首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reversed-phase liquid chromatography method involving pre-column derivatisation with fluorescein isothiocyanate (FITC, isomer I) for determination of tobramycin in urine samples after inhalation has been developed. FITC reacts with the primary amino groups of tobramycin and other aminoglycosides under mild conditions to form a highly fluorescent and stable derivative. The chromatographic separation was carried out on a Phenomenex Luna C(18) column at ambient temperature using a constant flow rate of 1 ml/min and mobile phase of acetonitrile-methanol-glacial acetic acid-water (420:60:5:515, v/v/v/v). The tobramycin-FITC derivative was monitored by fluorescent detection at an excitation wavelength 490 nm and emission wavelength 518 nm. The linearity of response for tobramycin was demonstrated at 11 different concentrations of tobramycin extracted from spiked urine, ranging from 0.25 to 20 microg/ml. Tobramycin and neomycin were extracted from spiked urine by a solid phase extraction clean-up procedure on a carboxypropyl-bonded phase (CBA) weak cation-exchange cartridge, and the relative recovery was >99% (n=5). The limit of detection (LOD) and limit of quantitation (LOQ) in urine were 70 and 250 ng/ml, respectively. The method had an accuracy of <0.2%, and intra-day and inter-day precision (in term of %coefficient of variation) were <4.89% and 8.25%, respectively. This assay was used for urinary pharmacokinetic studies to identify the relative lung deposition of tobramycin post-inhalation of tobramycin inhaled solution 300 mg/5 ml (TOBI) by different nebuliser systems.  相似文献   

2.
An effective method based on solid-phase extraction (SPE) and capillary electrophoresis (CE) for the determination of kanamycin in human serum was developed and validated. Off-line SPE was employed for the isolation of kanamycin from serum on a carboxypropyl-bonded phase (CBA) weak cation-exchange cartridge. A mixture of 0.2 M borate (pH 10.5)-methanol (50:50, v/v) was used as analyte eluting solvent. After pre-capillary derivatization with o-phthalaldehyde/mercaptoacetic acid reagent, the sample was analyzed by CE with a separation buffer of 30 mM borax, pH 10.0, containing 16% (v/v) methanol. A linear response over the concentration range 5-40 microgram/ml was obtained with a detection limit of 2 microgram/ml. Intra-day and inter-day precision were 6.2 and 10.3% RSD, respectively. Recoveries of approximately 90% were found. For the determination of lower levels of kanamycin (<5 microgram/ml), NH(4)OH (25%, w/v)-methanol (30:70, v/v) was used for analyte elution. After evaporation, reconstitution and derivatization, the sample was analyzed by on-line field-amplified sample stacking (FASS) CE. Good linearity in the concentration range 0.4-5 microgram/ml was obtained with a detection limit of 0.1 microgram/ml. Intra-day and inter-day RSD were 3.4 and 11.2%, respectively. Recoveries of approximately 60% were found. The method was successfully applied to the analysis of kanamycin in sera of tuberculosis patients at peak level and trough level concentrations.  相似文献   

3.
An high performance liquid chromatography (HPLC)-UV method for the simultaneous determination of the free forms of mycophenolic acid (MPA) and its phenol glucuronide (MPAG) in human serum samples was developed for the first time. Chromatographic separation was performed on octadecylsilane based stationary phase in combination with a mobile phase of methanol/buffered tetrabutylammonium (TBA) salt mixture. Sample pretreatment consisted of an ultrafiltration step followed by clean-up/enrichment on a C(18) solid-phase extraction (SPE) cartridge. Average recoveries of (99.7 +/- 0.2)% and (64.1 +/- 6.9)% for free MPA and MPAG, respectively, were estimated in the concentration range from 0.5 to 10 microg/ml. The within-day and between-days coefficients of variation were 0.4 and 0.8% for free MPA (0.1 microg/ml spiking level) and 0.8 and 1.6% for free MPAG (5 microg/ml spiking level), respectively. The linear ranges for free MPA and MPAG were 0.06-1 and 0.2-10microg/ml, respectively. Detection limits of 4 and 17 ng/ml for free MPA and MPAG were estimated in spiked serum. The same HPLC method was also capable of a simultaneous determination of the total concentration of MPA and MPAG when coupled to a proper sample pretreatment step. The potential of the method is demonstrated by excretion kinetics measurement in serum of patients receiving MMF therapy.  相似文献   

4.
Two simple, sensitive and reproducible methods for determination of total mycophenolic acid (MPA) and its glucuronide metabolite (MPAG) as well as unbound MPA (fMPA) was developed by the use of HPLC-UV and LC-MS/MS methods, respectively. For the total MPA/MPAG method, the analytes were extracted using Isolute C(2) solid-phase extraction (SPE) cartridges and analyzed at 254 nm over a Zorbax Rx C(8) column (150 mm x 4.6 mm, 5 microm). The mobile phase was a gradient mixture of methanol and water (containing 0.1% (v/v) phosphoric acid). The total run time was 18 min and the extraction recovery was 77% for MPA and 84% for MPAG. The method was precise and accurate with a lower limit of quantification (LLOQ) of 0.5 mg/l for MPA and 5.0 mg/l for MPAG. For the fMPA method, plasma was subjected to ultrafiltration followed by SPE using C(18) cartridges. Analytical column was the same as the HPLC-UV method and the mobile phase was a gradient composition of methanol:0.05% formic acid with a flow rate of 0.6 ml/min for the first 3 min and 0.7 ml for the last 4 min. The chromatographic method separated MPA from its metabolites MPAG and Acyl-MPAG. Mass transitions in negative ionization mode for MPA and the internal standard, indomethacin were m/z: 319-->190.9 and m/z: 356-->312.2, respectively. The assay was linear in the concentration range of 1-1000 microg/l for fMPA with a LLOQ of 1 microg/l and an accuracy of >95%. The two methods reported have an adequate degree of robustness and dynamic concentration range for the measurement of MPA, MPAG and fMPA for therapeutic drug monitoring purposes or pharmacokinetics investigations.  相似文献   

5.
A method for determining two nerve gas hydrolysis products, alkyl (ethyl, isopropyl and pinacolyl) methylphosphonates (RMPAs) and methylphosphonate (MPA), separately, in human plasma and urine samples was developed, using two different deproteinization procedures. In the first method, the plasma sample was deproteinized by adding a fourfold volume of acetonitrile, followed by passing the supernatant through a Bond Elut strong anion-exchange (SAX) cartridge [fluoride (F(-)) form]. After washing the cartridge with water and methanol, the RMPAs were eluted with a 3% (v/v) solution of methanolic ammonia, and analyzed by gas chromatography-mass spectrometry (GC-MS) after tert.-butyldimethylsilyl (TBDMS) derivatization. The detection yields of TBDMS derivatives of RMPAs were in the range of 69 to 99%, in contrast to the poor yields obtained when only acetonitrile deproteinization pretreatment was used (yield: 13-26%). The yield of the TBDMS derivative of MPA was very low (8%), however. In a the second method, a plasma sample was deproteinized by adding a half volume of 10% (w/v) trichloroacetic acid (TCA), and the resulting supernatant was extracted with diethyl ether to remove TCA, the aqueous fraction was then passed through a Bond Elut SAX cartridge. After washing the cartridge with 0.5% (v/v) methanolic ammonia, MPA was eluted with 3% (v/v) methanolic ammonia. The detection yield of the TBDMS derivative of MPA was nearly quantitative. A pretreatment method using SAX solid-phase extraction was also developed for the cleanup of a urine sample, in which the sample was directly applied to a Bond Elut SAX cartridge, followed by elution of the RMPAs and MPA with 3% (v/v) methanolic ammonia, which were then derivatized and analyzed by GC-MS. The detection yields of TBDMS derivatives of RMPAs and MPA were in the range of 61 to 97%.  相似文献   

6.
A system of an automatic sample preparation procedure followed by on-line injection of the sample extract into a gas chromatograph-mass spectrometer (GC–MS) was developed for the simultaneous analysis of seven barbiturates in human serum. A sample clean-up was performed by a solid-phase extraction (SPE) on a C18 disposable cartridge. A SPE cartridge was preconditioned with methanol and 0.1 M phosphate buffer. After loading 1.5 ml of a diluted serum sample into the SPE cartridge, the cartridge was washed with 2.5 ml of methanol–water (1:9, v/v). Barbiturates were eluted with 1.0 ml of chloroform–isopropanol (3:1, v/v) from the cartridge. The eluate (1 μl) was injected into the GC–MS. The calibration curves, using an internal standard method, demonstrated a good linearity throughout the concentration range from 0.1 to 10 μg ml−1 for all barbiturates extracted. The proposed method was applied to 27 clinical serum samples from three patients who were administrated secobarbital.  相似文献   

7.
A solid phase microextraction (SPME)-HPLC-UV method for the determination of the immunosuppressant mycophenolic acid (MPA) in human serum samples was developed for the first time. The procedure, that employed a carbowax/templated resin (Carbowax/TPR-100) as fiber coating, required a very simple sample pretreatment, an isocratic elution, and provides an highly selective extraction. The linear range was 0.2-100 microg x ml(-1). Recovery was practically unchanged (63+/- 4%) passing from 0.2 to 100 microg x ml(-1) level. Within-day and between-days coefficient of variation ranged from 5.9 to 6.5% and from 8.8 to 9.2%, respectively. A detection limit of 0.05 microg x ml(-1) was estimated in spiked serum. The method was successfully applied to the determination of MPA in serum of a patient under mycophenolate mophetil ester (MMF) therapy, as demonstrated by the relevant concentration-time profiles.  相似文献   

8.
A high-performance liquid chromatographic method for the quantitation of alendronate as the 9-fluorenylmethyl derivative (FMOC) in human urine is presented. The sample preparation involved coprecipitation with calcium phosphate, separation on diethylamine (DEA) solid-phase extraction (SPE) cartridge and derivatization with 9-fluorenylmethyl chloroformate in citrate buffer pH 11.9. Liquid chromatography was performed on an octadecylsilica column (150 x 4.6 mm, 3 microm particles); a gradient method with starting mobile phase acetonitrile-methanol-citrate/pyrophosphate buffer (20:15:65 v/v) was employed. The total run time was 21 min. The fluorimetric detector was operated at the following wavelengths: 260 nm (excitation) and 310 nm (emission). Pamdronate was used as the internal standard. The limit of quantitation was 3.5 ng/ml using 5 ml of urine. Within-day and between-day precision expressed by relative standard deviation was less than 8% and inaccuracy did not exceed 9%. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

9.
A molecularly imprinted solid-phase extraction coupled with high performance liquid chromatography (MISPE-HPLC) method was developed for rapid screening of mycophenolic acid (MPA) in human plasma. MPA imprinted polymers (MPA-MIP) were synthesized and then tested for their performance both in organic and in aqueous solution. MPA was selectively trapped and preconcentrated on the MPA-MIP sorbent using different loading and washing conditions. The good selectivity of MPA-MIP enabled further clean-up of the interfering components in human plasma. For the proposed MISPE-HPLC method, the linearity between responses (peak area) and concentration was found over the range of 1-100microg/ml with a linear regression coefficient (R(2)) of 0.9989. The limit of detection (LOD) and theoretical limit of quantification (LOQ) for MPA in plasma were 0.10 and 0.32microg/ml, respectively. The precisions were 7.3, 3.5 and 4.7% RSD for intra-day assay and 9.2, 4.1 and 5.5% RSD for inter-day reproducibility, respectively, at three concentration levels of MPA in spiked plasma (1, 10 and 100microg/ml). Both recoveries for the extraction (more than 74%) and for the analytical method (more than 87%) were acceptable for screening MPA in plasma samples. Twelve-hour pharmacokinetic profile of MPA for a renal transplant recipient receiving chronic oral dosing of 500mg mycophenolate mofetil (MMF) was investigated. Results indicated that this method could be applied for therapeutic drug monitoring of mycophenolic acid in patient plasma.  相似文献   

10.
A system for an automatic sample preparation procedure followed by on-line injection of the sample extract into a gas chromatography–mass spectrometry (GC–MS) system was developed for the simultaneous analysis of seven barbiturates in human urine. Sample clean-up was performed by a solid-phase extraction (SPE) on a C18 disposable cartridge. A SPE cartridge was preconditioned with methanol and 0.1 M phosphate buffer. After loading a 1.5 ml volume of a urine sample into the SPE cartridge, the cartridge was washed with 2.5 ml of methanol–water (1:9, v/v). Barbiturates were eluted with 1.0 ml of chloroform–isopropanol (3:1, v/v) from the cartridge. The eluate (1 μl) was injected into a GC–MS system. The calibration curves, using an internal standard method, demonstrated a good linearity throughout the concentration range from 0.02 to 10 μg/ml for all barbiturates extracted. The proposed method was applied to several clinical cases. The total analysis time for 20 samples was approximately 14 h.  相似文献   

11.
A sensitive high-performance liquid chromatography (HPLC) method using UV detection for the determination of gabapentin in human plasma has been developed. In this method, gabapentin was extracted from human plasma with a reversed-phase solid-phase extraction (SPE) cartridge followed by derivatization with phenylisothiocyanate. Analysis was achieved by using a HPLC system that was equipped with a UV detector. The quantitation limit of gabapentin in human plasma was 0.03 microg/ml. The method is sensitive with excellent selectivity and reproducibility and it has been applied to a bioequivalence clinical study with great success.  相似文献   

12.
A high-performance liquid chromatography (HPLC) method was developed for quantification of both isomers of the thioxanthene neuroleptic flupentixol and of the butyrophenone derivative haloperidol in human serum. After extraction with diethyl ether–n-heptane (50:50, v/v), an isocratic normal-phase HPLC system with a Hypersil cyanopropyl silica column (250×4.6 mm, 5 μm particle size) was used with ultraviolet detection at 254 nm and elution with a mixture of 920 ml acetonitrile, 110 ml methanol, 30 ml 0.1 M ammonium acetate, and 50 μl triethylamine. The limit of quantitation of 0.5 ng/ml and 0.3 ng/ml for flupentixol and haloperidol, respectively, was sufficient to quantify both compounds in serum after administration of clinically adjusted doses. The suitability of the described method for therapeutic drug monitoring and clinical pharmacokinetic studies was assessed by analysis of more than 100 trough level serum samples.  相似文献   

13.
A liquid chromatography-mass spectrometry (LC-MS) method was developed for the analysis of vancomycin (VCM) in human serum. The method was based on full scan data with extracted ions for the accurate masses of VCM and the atenolol internal standard obtained by Fourier transform MS. VCM was extracted from serum using strong cation exchange (SCX) solid phase extraction (SPE). The method was found to be linear in the range 0.05-10 microg/ml, which was adequate for quantification of VCM in serum samples, with a limit of quantification (LOQ) of 0.005 microg/ml and a limit of detection (LOD) of 0.001 microg/ml. Intra-day precision (n=5) was +/-3.5%, +/-2.5%, +/-0.7% at 0.05, 0.5 and 5 microg/ml, respectively. Inter-day precision (n=5) was +/-7.6%, +/-6.4%, +/-3.9% at 0.05, 0.5 and 5 microg/ml, respectively. The process efficiency for VCM was in the range 89.2-98.1% with the recovery for the atenolol internal standard (IS) being 97.3%. The method was used to determine VCM levels in patients during peri-operative infusion of the drug, which was found to result in drug levels within the required therapeutic window.  相似文献   

14.
The flavonoid compound mangiferin is found in the leaves, stem bark, fruit peels and root of Mangifera indica L. and in many other herbal species with many potential pharmacological properties. We have established an analytical method of mangiferin extracted from M. indica L. bark and Mangifera persiciformis C.Y. Wu et T.L. Ming leaves utilizing CZE. An electrolytic buffer containing 0.05 M borate buffer, pH 7.4 with methanol (1:0.3, v/v) was deemed suitable for mangiferin analysis. An ideal mangiferin electropherogram with a migration time at approximately 10.50 min was obtained. Repeatability tests showed that the R.S.D.s for both intra- and inter-day migration time and peak area for all manigferin sources tested were less than 4%. The linearity range of this method was 5-1000 microg/ml. The detection limit of this method was 1.5 microg/ml. Quantitative analysis of mangiferin was also performed with this method. The accuracy of quantitation at 10, 500 and 1000 microg/ml of control mangiferin were 99.00, 99.38 and 99.14%, respectively (n=10). The repeatability of quantitation (R.S.D.) was below 3%. Our results demonstrated that CZE is a simple and reliable method in mangiferin analysis and more studies are needed to detect other mangiferin resources, such as clinical biological samples, in pharmacology and pharmacokinetic studies.  相似文献   

15.
An analytical method was developed for the determination of enantiomers of dencichine in plasma. Sample extraction from plasma was achieved by a solid-phase extraction (SPE) procedure using a C(18) cartridge, with carbocisteine as the internal standard. Plasma was deproteinized using inorganic acid and derivatizated before the SPE. Chiral separation of dencichine enantiomers was achieved by pre-column derivatization using o-phthaldialdehyde (OPA) and the chiral thiol N-isobutanoyl-L-cysteine (NIBC) to form diastereoisomeric isoindole derivatives that were separable by ODS column using a gradient solvent programme. The column eluent was monitored using mass spectrometry (MS). The conditions of MS detection were optimized, and selected ion monitoring was used to selectively detect D-dencichine and its arrangement isomer. High sensitivity and selectivity were obtained using this method. The limit of detection was determined to be 10 ng/ml for D-dencichine and 8 ng/ml for L-dencichine in plasma. The linearity was demonstrated over a wide range of concentrations, from 0.5 to 50 microg/ml for both enatiomers. The intra- and inter-day precision (C.V.), studied at four concentrations, was less than 7.0%. No interferences from endogenous amino acids and isomers of dencichine were found. The method was suitable for pharmacokinetic studies of dencichine enantiomers.  相似文献   

16.
An new method for the determination of polychlorinated biphenyls (PCBs) in serum samples of up to 1 ml has been developed. The procedure consisted in the solid-phase extraction (SPE) of the analytes on an Oasis cartridge and the subsequent on-line elimination of the fat by directly dropping of the eluate from the SPE cartridge on a multilayer column placed below the cartridge. This configuration allowed minimising of the sample manipulation as well as the time, solvent and sorbent consumption (i.e. complete sample preparation can be accomplished in about 1 h with only 3 ml of toluene and 300 mg of silica). The SPE plus clean-up method developed showed a satisfactory performance for the analysis of PCBs in rat serum samples providing similar recoveries (i.e. range 73-128% for most of the congeners selected) at the different spiking levels investigated (1.25, 0.50 and 0.25 ng/ml). Detection limits using a microelectron capture detector were in the range 0.01-0.30 ng/ml of serum and the relative standard deviations of the complete method better than 18% irrespective of the PCB concentration. The validated method has been applied to the evaluation for the first time of the PCB levels in serum samples of up to 1 ml from individuals of an Egyptian Vulture colony in Spain.  相似文献   

17.
We have developed a sensitive and reproducible high performance liquid chromatography (HPLC)-UV method for the quantification of the p38 MAPkinase inhibitor SB202190 in serum, kidney homogenates and urine samples. Liquid-liquid extraction of SB202190 from the samples was performed using diethylether after adding a derivative of SB202190 as internal standard (I.S.). Chromatography was carried out using a C8 reversed-phase column with an isocratic mobile phase consisting of acetonitrile-water-trifluoroacetic acid (30:70:0.1, v/v/v; pH 2.0). Both drug and I.S. were measured at 350 nm and eluted at 5.0 and 10.6 min, respectively. Peak-height ratios of the drug and the I.S. were used for the quantification of SB202190 from the different matrixes. The limit of quantitation of SB202190 in serum, kidney and urine were 0.25 microg/ml, 1 microg/g and 1 microg/ml, respectively. The average recoveries were 74, 75 and 92% in serum, kidney and urine, respectively. The intra- and inter-day precision (% CV) and accuracy (% bias) were below 15% for all concentrations. The method was successfully applied for a pharmacokinetic study of SB202190 in rats.  相似文献   

18.
Solid-phase extraction (SPE) was directly coupled to mass spectrometry (MS) to assess the feasibility of the system for the rapid determination of prednisolone in serum. A C(18) stationary phase allowed washing of the cartridge with 25% methanol. Elution was performed by switching the methanol percentage from 25% in the washing step to 50% during elution. The high flow-rates during the extraction (5.0 ml/min) combined with ion-trap MS detection resulted in a total analysis time of 4 min. Some tailing of the prednisolone peak was observed. However, the tailing was found acceptable, since by this elution procedure most matrix compounds were prevented from eluting from the cartridge. Some matrix interference was still observed with a triple-quadrupole MS, even in the multiple reaction monitoring mode. This resulted in a detection limit (LOD) of about 10 ng/ml. The matrix interference and the LOD were similar for atmospheric pressure chemical ionisation and atmospheric pressure photo ionisation. Applying an ion-trap MS in the MS-MS mode resulted in cleaner chromatograms. Due to extensive fragmentation of prednisolone, the LOD was not lower than about 5 ng/ml prednisolone in serum, and a limit of quantitation of about 10 ng/ml (relative standard deviation <15%) was observed.  相似文献   

19.
A reversed-phase high-performance liquid chromatographic–electrochemical assay was developed and validated for the quantification of olanzapine in human breast milk. The assay involved a solid-phase extraction (SPE) of olanzapine and its internal standard on a Bond Elut Certify LRC mixed-mode cartridge. After conditioning of the SPE cartridge, human milk (1 ml) was passed through the cartridge. The cartridge was washed with five separate washing steps to remove endogenous compounds, and the analytes were eluted with ethyl acetate–ammonium hydroxide (98:2, v/v) solution. The eluate was evaporated to dryness (gentle stream of nitrogen at 40°C), and the residue was dissolved in mobile phase. The extract was injected onto a YMC basic column (150 mm×4.6 mm I.D., 5 μm particle size) at a flow-rate of 1 ml/min. A mixture of 75 mM phosphate buffer, pH 7.0–acetonitrile–methanol (48:26:26, v/v/v) was used as the mobile phase. Standard curves with a lower limit of quantitation of 0.25 ng/ml of olanzapine were linear (r2≥0.9992) over a range of 0.25–100 ng/ml. Based on the analysis of quality control (QC) samples, the average inter-day accuracy (RE) was 99.0% with an average precision (CV) of 6.64% over the entire range. The stability of olanzapine in human milk was established after three freeze–thaw–heat cycles and storage at −70°C for 10 months. The validated method was used to measure olanzapine concentrations in human milk during a clinical trial.  相似文献   

20.
A new method was developed for the rapid extraction and unequivocal determination of barbital, amobarbital and phenobarbital residues in pork. The isolation of the analytes from pork samples was accomplished by utilizing an accelerated solvent extractor ASE 300. The procedure was automatically carried out in series for fat removing and extraction, respectively with n-hexane and acetonitrile pressurized constantly at 10.3 MPa for 30 min. After evaporation, the extracts were cleaned up on a C(18) solid phase extraction (SPE) cartridge and the barbiturates were eluted with hexane-ethyl acetate (7:3), evaporated on a rotary evaporator and derivatized with CH(3)I. The methylated barbiturates were separated on a HP-5MS capillary column and detected with a mass detector. Electron impact ion source (EI) operating in time program-selected ion monitoring mode (SIM) was used for identification and external standard method was used for quantification. Good linearity was obtained in the range from 0.5 microg/kg to 25 microg/kg. Average recoveries of the three barbiturates spiked in pork ranged from 84.0% to 103.0%, with relative standard deviations from 1.6% to 12%. The limit of detection (LOD) was 0.5 microg/kg for the three barbiturates (S/N>or=3). The quantification limit (LOQ) was 1 microg/kg for the three barbiturates (S/N>or=10).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号