首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 274 毫秒
1.
Yoo CG  Nghiem NP  Hicks KB  Kim TH 《Bioresource technology》2011,102(21):10028-10034
A simple pretreatment method using anhydrous ammonia was developed to minimize water and ammonia inputs for cellulosic ethanol production, termed the low moisture anhydrous ammonia (LMAA) pretreatment. In this method, corn stover with 30–70% moisture was contacted with anhydrous ammonia in a reactor under nearly ambient conditions. After the ammoniation step, biomass was subjected to a simple pretreatment step at moderate temperatures (40–120 °C) for 48–144 h. Pretreated biomass was saccharified and fermented without an additional washing step. With 3% glucan loading of LMAA-treated corn stover under best treatment conditions (0.1 g-ammonia + 1.0 g-water per g biomass, 80 °C, and 84 h), simultaneous saccharification and cofermentation test resulted in 24.9 g/l (89% of theoretical ethanol yield based on glucan + xylan in corn stover).  相似文献   

2.
Jung YH  Kim IJ  Kim JJ  Oh KK  Han JI  Choi IG  Kim KH 《Bioresource technology》2011,102(15):7307-7312
Oil palm trunks are a possible lignocellulosic source for ethanol production. Low enzymatic digestibility of this type of material (11.9% of the theoretical glucose yield) makes pretreatment necessary. An enzymatic digestibility of 95.4% with insoluble solids recovery of 49.8% was achieved after soaking shredded oil palm trunks in ammonia under optimum conditions (80 °C, 1:12 solid-to-liquid ratio, 8 h and 7% (w/w) ammonia solution). Treatment with 60 FPU of commercial cellulase (Accellerase 1000) per gram of glucan and fermentation with Saccharomyces cerevisiae D5A resulted in an ethanol concentration of 13.3 g/L and an ethanol yield of 78.3% (based on the theoretical maximum) after 96 h. These results indicate that oil palm trunks are a biomass feedstock that can be used for bioethanol production.  相似文献   

3.
Rice straw was pretreated using aqueous-ammonia solution at moderate temperatures to enable production of the maximum amount of fermentable sugars from enzymatic hydrolysis. The effects of various operating variables including pretreatment temperature, pretreatment time, the concentration of ammonia and the solid-to-liquid ratio on the degree of lignin removal and the enzymatic digestibility were optimized using response surface methodology. The optimal reaction conditions, which resulted in an enzymatic digestibility of 71.1%, were found to be 69 °C, 10 h and an ammonia concentration of 21% (w/w). The effects of different commercial cellulases and the additional effect of a non-cellulolytic enzyme, xylanase, were also evaluated. Additionally, simultaneous saccharification and fermentation was conducted with rice straw to assess the ethanol production yield and productivity.  相似文献   

4.
In this study, we determined the effect of organosolv pretreatment on herbaceous biomasses corn stover and wheat straw, by using high-concentration ethanol as the solvent. A high-concentration of ethanol allows for the easy reuse and recycling of the solvent. First, we tested the effects of ethanol pretreatments at 60 and 99.5% (w/w) and found that highest solvent concentration resulted in low glucose digestibility. The maximum enzymatic glucose digestibility with 60% ethanol was 92.6% at 190°C for 120 min (using corn stover) and 86.9% at 190°C for 120 min (using wheat straw). In contrast, the digestion rates with 99.5% ethanol were 68.8 and 77.4% under the same conditions, respectively, indicating that there is a limit to the use of high-concentration ethanol as the solvent. To overcome this limitation, we applied a mechanical pretreatment step before the chemical pretreatment. Subsequently, glucose digestibility increased significantly to 93.1% with 99.5% ethanol as the solvent. Additionally the enzymatic digestibility of mechanically pretreated corn stover was higher than that of non-pretreated corn stover by about 40%. Taken together, these results confirm the efficacy of using high-concentration ethanol as a solvent for organosolv pretreatment when done in conjunction with mechanical pretreatment.  相似文献   

5.
Barley hull, a lignocellulosic biomass, was pretreated using aqueous ammonia, to be converted into ethanol. Barley hull was soaked in 15 and 30 wt.% aqueous ammonia at 30, 60, and 75 °C for between 12 h and 11 weeks. This pretreatment method has been known as “soaking in aqueous ammonia” (SAA). Among the tested conditions, the best pretreatment conditions observed were 75 °C, 48 h, 15 wt.% aqueous ammonia and 1:12 of solid:liquid ratio resulting in saccharification yields of 83% for glucan and 63% for xylan with 15 FPU/g-glucan enzyme loading. Pretreatment using 15 wt.% ammonia for 24–72 h at 75 °C removed 50–66% of the original lignin from the solids while it retained 65–76% of the xylan without any glucan loss.

Addition of xylanase along with cellulase resulted in synergetic effect on ethanol production in SSCF (simultaneous saccharification and co-fermentation) using SAA-treated barley hull and recombinant E. coli (KO11). With 3% w/v glucan loading and 4 mL of xylanase enzyme loadings, the SSCF of the SAA treated barley hull resulted 24.1 g/L ethanol concentration at 15 FPU cellulase/g-glucan loading, which corresponds to 89.4% of the maximum theoretical yield based on glucan and xylan.

SEM results indicated that SAA treatment increased surface area and the pore size. It is postulated that these physical changes enhance the enzymatic digestibility in the SAA treated barley hull.  相似文献   


6.
Pretreatment of corn stover in 0.5% sulfuric acid at 160 °C for 40 min realized a maximum monomeric plus oligomeric xylose yield of 93.1% compared to a maximum of only 71.5% for hydrothermal (no added mineral acid) pretreatment at 180 °C for 30 min. To explain differences in dilute acid and hydrothermal yields, a fast reacting xylan fraction (0.0889) was assumed to be able to directly form monomeric xylose while a slow reacting portion (0.9111) must first form oligomers during hydrothermal pretreatment. Two reactions to oligomers were proposed: reversible from fast reacting xylan and irreversible from slow reacting xylan. A kinetic model and its analytical solution simulated xylan removal data well for dilute acid and hydrothermal pretreatment of corn stover. These results suggested that autocatalytic reactions from xylan to furfural in hydrothermal pretreatment were controlled by oligomeric xylose decomposition, while acid-catalytic reactions in dilute acid pretreatment were controlled by monomeric xylose decomposition.  相似文献   

7.
Hexose and pentose sugars from phosphoric acid pretreated sugarcane bagasse were co-fermented to ethanol in a single vessel (SScF), eliminating process steps for solid-liquid separation and sugar cleanup. An initial liquefaction step (L) with cellulase was included to improve mixing and saccharification (L + SScF), analogous to a corn ethanol process. Fermentation was enabled by the development of a hydrolysate-resistant mutant of Escherichia coli LY180, designated MM160. Strain MM160 was more resistant than the parent to inhibitors (furfural, 5-hydroxymethylfurfural, and acetate) formed during pretreatment. Bagasse slurries containing 10% and 14% dry weight (fiber plus solubles) were tested using pretreatment temperatures of 160-190 °C (1% phosphoric acid, 10 min). Enzymatic saccharification and inhibitor production both increased with pretreatment temperature. The highest titer (30 g/L ethanol) and yield (0.21 g ethanol/g bagasse dry weight) were obtained after incubation for 122 h using 14% dry weight slurries of pretreated bagasse (180 °C).  相似文献   

8.
Supercritical CO2 (SC-CO2), a green solvent suitable for a mobile lignocellulosic biomass processor, was used to pretreat corn stover and switchgrass at various temperatures and pressures. The CO2 pressure was released as quickly as possible by opening a quick release valve during the pretreatment. The biomass was hydrolyzed after pretreatment using cellulase combined with β-glucosidase. The hydrolysate was analyzed for the amount of glucose released. Glucose yields from corn stover samples pretreated with SC-CO2 were higher than the untreated sample’s 12% glucose yield (12 g/100 g dry biomass) and the highest glucose yield of 30% was achieved with SC-CO2 pretreatment at 3500 psi and 150 °C for 60 min. The pretreatment method showed very limited improvement (14% vs. 12%) in glucose yield for switchgrass. X-ray diffraction results indicated no change in crystallinity of the SC-CO2 treated corn stover when compared to the untreated, while SEM images showed an increase in surface area.  相似文献   

9.
Wan C  Li Y 《Bioresource technology》2011,102(16):7507-7512
Different types of feedstocks, including corn stover, wheat straw, soybean straw, switchgrass, and hardwood, were tested to evaluate the effectiveness of fungal pretreatment by Ceriporiopsis subvermispora. After 18-d pretreatment, corn stover, switchgrass, and hardwood were effectively delignified by the fungus through manganese peroxidase and laccase. Correspondingly, glucose yields during enzymatic hydrolysis reached 56.50%, 37.15%, and 24.21%, respectively, which were a 2 to 3-fold increase over those of the raw materials. A further 10-30% increase in glucose yields was observed when pretreatment time extended to 35 d. In contrast, cellulose digestibility of wheat straw and soybean straw was not significantly improved by fungal pretreatment. When external carbon sources and enzyme inducers were added during fungal pretreatment of wheat straw and soybean straw, only glucose and malt extract addition improved cellulose digestibility of wheat straw. The cellulose digestibility of soybean straw was not improved.  相似文献   

10.
A new method of wet state (WS) sodium hydroxide (NaOH) was advanced to pretreat corn stover for enhancing biogas production. The results showed that 88% moisture content, 3-day treatment time and ambient temperature (20 °C) was appropriate for WS NaOH pretreatment. The NaOH dose of 2% and the loading rate of 65 g/L were found to be optimal in terms of 72.9% more total biogas production, 73.4% more methane yield, and 34.6% shorter technical digestion time, as compared to the untreated one. WS pretreatment used 86% shorter treatment time and 66.7% less NaOH dose than solid state one. The analyses of chemical compositions and chemical structures showed that 9.3–19.1% reduction of the contents of total Lignin, cellulose, and hemicellulose (LCH), and 27.1–77.1% increase of hot-water extractives contributed to the enhancement of biogas production. WS NaOH pretreatment could be one of cost-effective methods for high efficient biological conversion of corn stover into bioenergy.  相似文献   

11.
Fast pyrolysis of bagasse pretreated by sulfuric acid was conducted in a fixed bed reactor to prepare levoglucosenone (LGO), a very important anhydrosugar for organic synthesis. The liquid yield and LGO yield were studied at temperatures from 240 to 350 °C and sulfuric acid loadings from 0.92 to 7.10 wt.%. An optimal LGO yield of 7.58 wt.% was obtained at 270 °C with a sulfuric acid pretreatment concentration of 0.05 M (corresponding to 4.28 wt.% sulfuric acid loading). For comparison, microcrystalline cellulose pretreated by 0.05 M sulfuric acid solution was pyrolyzed at temperature from 270 °C to 320 °C, and bagasse loaded with 3-5 wt.% phosphoric acid was pyrolyzed at temperature from 270 °C to 350 °C. The highest yield of LGO from bagasse was 30% higher than that from microcrystalline cellulose, and treatment with sulfuric acid allowed a 21% higher yield than treatment with phosphoric acid.  相似文献   

12.
Fu D  Mazza G 《Bioresource technology》2011,102(17):8003-8010
Pretreatment of wheat straw with the aqueous ionic liquid, 1-ethyl-3-methylimidazolium acetate, was optimized to maximize fermentable sugars recovery. The optimization process employed a central composite design, where the investigated variables were temperature (130-170 °C), time (0.5-5.5 h) and ionic liquid concentration (0-100%). All the tested variables were identified to have significant effects (p < 0.05) on fermentable sugars recovery. The optimum pretreatment conditions were 158 °C, an ionic liquid concentration of 49.5% (w/w), and a duration of 3.6 h. Cellulose and xylan digestibility generally increased with increasing temperature, time and ionic liquid concentration; but, the carbohydrates recovered in the washed solids following pretreatment decreased. Thus, the final optimum conditions for maximizing fermentable sugars from the starting biomass were a compromise between greater digestibility and minimal carbohydrates loss during pretreatment.  相似文献   

13.
A cycle spray flow-through reactor was designed and used to pretreat corn stover in dilute sulfuric acid medium. The dilute sulfuric acid cycle spray flow-through (DCF) process enhanced xylose sugar yields and cellulose digestibility while increasing the removal of lignin. Within the DCF system, the xylose sugar yields of 90–93% could be achieved for corn stover pretreated with 2% (w/v) dilute sulfuric acid at 95 °C during the optimal reaction time (90 min). The remaining solid residue exhibited enzymatic digestibility of 90–95% with cellulase loading of 60 FPU/g glucan that was due to the effective lignin removal (70–75%) in this process. Compared with flow-through and compress-hot water pretreatment process, the DCF method produces a higher sugar concentration and higher xylose monomer yield. The novel DCF process provides a feasible approach for lignocellulosic material pretreatment.  相似文献   

14.
This study is the first one ever to report on the use of high fiber sugarcane (a.k.a. energy cane) bagasse as feedstock for the production of cellulosic ethanol. Energy cane bagasse was pretreated with ammonium hydroxide (28% v/v solution), and water at a ratio of 1:0.5:8 at 160 °C for 1 h under 0.9-1.1 MPa. Approximately, 55% lignin, 30% hemicellulose, 9% cellulose, and 6% other (e.g., ash, proteins) were removed during the process. The maximum glucan conversion of dilute ammonia treated energy cane bagasse by cellulases was 87% with an ethanol yield (glucose only) of 23 g ethanol/100 g dry biomass. The enzymatic digestibility was related to the removal of lignin and hemicellulose, perhaps due to increased surface area and porosity resulting in the deformation and swelling of exposed fibers as shown in the SEM pictures.  相似文献   

15.
Ionic liquid (IL) and ammonia fiber expansion (AFEX) pretreatments were studied to develop the first direct side-by-side comparative assessment on their respective impacts on biomass structure, composition, process mass balance, and enzymatic saccharification efficiency. AFEX pretreatment completely preserves plant carbohydrates, whereas IL pretreatment extracts 76% of hemicellulose. In contrast to AFEX, the native crystal structure of the recovered corn stover from IL pretreatment was significantly disrupted. For both techniques, more than 70% of the theoretical sugar yield was attained after 48 h of hydrolysis using commercial enzyme cocktails. IL pretreatment requires less enzyme loading and a shorter hydrolysis time to reach 90% yields. Hemicellulase addition led to significant improvements in the yields of glucose and xylose for AFEX pretreated corn stover, but not for IL pretreated stover. These results provide new insights into the mechanisms of IL and AFEX pretreatment, as well as the advantages and disadvantages of each.  相似文献   

16.
The effect of corn stover pretreatment on glucose quantitation in hydrolysate using Raman spectroscopy is evaluated. Dilute sulfuric-acid pretreatment results in a 20 mg mL−1 glucose limit of detection in hydrolysate. Soaking in aqueous ammonia pretreatment produces a 4 mg mL−1 limit of detection. Water, ethanol or hexane extraction of corn stover reduces the spectral background that limits glucose detection in dilute acid hydrolysate. Additionally, a Raman spectroscopy multi-peak fitting method is presented to simultaneously measure glucose and xylose concentration in hydrolysate. This method yields a 6.1% average relative standard error at total saccharide concentrations above 45 mg mL−1. When only cellulase is present, glucose and xylose yield were measured by Raman spectroscopy to be 32 ± 4 and 7.0 ± 0.8 mg mL−1, respectively. When both cellulase and hemicellulase were present, xylose yield increased to 18.0 ± 0.5 mg mL−1. Enzymatic or colorimetric assays confirmed the validity of the Raman spectroscopy results.  相似文献   

17.

Background  

Corn stover composition changes considerably throughout the growing season and also varies between the various fractions of the plant. These differences can impact optimal pretreatment conditions, enzymatic digestibility and maximum achievable sugar yields in the process of converting lignocellulosics to ethanol. The goal of this project was to determine which combination of corn stover fractions provides the most benefit to the biorefinery in terms of sugar yields and to determine the preferential order in which fractions should be harvested. Ammonia fiber expansion (AFEX) pretreatment, followed by enzymatic hydrolysis, was performed on early and late harvest corn stover fractions (stem, leaf, husk and cob). Sugar yields were used to optimize scenarios for the selective harvest of corn stover assuming 70% or 30% collection of the total available stover.  相似文献   

18.
Soybean hulls were evaluated as a resource for production of ethanol by the simultaneous saccharification and fermentation (SSF) process, and no pretreatment of the hulls was found to be needed to realize high ethanol yields with Saccharomyces cerevisiae D5A. The impact of cellulase, β-glucosidase and pectinase dosages were determined at a 15% biomass loading, and ethanol concentrations of 25–30 g/L were routinely obtained, while under these conditions corn stover, wheat straw, and switchgrass produced 3–4 times lower ethanol yields. Removal of carbohydrates also concentrated the hull protein to over 25% w/w from the original roughly 10%. Analysis of the soybean hulls before and after fermentation showed similar amino acid profiles including an increase in the essential amino acids lysine and threonine in the residues. Thus, eliminating pretreatment should assure that the protein in the hulls is preserved, and conversion of the carbohydrates to ethanol with high yields produces a more concentrated and valuable co-product in addition to ethanol. The resulting upgraded feed product from soybean hulls would likely to be acceptable to monogastric as well as bovine livestock.  相似文献   

19.
Low temperature and long residence time pretreatments have been proposed as an alternative to conventional pretreatments within a centralized biorefinery, allowing for a decentralized pretreatment without high energy costs. Ammonia fiber expansion (AFEX?) pretreatment may be uniquely suitable for decentralized pretreatment, and this study considers the possibility of decreasing the temperature in AFEX pretreatment of corn stover. AFEX pretreatment at 40°C and 8?h produced comparable sugar and ethanol yields as conventional AFEX pretreatment at high temperatures and short residence time during subsequent hydrolysis and fermentation. Increasing the ammonia loading at these temperatures tends to increase digestibility, although the moisture content of the reaction has little effect. This study suggests a greater flexibility in AFEX pretreatment conditions than previously thought, allowing for an alternative approach for decentralized facilities if the economic conditions are appropriate.  相似文献   

20.
Wan C  Zhou Y  Li Y 《Bioresource technology》2011,102(10):6254-6259
Soybean straw was pretreated with either liquid hot water (LHW) (170-210 °C for 3-10 min) or alkaline soaking (4-40 g NaOH/100 g dry straw) at room temperature to evaluate the effects on cellulose digestibility. Nearly 100% cellulose was recovered in pretreated solids for both pretreatment methods. For LHW pretreatment, xylan dissolution from the raw material increased with pretreatment temperature and time. Cellulose digestibility was correlated with xylan dissolution. A maximal glucose yield of 70.76%, corresponding to 80% xylan removal, was obtained with soybean straw pretreated at 210 °C for 10 min. NaOH soaking at ambient conditions removed xylan up to 46.37% and the subsequent glucose yield of pretreated solids reached up to 64.55%. Our results indicated LHW pretreatment was more effective than NaOH soaking for improving cellulose digestibility of soybean straw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号