the membrane. Ligands lacking an N-terminal extension, but possessing the membrane-anchoring domain of EGF, still required proteolytic release for activity, whereas ligands with the membrane-anchoring domain of HB-EGF could elicit full biological activity while still membrane anchored. Ligands containing the HB-EGF membrane anchor, but lacking an N-terminal extension, activated EGFR during their transit through the Golgi apparatus. However, cell-mixing experiments and fluorescence resonance energy transfer studies showed that juxtacrine signaling typically occurred in trans at the cell surface, at points of cell-cell contact. Our data suggest that the membrane-anchoring domain of ligands selectively controls their ability to participate in juxtacrine signaling and thus, only a subclass of EGFR ligands can act in a juxtacrine mode.  相似文献   

14.

Purpose

Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family. The membrane-bound proHB-EGF is known to be a precursor of the soluble form of HB-EGF (sHB-EGF), which promotes cell proliferation and survival. While the functions of sHB-EGF have been extensively studied, it is not yet fully understood if proHB-EGF is also involved in cellular signaling events. In this study, we utilized the anti-HB-EGF monoclonal antibodies Y-142 and Y-073, which have differential specificities toward proHB-EGF, in order to elucidate proHB-EGF functions in cancer cells.

Experimental Design

The biological activities of proHB-EGF were assessed in cell proliferation, caspase activation, and juxtacrine activity assays by using a 3D spheroid culture of NUGC-3 cells.

Results

Y-142 and Y-073 exhibited similar binding and neutralizing activities for sHB-EGF. However, only Y-142 bound to proHB-EGF. We could detect the function of endogenously expressed proHB-EGF in a 3D spheroid culture. Blocking proHB-EGF with Y-142 reduced spheroid formation, suppressed cell proliferation, and increased caspase activation in the 3D spheroid culture of NUGC-3 cells.

Conclusions

Our results show that proHB-EGF acts as a cell proliferation and cell survival factor in cancer cells. The results suggest that proHB-EGF may play an important role in tumor progression.  相似文献   

15.
Cartilage matrix protein (CMP; also known as matrilin-1), one of the major noncollagenous proteins in most cartilages, binds to aggrecan and type II collagen. We examined the effect of CMP on the adhesion of chondrocytes and fibroblasts using CMP-coated dishes. The CMP coating at 10-20 micrograms/ml enhanced the adhesion and spreading of rabbit growth plate, resting and articular chondrocytes, and fibroblasts and human epiphyseal chondrocytes and MRC5 fibroblasts. The effect of CMP on the spreading of chondrocytes was synergistically increased by native, but not heated, type II collagen (gelatin). The monoclonal antibody to integrin alpha1 or beta1 abolished CMP-induced cell adhesion and spreading, whereas the antibody to integrin alpha2, alpha3, alpha5, beta2, alpha5beta1, or alphaVbeta5 had little effect on cell adhesion or spreading. The antibody to integrin alpha1, but not to other subunits, coprecipitated 125I-CMP that was added to MRC5 cell lysates, indicating the association of CMP with the integrin alpha1 subunit. Unlabeled CMP competed for the binding to integrin alpha1 with 125I-CMP. These findings suggest that CMP is a potent adhesion factor for chondrocytes, particularly in the presence of type II collagen, and that integrin alpha1beta1 is involved in CMP-mediated cell adhesion and spreading. Since CMP is expressed almost exclusively in cartilage, this adhesion factor, unlike fibronectin or laminin, may play a special role in the development and remodeling of cartilage.  相似文献   

16.
The tetraspanin CD151 forms a stoichiometric complex with integrin alpha3beta1 and regulates its endocytosis. We observed that down-regulation of CD151 in various epithelial cell lines changed glycosylation of alpha3beta1. In contrast, glycosylation of other transmembrane proteins, including those associated with CD151 (e.g. alpha6beta1, CD82, CD63, and emmprin/CD147) was not affected. The detailed analysis has shown that depletion of CD151 resulted in the reduction of Fucalpha1-2Gal and bisecting GlcNAc-beta(1-->4) linkage on N-glycans of the alpha3 integrin subunit. The modulatory activity of CD151 toward alpha3beta1 was specific, because stable knockdown of three other tetraspanins (i.e. CD9, CD63, and CD81) did not affect glycosylation of the integrin. Analysis of alpha3 glycosylation in CD151-depleted breast cancer cells with reconstituted expression of various CD151 mutants has shown that a direct contact with integrin is required but not sufficient for the modulatory activity of the tetraspanin toward alpha3beta1. We also found that glycosylation of CD151 is also critical; Asn(159) --> Gln mutation in the large extracellular loop did not affect interactions of CD151 with other tetraspanins or alpha3beta1 but negated its modulatory function. Changes in the glycosylation pattern of alpha3beta1 observed in CD151-depleted cells correlated with a dramatic decrease in cell migration toward laminin-332. Migration toward fibronectin or static adhesion of cells to extracellular matrix ligands was not affected. Importantly, reconstituted expression of the wild-type CD151 but not glycosylation-deficient mutant restored the migratory potential of the cells. These results demonstrate that CD151 plays an important role in post-translation modification of alpha3beta1 integrin and strongly suggest that changes in integrin glycosylation are critical for the promigratory activity of this tetraspanin.  相似文献   

17.
Both epidermal growth factor (EGF) and the extracellular matrix components have been implicated in the pathobiology of adenocarcinomas by somewhat poorly understood mechanisms. We have addressed this problem using an in vitro model comprising the colon adenocarcinoma cell line HT29-D4, wherein the role of EGF and type IV collagen on cell adhesion was examined. We demonstrated that the effect of EGF on HT29-D4 cell adhesion was regulated by type IV collagen in a time- and dose-dependent manner. The incorporation of a panel of monoclonal antibodies to integrins alpha1beta1, alpha2beta1 and alpha3beta1 in adhesion medium revealed that EGF-mediated increase in the cell adhesion was mediated essentially by alpha2beta1, and the use of flow cytometry led us to conclude that this EGF effect was mediated by an increase in alpha2beta1 activation and not by an increase in cell surface expression of integrin. An indirect immunofluorescence technique was employed to demonstrate that focal adhesion kinase (FAK) and alpha2beta1 integrin were present in focal complexes in large EGF-induced lamellipodia whereas actin cytoskeleton was organised in small tips that colocalised with FAK. This pattern was observed at early time points (15 min) with a strong FAK tyrosine phosphorylation and with an increase in mitogen-activated protein kinase activity (5-15 min) as measured by immunoprecipitation and immunoblotting. We conclude that at early time points of cell adhesion and spreading, EGF exerted an inside-out regulation of alpha2beta1 integrin in HT29-D4 cells. This regulation seemed to be mediated by EGF-dependent FAK phosphorylation entailing an increase in integrin activation and their recruitment in numerous focal complexes. Furthermore after activation, FAK induced aggregation of actin-associated proteins (paxillin, vinculin and other tyrosine phosphorylated proteins) in focal complexes, leading to organisation of actin cytoskeleton that is involved in lamellipodia formation. Finally, activated alpha2beta1 integrins intervened in all these processes clustered in small focal complexes but not in focal adhesions.  相似文献   

18.
Here we identified several new integrin/TM4 protein complexes on the cell surface. By immunoprecipitation using nonstringent conditions, and by reciprocal immunoprecipitation, we found that alpha 3 beta 1 and alpha 6 beta 1 integrins but not alpha 2 beta 1, alpha 5 beta 1, or alpha 6 beta 4 integrins associated with CD9 and CD81 in alpha 3 beta 1/CD81, alpha 3 beta 1/CD9, alpha 6 beta 1/CD81, and alpha 6 beta 1/CD9 complexes. Also, cross-linking experiments established that alpha 3 beta 1/CD81, alpha 3 beta 1/CD9, and alpha 3 beta 1/CD63 associations occur on the surface of intact cells and suggested that a critical interaction site is located within extracellular domains. Cross-linking in conjunction with reimmunoprecipitation indicated that larger multi-component alpha 3 beta 1/TM4/TM4 complexes (alpha 3 beta 1/CD9/CD63, alpha 3 beta 1/CD81/CD63, and alpha 3 beta 1/CD9/CD81) also could be detected on the cell surface. Immunofluorescent staining showed redistribution of alpha 3 beta 1/TM4 complexes toward the periphery of cells plated on various extracellular matrix substrates and also showed that these complexes were localized in cell footprints. Staining of human tissues yielded additional results consistent with co-localization of alpha 3 beta 1 and CD9, CD63, and CD81 proteins. In conclusion we suggest that the prevalence of integrin/TM4 complexes in diverse cellular environments is indicative of their general physiological importance.  相似文献   

19.
Heparin-binding epidermal growth factor (HB-EGF) is a recently identified member of the EGF growth factor family found to be expressed in the uterus of both mouse and human at the time of implantation. In the present study, we investigated the expression patterns of HB-EGF in normal cycling endometrium and compared its expression with the fertility-associated endometrial epithelial biomarkers alpha(v)beta(3) integrin, leukemia inhibitory factor (LIF) and homeobox gene, HOXA-10. RNase protection assay (RPA) using RNA made from endometrium collected from different phases of the menstrual cycle demonstrated increased HB-EGF expression during the mid-secretory phase, a pattern similar to, but slightly preceding the expression of alpha(v)beta(3) integrin and HOXA-10. In vitro studies demonstrated stimulation of HB-EGF expression by estradiol-17beta (E(2)) and progesterone (P(4)) alone or in combination in stromal cells. Combined treatment with E(2) + P(4) was, however, required to stimulate epithelial HB-EGF expression. In vitro experiments demonstrated the ability of HB-EGF to stimulate epithelial expression of the key endometrial proteins including LIF, HOXA-10, and the beta(3) integrin subunit. Each has previously been demonstrated to be an important epithelial biomarker expressed during the implantation window. In addition, conditioned media from endometrial stromal cells treated with E(2) + P(4) + relaxin mimicked the stimulatory effect of HB-EGF on epithelial expression of the beta(3) integrin subunit. The stimulatory effect of the stromal-conditioned medium was blocked by antibodies that neutralize a known receptor for HB-EGF. These data suggest that uterine receptivity may be regulated in part by the stromal-derived HB-EGF.  相似文献   

20.
Binding of urokinase-type plasminogen activator (uPA) to its receptor (uPAR/CD87) regulates cellular adhesion, migration, and tumor cell invasion. However, it is unclear how glycosyl phosphatidylinositol-anchored uPAR, which lacks a transmembrane structure, mediates signal transduction. It has been proposed that uPAR forms cis-interactions with integrins as an associated protein and thereby transduces proliferative or migratory signals to cells upon binding of uPA. We provide evidence that soluble uPAR (suPAR) specifically binds to integrins alpha4beta1, alpha6beta1, alpha9beta1, and alphavbeta3 on Chinese hamster ovary cells in a cation-dependent manner. Anti-integrin and anti-uPAR antibodies effectively block binding of suPAR to these integrins. Binding of suPAR to alpha4beta1 and alphavbeta3 is blocked by known soluble ligands and by the integrin mutations that inhibit ligand binding. These results suggest that uPAR is an integrin ligand rather than, or in addition to, an integrin-associated protein. In addition, we demonstrate that glycosyl phosphatidylinositol-anchored uPAR on the cell surface specifically binds to integrins on the apposing cells, suggesting that uPAR-integrin interaction may mediate cell-cell interaction (trans-interaction). These previously unrecognized uPAR-integrin interactions may allow uPAR to transduce signals through the engaged integrin without a hypothetical transmembrane adapter and may provide a potential therapeutic target for control of inflammation and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号