首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bethke PC  Gubler F  Jacobsen JV  Jones RL 《Planta》2004,219(5):847-855
Seeds of Arabidopsis thaliana (L.) Heynh. and grains of barley (Hordeum vulgare L.) were used to characterize the affects of nitric oxide (NO) on seed dormancy. Seeds of the C24 and Col-1 ecotypes of Arabidopsis are almost completely dormant when freshly harvested, but dormancy was broken by stratification for 3 days at 4°C or by imbibition of seeds with the NO donor sodium nitroprusside (SNP). This effect of SNP on dormancy of Arabidopsis seeds was concentration dependent. SNP concentrations as low as 25 M reduced dormancy and stimulated germination, but SNP at 250 M or more impaired seedling development, including root growth, and inhibited germination. Dormancy was also reduced when Arabidopsis seeds were exposed to gasses that are generated by solutions of SNP. Nitrate and nitrite, two other oxides of nitrogen, reduced the dormancy of Arabidopsis seeds, but much higher concentrations of these were required compared to SNP. Furthermore, the kinetics of germination were slower for seeds imbibed with either nitrate or nitrite than for seeds imbibed with SNP. Although seeds imbibed with SNP had reduced dormancy, seeds imbibed with SNP and abscisic acid (ABA) remained strongly dormant. This may indicate that the effects of ABA action on germination are downstream of NO action. The NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3 oxide (cPTIO) strengthened dormancy of unstratified and briefly stratified Arabidopsis seeds. Dormancy of three cultivars of barley was also reduced by SNP. Furthermore, dormancy in barley grain was strengthened by imbibition of grain with cPTIO. The data presented here support the conclusion that NO is a potent dormancy breaking agent for seeds and grains. Experiments with the NO scavenger suggest that NO is an endogenous regulator of seed dormancy.Abbreviations ABA Abscisic acid - cPTIO 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3 oxide - GA Gibberellin - SNP Sodium nitroprusside - NOx Gaseous oxides of nitrogen  相似文献   

2.
干旱胁迫下白刺花种子大小与萌发对策   总被引:1,自引:0,他引:1  
种子大小与种子萌发及其与环境因子的关系是植物种子萌发对策研究中的重要科学问题之一。采用PEG模拟干旱法研究不同干旱胁迫强度(0,5%,10%,15%,20%)下,白刺花(Sophora davidii)种子萌发进程、种子大小与种子萌发及种子命运的关系。结果表明:不同干旱胁迫下,白刺花种子具有相似的萌发进程,但中度干旱处理(10%PEG)萌发率显著高于零干旱(0%PEG)和重度干旱处理(P0.05),重度干旱处理(20%PEG)种子萌发开始时间晚于零干旱和中度干旱处理;种子大小与种子萌发开始时间的关系表现为零干旱处理下呈极显著负线性关系,中度干旱处理(5%PEG,10%PEG)下无相关关系,重度干旱处理(15%PEG,20%PEG)下呈负二次曲线关系;种子大小对种子命运的影响表现为零干旱处理有利于大、小种子萌发和小种子休眠,中度干旱处理(10%PEG)增加中等种子萌发、大种子休眠和小种子死亡风险,重度干旱处理(15%PEG,20%PEG)增加大种子死亡风险、中等种子和小种子休眠。综合分析表明,白刺花种子大小与萌发行为及种子命运的关系具有较强的环境依赖性,即种子萌发行为表现为顺境下种子越大萌发越快,逆境下小种子和大种子较中等种子萌发更快;种子命运表现为顺境增加种子死亡的风险,中度干扰有利于种子萌发,逆境则有利于种子休眠。  相似文献   

3.
Inhibitors of carotenoid biosynthesis are known to prevent abscisic acid (ABA) biosynthesis and to affect germination and dormancy of seeds in many plants. In this study, the effects of three carotenoid biosynthesis inhibitors, fluridone, norflurazon and diflufenican, on the conditioning and germination of Striga asiatica seeds were examined. Fluridone and norflurazon shortened the conditioning period required before S. asiatica seeds would germinate after exposure to the germination stimulant strigol, and prevented the inhibitory effects of both light and supraoptimal temperature (40 °C) on seed germination. In addition, treatment with fluridone or norflurazon after conditioning in water induced seed germination in a manner similar to the effect of natural germination stimulants. Moreover, the seedlings developing after conditioned with fluridone formed haustorium-like structures without the involvement of haustorium inducing factors. In contrast, diflufenican had no effect on the conditioning and germination of S. asiatica seeds. These results indicate that fluridone and norflurazon have various effects on the germination of S. asiatica seeds and might be available for control of root parasites.  相似文献   

4.
Nondormant A. caudatus seeds germinated in the darkat temperatures between 20 and 35° but not at 45 °C.Incubation at this temperature for at least 10 h inhibited seedgermination over the temperature range 20 to 35 °C,temperatures previously suitable for germination. Thus incubation at 45°C induced secondary dormancy. Mechanical or chemicalscarification or exposure to pure oxygen caused complete or almost completegermination of dormant seeds although more slowly in comparison to nondormantseeds. Secondary dormant scarified seeds required a lower concentration of ABAthan nondormant seeds to inhibit germination. The high temperature, whichinduced dormancy, 45 °C, caused the seed coat to be partiallyresponsible for secondary dormancy. Involvement of ABA (synthesis orsensitivity) in the induction and/or maintenance of this dormancy should beconsidered.  相似文献   

5.
Mature seeds of the Cape Verde Islands (Cvi) ecotype of Arabidopsis thaliana (L.) Heynh. show a very marked dormancy. Dormant (D) seeds completely fail to germinate in conditions that are favourable for germination whereas non-dormant (ND) seeds germinate easily. Cvi seed dormancy is alleviated by after-ripening, stratification, and also by nitrate or fluridone treatment. Addition of gibberellins to D seeds does not suppress dormancy efficiently, suggesting that gibberellins are not directly involved in the breaking of dormancy. Dormancy expression of Cvi seeds is strongly dependent on temperature: D seeds do not germinate at warm temperatures (20–27°C) but do so easily at a low temperature (13°C) or when a fluridone treatment is given to D seeds sown at high temperature. To investigate the role of abscisic acid (ABA) in dormancy release and maintenance, we measured the ABA content in both ND and D seeds imbibed using various dormancy-breaking conditions. It was found that dry D seeds contained higher amounts of ABA than dry ND after-ripened seeds. During early imbibition in standard conditions, there was a decrease in ABA content in both seeds, the rate of which was slower in D seeds. Three days after sowing, the ABA content in D seeds increased specifically and then remained at a high level. When imbibed with fluridone, nitrate or stratified, the ABA content of D seeds decreased and reached a level very near to that of ND seeds. In contrast, gibberellic acid (GA3) treatment caused a transient increase in ABA content. When D seeds were sown at low optimal temperature their ABA content also decreased to the level observed in ND seeds. The present study indicates that Cvi D and ND seeds can be easily distinguished by their ability to synthesize ABA following imbibition. Treatments used here to break dormancy reduced the ABA level in imbibed D seeds to the level observed in ND seeds, with the exception of GA3 treatment, which was active in promoting germination only when ABA synthesis was inhibited.Abbreviations ABA Abscisic acid - Cvi Cape Verde Islands - D Dormant - GA Gibberellin - GA3 Gibberellic acid - ND Non dormant  相似文献   

6.
梾木种子低温层积过程中内源激素含量的动态变化特征   总被引:2,自引:0,他引:2  
应用酶联免疫吸附测定法(ELISA)研究了梾木种子低温层积过程中内源激素含量的动态变化,分析了内源激素与种子休眠与发芽的关系。结果表明:(1)梾木种子中IAA含量在层积处理初期剧烈降低,持续一段时间后又显著升高,但后期下降,且IAA/ABA也出现同样的变化;种子中ABA含量在层积处理前期较高,但随着处理时间的延长趋于下降;种子内GA1/3含量以及GA1/3/ABA均随层积处理时间的延长逐渐增大;种子内ZRs和iPAs含量的变化相对较为平稳,尽管有一定的波动,但整体呈渐趋增高趋势。(2)梾木种子发芽率及发芽势在未经层积处理以及处理时间少于90d的条件下均为0,但随着层积处理时间的延长二者明显上升,层积处理的时间长短对梾木种子萌发有显著影响。(3)相关分析表明,梾木种子内GA1/3含量与种子的发芽率、发芽势均呈显著正相关关系,相关系数分别为0.688、0.662;种子内GA1/3/ABA增大有利于种子休眠解除和萌发。  相似文献   

7.
Grappin P  Bouinot D  Sotta B  Miginiac E  Jullien M 《Planta》2000,210(2):279-285
The physiological characteristics of seed dormancy in Nicotiana plumbaginifolia Viv. are described. The level of seed dormancy is defined by the delay in seed germination (i.e the time required prior to germination) under favourable environmental conditions. A wild-type line shows a clear primary dormancy, which is suppressed by afterripening, whereas an abscisic acid (ABA)-deficient mutant shows a non-dormant phenotype. We have investigated the role of ABA and gibberellic acid (GA3) in the control of dormancy maintenance or breakage during imbibition in suitable conditions. It was found that fluridone, a carotenoid biosynthesis inhibitor, is almost as efficient as GA3 in breaking dormancy. Dry dormant seeds contained more ABA than dry afterripened seeds and, during early imbibition, there was an accumulation of ABA in dormant seeds, but not in afterripened seeds. In addition, fluridone and exogenous GA3 inhibited the accumulation of ABA in imbibed dormant seeds. This reveals an important role for ABA synthesis in dormancy maintenance in imbibed seeds. Received: 31 December 1998 / Accepted: 9 July 1999  相似文献   

8.
Reyes D  Rodríguez D  Nicolás G  Nicolás C 《Planta》2006,223(2):381-385
In the present paper evidence is presented indicating that tyrosine dephosphorylation is a key regulatory mechanism in postgermination arrest of Arabidopsis thaliana L. seed development mediated by abscisic acid (ABA). By using phenylarsine oxide (PAO), an inhibitor of tyrosine phosphatases, the sensitivity to the inhibitory effect of ABA on seed germination is enhanced. Consistent with this finding, we demonstrate that the ABA-responsive gene, RAB18, is hyperinduced in seeds imbibed in ABA plus PAO, compared with seeds imbibed only with ABA.  相似文献   

9.
Liu H  Platt SG  Borg CK 《Oecologia》2004,138(4):539-546
Seed dispersal by animals is one of the most important plant-animal mutualisms, but saurochory, the dispersal of seeds by reptiles, has received little attention. We investigated the role of the Florida box turtle (Terrapene carolina bauri) as a seed dispersal agent in pine rockland forests of the lower Florida Keys and examined the effect of turtle digestion on seed germination. We obtained seeds of 11 species with fleshy fruits and 2 species with non-fleshy fruits (a grass and legume) from the feces of 145 box turtles collected on Key Deer National Wildlife Refuge from 1999 to 2000. We planted the seeds of nine species and germination percentage (percentage of seeds that germinated during the experiment) varied from 10% to 80%. Comparative germination experiments were conducted with Thrinax morrissii, Serenoa repens, and Byrsonima lucida. We compared the germination percentage and germination rate (number of days from planting to seedling emergence) of seeds from three treatments (seeds recovered from feces, control seeds with pulp, and control seeds without pulp) and continued these experiments for up to 2 years. Passage through the box turtle digestive tract greatly enhanced the germination percentage and germination rate of S. repens, but decreased the germination percentage of B. lucida and T. morrissii, and decreased germination rate for T. morrissii. Subsequent destructive seed viability tests revealed that many ungerminated T. morrissii seeds remained viable, suggesting long-term seed dormancy may occur, even after passage through the turtle digestive system. In addition, the proportion of ungerminated seeds which remained viable was greater for seeds recovered from turtle feces than from control seeds with pulp. Furthermore, removal of fleshy pulp either manually or by the turtle digestive system may allow T. morrissii to escape insect predation.  相似文献   

10.
In the Florida Everglades, nutrient enrichment from agricultural outflow and the change in hydrology have collectively contributed to the expansion of cattails (Typha spp.). To assess the effectiveness of prescribed fire in controlling cattails and to predict vegetation dynamics after the fire, it is important to understand the seasonal variation of the soil seed bank and how the seed bank is affected by nutrient enrichment and fire. This paper investigates the effects of season, nutrient enrichment, and fire on soil seed bank species composition, richness, and density along a nutrient gradient in Water Conservation Area 2A (WCA 2A) of the Florida Everglades. Species richness was significantly affected by nutrient enrichment and season but not their interaction. Total seed density, however, was significantly affected by the interaction between nutrient enrichment and season. Yet, at species level, the relationship between seed density, nutrient enrichment and season varied. The highest seed density of cattail occurred in summer at highly enriched sites, but that of sawgrass occurred in fall regardless of enrichment; the seed density of water lily was very low regardless of season and nutrient enrichment, and the highest Amarathus seed density occurred at highly enriched sites year round. Moreover, germination timing differed greatly among species. While cattail seeds had a short incubation period and started to germinate 2–3 days after initiation of the germination assay, sawgrass seeds generally started to germinate 4 weeks later. Further, both the prescribed summer fire at the highly enriched site and the natural winter fire at the moderately enriched site reduced the seed density of cattail but not of sawgrass. Our results suggest that fire application for vegetation recovery in WCA 2A would benefit from explicitly considering seasonal dynamics of the seed bank.  相似文献   

11.
The effects of solutions of sodium hypochlorite and calcium hypochlorite (bleach) on dormancy and germination of Alectra vogelii seeds were investigated. Dry (non-pretreated) and 10-day water-pretreated seeds were exposed to various bleach concentrations, as well as to the host (Vigna unguiculata) root exudate. The 15-month-old Alectra seeds used were partially dormant in that only 40% or less of the 10-day pretreated seeds could be stimulated to germinate by the standard host root exudate. Comparable percentage germination of nonpretreated seeds was achieved with certain concentrations of bleach and the halogens, chlorine and bromine. Bleach and the halogens served not only as germination stimulant for pretreated Alectra seeds but appropriate concentrations induced also high percentage (70–90%) germination indicating a breakage of seed dormancy as well. The activity of the bleach in stimulating high percentage germination could be significantly reduced when the optimally bleach-treated seeds were rinsed daily with water during the germination period. Vigna root exudate, but not bleach, was shown to act as root stimulant for Alectra seedlings. The possible mechanism of the bleach effect on germination and dormancy of Alectra seeds is discussed.  相似文献   

12.
Information on seed dormancy is one of the primary requirements for successful seedling propagation of submerged aquatics and seagrass. Studies on Ruppia maritima seed germination have been done, but the presence, requirements, and the types of dormancy have not been well understood. A laboratory study was conducted to understand presence and types of organic dormancy of the seeds of estuarine R. maritima collected from Lake Pontchartrain, Louisiana, USA. Our study results indicate that the brackish estuarine R. maritima population produces seeds that do not have any noticeable initial morphological, physical, and physiological dormancy. Although dry stratification reduced seed viability and final germination rates, drying seems to induce an earlier germination in R. maritima. Desiccation also appears to induce an environmental dormancy that can be disrupted by exposure to water. Further study on environmental dormancy is needed to provide information to develop methods for long-term seed storage that can be employed in greenhouse seedling propagation. Handling editor: P. Viaroli  相似文献   

13.
In recalcitrant seeds of horse chestnut (Aesculus hippocastanum L.) maintaining a high water content during winter, dormancy is determined by the presence and influence of the seed coat, while the axial organs of the embryos excised from these seeds are not dormant. Such axial organs were capable for active water uptake and rapid fresh weight increase, so that their fresh weights exceeded those in intact seeds at the time of radicle protrusion. Fructose plays an essential role in the water uptake as a major osmotically active compound. ABA interferes with the water uptake by the axial organs and thus delays the commencement of their growth. The manifestation of seed response to ABA during the entire dormancy period indicates the presence of active ABA receptors and the pathways of its signal transduction. The content of endogenous ABA in the embryo axes doubled in the middle of dormancy period, which coincided with a partial suppression of water uptake by the axes. During seed dormancy release and imbibition before radicle protrusion, the level of endogenous ABA in axes declined gradually. Application of exogenous ABA can imitate dormancy by limiting water absorption by axial organs. Fusicoccin A (FC A) treatment neutralized completely this ABA effect. Endogenous FC-like ligands were detected in the seed axial organs during dormancy release and germination. Apparently, endogenous FC stimulates water uptake via the activation of plasmalemmal H+-ATPase, acidification of cell walls, their loosening, and turgor pressure reduction. FC can evidently counteract the ABA-induced suppression of water uptake by controlling the activity of H+-ATPase. It is likely that, in dormant intact recalcitrant seeds, axial organs, maintaining a high water content, are competent to elevate their water content and to start their preparation for germination under the influence of FC when coat-imposed dormancy becomes weaker.  相似文献   

14.
Western white pine (Pinus monticola) seeds exhibit deep dormancy at maturity and seed populations require several months of moist chilling to reach their uppermost germination capacities. Abscisic acid (ABA) and its metabolites, phaseic acid (PA), dihydrophaseic acid (DPA), 7-hydroxy ABA (7OH ABA) and ABA-glucose ester (ABA-GE), were quantified in western white pine seeds during dormancy breakage (moist chilling) and germination using an HPLC–tandem mass spectrometry method with multiple reaction monitoring and internal standards incorporating deuterium-labeled analogs. In the seed coat, ABA and metabolite levels were high in dry seeds, but declined precipitously during the pre-moist-chilling water soak to relatively low levels thereafter. In the embryo and megagametophyte, ABA levels decreased significantly during moist chilling, coincident with an increase in the germination capacity of seeds. ABA catabolism occurred via several routes, depending on the stage and the seed tissue. Moist chilling of seeds led to increases in PA and DPA levels in both the embryo and megagametophyte. Within the embryo, 7OH ABA and ABA-GE also accumulated during moist chilling; however, 7OH ABA peaked early in germination. Changes in ABA flux, i.e. shifts in the ratio between biosynthesis and catabolism, occurred at three distinct stages during the transition from dormant seed to seedling. During moist chilling, the relative rate of ABA catabolism exceeded ABA biosynthesis. This trend became even more pronounced during germination, and germination was also accompanied by a decrease in the ABA catabolites DPA and PA, presumably as a result of their further metabolism and/or leaching/transport. The transition from germination to post-germinative growth was accompanied by a shift toward ABA biosynthesis. Dormant imbibed seeds, kept in warm moist conditions for 30 days (after an initial 13 days of soaking), maintained high ABA levels, while the amounts of PA, 7OH ABA, and DPA decreased or remained at steady-state levels. Thus, in the absence of conditions required to break dormancy there were no net changes in ABA biosynthesis and catabolism.Abbreviations ABA abscisic acid - ABA-GE abscisic acid glucose ester - DPA dihydrophaseic acid - 7OH ABA 7-hydroxy abscisic acid - 8OH ABA 8-hydroxy abscisic acid - MRM multiple reaction monitoring - PA phaseic acid  相似文献   

15.
Abscisic acid (ABA) levels in seeds from three cultivars of apple (Malus domestica Borkh.) which have substantially different chilling requirements were investigated by gas chromatography mass-spectrometry selected ion monitoring (GCMS-SIM) during stratification. The ABA content of dormant unchilled seeds was similar in the three cultivars, suggesting no relationship between the chilling requirement of those seeds and their ABA status. That chilling is not related to ABA changes during stratification was confirmed by warm (20°C) and cold (5°C) stratification experiments. ABA content dropped rapidly and nearly identically under both temperature regimes, but only cold stratification promoted germination. The decline in ABA during stratification was due in large part to leaching from the seed coat and nucellar membrane; the ABA content of the embryo remained nearly constant. The radicle in intact seeds stratified at 5°C began growing 20–30 days after the ABA in the seed coat and nucellar membrane had nearly disappeared. Radicle growth did not occur in unchilled seeds, even though ABA had leached from them as well. It is possible that the leaching of ABA from the seed allows certain promotive forces to develop, but if so, these can develop only at chilling temperatures. Studies were also conducted on 2-trans ABA relationships to apple seed dormancy, but no association was evident.Report No. 12, Department of Fruit and Vegetable Science, Cornell University.  相似文献   

16.
为明确车桑子[Dodonaea viscosa(L.)Jacq.]种子的休眠特性和地理变异特性,测定了云南省元谋县凉山乡(属北亚热带区)和坝区苴林乡(属南亚热带区)车桑子种子形态,观察了种子的休眠特性和萌发特性。结果表明,两地的车桑子种子都具有物理休眠特性,经热水处理的种子萌发率显著高于未处理的种子(P=0.001)。两地种子在长、宽、长/宽以及种子百粒重上十分接近,其萌发特征和幼苗生长特征没有表现出显著差异。因此,坝区苴林乡和凉山乡种子并未发生地理变异,两地均适合车桑子采种,但在播种前应进行种子休眠破除,以提高种子发芽率。  相似文献   

17.
Pre-harvest sprouting (PHS) in sorghum is related to the lack of a normal dormancy level during seed development and maturation. Based on previous evidence that seed dormancy in maize is controlled by the vp1 gene, we used a PCR-based approach to isolate two Sorghum bicolor genomic and cDNA clones from two genotypes exhibiting different PHS behaviour and sensitivity to abscisic acid (ABA). The two 699 amino acid predicted protein sequences differ in two residues at positions 341 (Gly or Cys within the repression domain) and 448 (Pro or Ser) and show over 80, 70 and 60% homology to maize, rice and oat VP1 proteins respectively.Expression analysis of the sorghum vp1 gene in the two lines shows a slightly higher level of vp1 mRNA in the embryos susceptible to PHS than in those resistant to PHS during embryogenesis. However, timing of expression was different between these genotypes during this developmental process. Whereas for the former the main peak of expression was observed at 20 days after pollination (DAP), the peak in the latter was found at later developmental stages when seed maturation was almost complete.Under favourable germination conditions and in the presence of fluridone (an inhibitor of ABA biosynthesis), sorghum vp1 mRNA showed to be consistently correlated with sensitivity to ABA but not with ABA content and dormancy.  相似文献   

18.
Flixweed is one of the most abundant weeds in North America and China, and causes a reduction in crop yields. Dormancy of flixweed seeds is deep at maturity and is maintained in soil for several months. To identify regulators of seed dormancy and germination of flixweed, the effect of environmental and hormonal signals were examined using dormant and non-dormant seeds. The level of dormancy was decreased during after-ripening and stratification, but long imbibition (over 5 days) at 4 °C in the dark resulted in the introduction of secondary dormancy. The strict requirement of duration of cold treatment for the break of dormancy may play a role in the seasonal regulation of germination. The germination of non-dormant flixweed seeds was critically regulated by red (R) and far-red (FR) light in a photoreversible manner. Sodium nitroprusside, a donor of nitric oxide (NO), promoted germination of half-dormant seeds, suggesting that NO reduced the level of seed dormancy. As has been shown in other related species, light elevated sensitivity to GA4 in dark-imbibied flixweed seeds, but cold treatment did not affect GA4-sensitivity unlike in Arabidopsis. Taken together, our results indicate that seed germination in flixweed and its close relative Arabidopsis is controlled by similar as well as distinct mechanisms in response to various endogenous and environmental signals.  相似文献   

19.
After-ripening (AR) is a time and environment regulated process occurring in the dry seed, which determines the germination potential of seeds. Both metabolism and perception of the phytohormone abscisic acid (ABA) are important in the initiation and maintenance of dormancy. However, molecular mechanisms that regulate the capacity for dormancy or germination through AR are unknown. To understand the relationship between ABA and AR, we analysed genome expression in Arabidopsis thaliana mutants defective in seed ABA synthesis (aba1-1) or perception (abi1-1). Even though imbibed mutant seeds showed no dormancy, they exhibited changes in global gene expression resulting from dry AR that were comparable with changes occurring in wild-type (WT) seeds. Core gene sets were identified that were positively or negatively regulated by dry seed storage. Each set included a gene encoding repression or activation of ABA function (LPP2 and ABA1, respectively), thereby suggesting a mechanism through which dry AR may modulate subsequent germination potential in WT seeds. Application of exogenous ABA to after-ripened WT seeds did not reimpose characteristics of freshly harvested seeds on imbibed seed gene expression patterns. It was shown that secondary dormancy states reinstate AR status-specific gene expression patterns. A model is presented that separates the action of ABA in seed dormancy from AR and dry storage regulated gene expression. These results have major implications for the study of genetic mechanisms altered in seeds as a result of crop domestication into agriculture, and for seed behaviour during dormancy cycling in natural ecosystems.  相似文献   

20.
以紫斑牡丹种子为试验材料,研究不同浓度的赤霉素(GA_3)处理对种子生根以及生根过程中营养物质、酶活性和内源激素水平变化的影响,为探讨紫斑牡丹种子萌发机制提供依据。结果表明:(1)GA_3处理能够促进种子生根,并以300 mg/L GA_3处理对种子生根效果最好,与对照相比可提前14.67 d生根,生根率可达71.00%。(2)与对照相比,GA_3处理可以在0~15 d时促进种子淀粉水解和可溶性糖的积累,并加速可溶性蛋白的消耗,在0~30 d促进过氧化物酶(POD)活性的提高,从而促进种子萌发生根。(3)在种子沙藏生根过程中,种子脱落酸(ABA)含量呈下降趋势,赤霉素(GA)、玉米素核苷(ZR)和吲哚乙酸(IAA)含量均表现出先上升后下降的趋势,与对照相比,GA_3处理可使种子GA、ZR和IAA的含量在沙藏前期明显上升,以解除种子休眠。研究发现,外源GA_3处理可以调控紫斑牡丹种子内源激素含量和POD活性的变化,促进营养物质转化,从而提前解除种子休眠使其萌发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号